精密播种机覆土与镇压过程对种子触土后位置控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密播种作业质量是由仿形、开沟、排种、覆土及镇压五个主要工作部件综合作用决定的,任何一个部件结构性能存在问题都会影响精密播种作业的整体质量。然而在以往的研究过程中,对上述五个主要工作部件的重视程度是不同的,早期精密播种技术研究主要集中在排种器能否提供均匀的种子流方面,致使排种器在精密播种机五个主要工作部件中质量与性能远远优于其它部件,技术理论也处于遥遥领先地位。直到上世纪90代以来,人们才开始逐步重视到其它主要工作部件的试验研究,使精密播种理论得到了极大的丰富与发展,精密播种机作业质量也得到了较大提高,精密播种技术得到了迅速推广。但在覆土、镇压部件与作业环节方面仍然缺乏深入系统的研究,既没有充分考虑覆土与镇压部件的类型特点、结构与运动参数的优化,也不重视覆土与镇压部件的加工质量,结果使精密播种机只实现了精密排种却未达到精密播种要求。
     鉴于目前在精密播种机的研究中,关于覆土与镇压部件理论上和试验研究方面存在的问题,本文以对种子触土后土壤的运动状态、土壤压实程度影响较大的覆土器和镇压器为研究对象,对种子触土后位置和覆土厚度进行了深入、系统的研究。利用有机玻璃板制作了挤压式、双圆盘式、八字形覆土器,以及自行研制的装有压力传感器的可变力苗带镇压器,通过均匀设计设计方法及高速摄像系统等,分析了三种覆土器结构参数与运动参数对覆土过程中种子水平位移量与覆土厚度的影响;通过正交试验设计方法进行了镇压器的不同镇压力对实际播深、位移变化等影响的试验研究,并建立了相关数学模型,优化出了最佳覆土器种类和最佳结构参数与运动参数及最佳镇压力。利用LS—DYNA软件中SPH方法进行了覆土和镇压过程中土流与种子运动状态进行了仿真分析,应用Solidworks软件对精密播种机单体覆土器与镇压器进行了虚拟制造和运动仿真,提高了设计的准确性和效率,为进一步提高精密播种机设计质量和丰富精密播种理论进行了有益的探索。
     本文是高等学校博士学科点专项科研基金(20040183024)和吉林省科技发展计划项目(200405045)、国家现代农业产业技术体系建设专项资金(CARS-01-33)的部分内容,其主要研究内容如下:
     1、研制了八字形、双圆盘式和挤压式三种不同工作原理的新型覆土器,覆土部件的角度、高度、宽度、前后位置均可调节,便于参数优化,可实现不同条件下种子触土后位置变化的试验研究。基于Solidworks软件建立了三种覆土器与镇压器的仿真模型,利用透明有机玻璃板制成了三种覆土器,方便试验过程中对土流与种子运动状态观测。
     2、基于高速摄像技术在土槽实验台上完成了三种覆土器覆土过程测试试验,利用均匀设计设计方法建立了不同条件下种子位移量和覆土厚度的回归模型,覆土器回归模型如下:
     八字型覆土器种子位移量回归模型为:
     回归模型表明:影响八字形覆土器种子位移量的主次因素依次为覆土器张角与机器速度的交互项、机器速度、张角与倾角的交互项,最后是张角与倾角。
     八字形覆土器覆土厚度回归模型为:
     回归模型表明:影响八字形覆土器覆厚度的主次因素依次为覆土器倾角、张角与倾角的交互项、张角与机器速度的交互项,最后是覆土器张角。
     双圆盘式覆土器种子位移量回归模型为:
     回归模型表明:影响双圆盘式覆土器种子位移量的主次因素依次为覆土器倾角和张角的交互项、张角、机器速度、倾角,最后是作业速和张角的交互项。
     双圆盘式覆土器覆土厚度的回归模型为:
     回归模型表明:影响双圆盘式覆土器覆土厚度的主次因素依次为覆土器张角与倾角的交互项、作业速度与张角的交互相、速度和倾角的交互项、张角、倾角,最后是作业速度。
     挤压式覆土器种子位移量回归模型为:
     回归模型表明,影响挤压式覆土器种子位移量的主次因素依次为速度与倾角的交互项、作业速度。
     挤压式覆土器覆土厚度回归模型为:
     回归模型表明:影响挤压式覆土器覆土厚度的主次因素依次为覆土器倾角、作业速度,最后是作业速度与倾角交互项。
     经过对上述回归模型优化后,得出了三种覆土器的最优试验因素水平,并确定了最优覆土器为挤压式覆土器,最优试验因素水平为作业速度X1=4km/h,覆土圆盘倾角X_2=300,此时种子最小位移量为△Y_1=0.0075m,覆土厚度为△Y_2=0.0389m。
     同时进行的高速摄像试验结果表明,覆土前种子位移量都很小,决定覆过程中种子位移变化的主要原因是种子被覆盖后随土流一起运动而引起的。八字形与双圆盘式覆土器覆土过程引起的土流运动剧烈,种子位移变化量大,同时覆土厚度也大;挤压式覆土器覆土过程对种床土壤扰动量很小,因此,种子的位移量小,覆土厚度适宜。
     3、基于光滑粒子流体动力学方法(SPH),完成了覆土器覆土过程中土壤运动状态、种子位移量、覆土厚度和实际播深等动力学仿真,完成了土壤物理参数及力学参数的测定。仿真结果与试验结果基本吻合:八字形覆土器覆土过程种子位移量仿真与试验结果误差为△Y_1=0.002m,吻合程度为75.5%,覆土厚度误差为△Y_2=0.012m,吻合程度为80%;双圆盘式覆土器覆土过程种子位移量仿真与试验结果误差为△Y_1=0.0068m,吻合程度为71.8%,覆土厚度误差为△Y_2=0.019m,吻合程度为90.2%;挤压式覆土器覆土过程种子位移量仿真与试验结果误差为△Y_1=0.003m,吻合程度为76.6%,覆土厚度误差为△Y_2=0.003m吻合程度为89.9%,表明了利用SPH方法进行精密播种机触土部件仿真的可行性。
     4、研制了一种可变力苗带镇压器,可实现镇压力由定量调节变为无级调节。利用Solidworks参数化建模软件建立了可变力苗带镇压器三维实体模型,制作了试验样机,利用S形传感器、数字显示器、计算机以及拖拉机液压元件构成镇压力测试系统,实现镇压力由定量调节变为无级调节。
     5、进行了可变力苗带镇压器试验研究,系统分析了镇压力、作业速度对实际播深、种子位移量、种床土壤坚实度、出苗率、含水率及苗期植株高度的影响。结果表明:实际播深随镇压力加大而减少,其它试验指标均随镇压力的加大而提高,其中,种床土壤坚实度指标与种子位移变化量指标随着镇压力加大而增加更快,植株高度随镇压力继续加大而减小,其余试验指标则随镇压力继续加大而增加缓慢;探索了镇压力变化对种子位移量的影响,即镇压力大小对种子的粒距变化影响不大,但对覆土厚度有较大影响。镇压力对所有试验指标的影响均大于作业速度的影响。
     6、利用SPH软件建立了土壤模型,基于SPH/FEM耦合算法的镇压系统LS-DYNA仿真实现。基于Solidworks参数化建模软件建立了可变力苗带镇压器三维实体模型,选取1600N~1800N镇压力和6km/h作业速度进行了镇压过程运动仿真,模型仿真结果与实际试验过程测试指标值接近,镇压器镇压过程种子实际位移与仿真位移误差为△Y_1=0.003m,吻合度为81.3%,实际覆土厚度与仿真过程获得覆土厚度误差为△Y_2=0.0017m,吻合度为96%。表明利用SPH方法对镇压器镇压过程进行仿真的方法是可行的。
     本文针对精密播种机覆土器与镇压器两种触土部件的结构参数与运动参数进行了深入系统的研究,并通过SPH方法进行了动力学仿真分析,为提高精密播种机设计质量提供了新的研究法,对丰富精密精密播种理论具有重要意义。
The quality of precision seeding is comprehensively determined by theperformance of the five main working parts comprising of copying, trenching,metering, soil covering and rolling. The structure and performance issues of any partwill affect the overall quality of precision seeding operations. However, the researchon the above five parts were attached different importance in the past. A largenumber of literature data indicated that early research of precision seedingtechnology mainly focused on the ability to provide a uniform seed flow, whichresulted in the metering device’ quality and performance is superior to other parts inthe five major parts of precision seeding and its technical theory was also in theleading position. Until1990s, the experimental study of the other main workingparts has been paid more attention gradually, which developed the precision seedingtheory. The quality of precision seeding has also been greatly improved and theprecision seeding technology has gained rapid popularization subsequently.However, there is still lack thorough and systematic study in soil covering androlling parts. Neither fully considers the type characteristics, optimization of thestructure and motion parameters of soil covering and rolling parts, nor attaches moreimportance to the machining quality, which lead that precision seeder realized onlyprecision metering but failed to achieve precision seeding.
     Given the current theoretical and experimental problems on soil covering androlling parts in the existing research of the precision seeder, soil covering and rollingparts which greatly affect the status of soil flow after seed contacting soil and thedegree of soil compaction were taken as the study object. And then the position afterseed contacting soil and the thickness of soil covering were studied thoroughly andsystematically in this paper. The eight-shaped coverer, double-disc coverer andsqueeze-type coverer were made with organic glass and a variable force seedlingsroller with pressure sensor was also designed and developed. The seed leveldisplacement and thickness influenced by the structure motion parameters of threecovers during the soil covering process were analyzed through uniform experimentaldesign method and high-speed camera system. The influence of actual sowing depth and displacement changes caused by different pressure with roller was studiedthrough orthogonal experimental design method, the related mathematical modelswere developed and the best coverer type, structure motion parameters and pressureswere optimized. The simulation analyses of the state of soil movement and seedmotion in the process of covering and rolling were done using the SPH method inLS-DYNA software. The virtual manufacturing and motion simulation of unit coverand roller of precision seeder were studied with Solidworks software and the designaccuracy and efficiency were improved.
     This paper is part of the Specialized Research Fund for Doctoral Program ofHigher Institution (20040183024), the Program of Science and TechnologyDepartment of Jilin Province (200405045) and the earmarked fund for ModernAgro-industry Technology Research System(CARS-01-33), the main contents are asfollows:
     1. Three different types of soil covers comprising of eight-shaped coverer,double-disc coverer and squeeze-type coverer were developed.The angle, height,width and the front and back position of the covering components can be adjusted,so that the parameters are easy to be optimized. This structure can realize trials tomeasure the position after seed contacting soil in different conditions. Thesimulation models of three types of the soil cover and roller were developed usingSolidworks software and three different soil cover were made with transparentorganic glass in order to observing the motion state of the soil flow and seedsconveniently.
     2. The test of soil covering with three-type covers was accomplished on the soilbin tester based on high-speed camera technology and regression models of the seeddisplacement and the soil thickness were established under different conditionsusing the uniform experimental design method.
     The regression model of the seeds’ displacement of the eight-shaped coverer inthe soil is:
     The regression model shows that the primary and secondary factors affectingthe seed displacement of the eight-shaped coverer during the covering process werethe interaction of the field angle and the forward velocity of machine, the forwardvelocity of machine, the interaction of field angle and inclination angle, field angle and inclination angle in sequence.
     The regression model of the soil covering thickness of the eight-shapedcoverer in the soil is:
     The regression model shows that the primary and secondary factors affectingthe covering thickness of the eight-shaped coverer during the covering processwere the field angle, the interaction of field angle and inclination angle, theinteraction of covering device’s field angle and the forward velocity of machine, theinclination angle in sequence.
     The regression model of the seed displacement of the double-disc soil cover inthe soil is:
     The regression model shows that the primary and secondary factors affectingthe seed displacement of the double-disc coverer during the covering process werethe interaction of field angle and inclination angle, the inclination angle, the forwardvelocity of machine, the field angle, the interaction of the inclination angle and thespeed of operation in sequence.
     The regression model of the soil covering thickness of the double-disc soilcover in the soil is:
     The regression model shows that the primary and secondary factors affectingthe covering thickness of the double-disc coverer during the covering process insequence were the interaction of field angle and inclination angle, the interaction ofthe inclination angle and the speed of operation, the interaction of the inclinationangle and the speed of machine, the interaction of the field angle and the operatingspeed, the inclination angle, the field angle, finally, the operating speed.
     The regression model of the seeds’ displacement of the extrusion soil cover inthe soil is:
     The regression model shows that the primary and secondary factors affecting the seed displacement of the squeeze-type coverer during the covering process insequence were the interaction of the field angle and the operating speed, theoperating speed.
     The regression model of the soil covering thickness of the extrusion soilcover in the soil is:
     After the optimization of the above regression models, the optimumexperimental levels of the three types of soil cover are derived and the squeeze–typecover is defined as the optimal one. The optimal trial level is where the forwardvelocity of machine X1=4km/h, the inclination angle of the covering disc X2=30°,In this condition, the seed minimal displacement is△Y_1=0.0075m, the soilthickness△Y_2=0.0389m.
     The regression model shows that the primary and secondary factors affectingthe covering thickness of the squeeze-type coverer during the covering process insequence were the field angle, the operating speed, finally, the interaction of thefield angle and the operating speed.
     3、Based on the smooth particle hydrodynamics method(SPH), The dynamicssimulation for soil motion status, seed’s displacement, covering thickness and theactual sowing depth were finished during the soil covering process with the soilcoverer. The measurement of soil physical parameters and mechanical parameterswas completed. The simulation results and the test results are consistent with eachother. seed displacement error of the eight covering process is Y_1=0.002m,covering thickness error is Y_2=0.012m; seed’s displacement error of the doubleround type covering process is Y_1=0.0068m, covering thickness error is
     Y_2=0.003m. These results showed that using SPH to do simulation on contactingparts of the precision seeder is feasible.
     4、A variable force seedlings roller realizing that the rolling pressure fromquantitative regulation to stepless regulation was developed. The variable forceseedlings roller was developed making use of the Solidworks parametric modelingsoftware. Rolling pressure test system also were constituted using S-shaped sensor,digital display, computer and the tractor hydraulic components, which could realizethe rolling pressure from quantitative regulation to steptless regulation.
     5、Experimental study of the variable force seedlings roller was conducted. Theinfluence of rolling pressure and operating speed on the actual planting depth, the Seed displacement change, the firmness of the seedbed soil, germination rate,moisture content and seedling height were systematically analyzed. The orthogonalexperiment results show that the actual sowing depth reduced while the rollingpressure increased, the other test indices increased with the increase of the rollingpressure. Among them, the firmness index of the seedbed soil and seed displacementchange index increase faster with the rolling pressure persistently adding, plantheight decreases with the rolling pressure persistently increasing, and the rest of thetest indices increase slowly with the rolling pressures persistently increasing. Theseed displacement change in the impact of the rolling pressure changes was explored.The results showed that the size of the rolling pressure on seed grain distance changehas little effect, but has a greater impact on covering thickness. The influence ofrolling pressure on all test indices is greater than the influence of the operationspeed.
     6、The soil model was established using SPH softward and LS-DYNA rollingsimulation system has also been realized based on the SPH/FEM coupling algorithm.Based on the parametric modeling Solidworks software, a variable force seedlingsroller was developed and the motion simulation was carried out with the selection of1600-1800N rolling pressure and6km/h operation speed in the process. Simulationresults and the actual test results are close. The seed displacement error during therolling process is△Y_1=0.003m, the covering thickness error is△Y_2=0.0017m. It shows that the SPH method was feasible to simulate in the rolling process.
     The structure parameters and motion parameters of soil coverer and roller in theprecision seeder were studied thoroughly and systematically and the SPH methodwas used to do kinematics simulation analysis in this paper. This research provides anew approach to improve the design quality of the precision seeder, and it hasimportant significance for enriching precision seeding theory
引文
1.马成林编著.精密播种理论.吉林科学技术出版社.1999.
    2.马成林,王十周,张守勤等.气力轮式排种器试验研究.农业机械学报,1990.21(3):28~34.
    3.李成华,马成林,于海业等.倾斜圆盘勺式玉米精密排种器的试验研究.农业机械学报.1999,30(2):38~41.
    4.张道林,汪遵元.可调式内侧充种排种器型孔的研究.农业机械学报.1994,25(3):34~37.
    5.左春柽,马成林,张守勤等.新型气力精密排种器的空气动力学原理.农业工程学报.1997,27(3):110~114.
    6.于建群,马成林,杨海宽等.组合内窝孔玉米精密排种器型孔的研究.吉林工业大学学报.2000,30(1):16~20.
    7.于建群,马成林,左春柽,陈晓光.新型铲式播种打孔器的研究.农业机械学报,2001,32(1):38~41.
    8. п.C.介宁.播种均匀性理论.农业科学通报,1962.
    9. R. P. Rohrbach et al. Evaluating Planting Based on a Monte Caro Planter Model. Transactionof the ASAE,1971,(6):1146~1149.
    10. W. A. LePori, J. G. Porterfield, E. C. Fitch. Fluidic Control of Seed Metering.Transactions of the ASAE,1974,463~467.
    11. W. R. Nave, M. R. Paulsen. Soybean seed Quality as Affected by Planter Meters.Transactions of the ASAE,1979,739~745.
    12. G.F. Botta, A. Tolon-Becerra, X. Lastra-Bravo, M. Tourn. Tillage and traffic effects (plantersand tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas.Soil&Tillage Research110(2010)167–174.
    13. S.D.Kachman, J.A.Smith.Alternative Measures of Accuracy in Plant Spacing for PlantersUsing Seed Metering.Transaction of the ASAE.1995,38(2):379~387.
    14. L. P. Buftan. Ect. Seed Displacement After Impact on a Soil Surface. Agric EngngRes,1974(19):327~338.
    15. G.F. Botta, A. Tolon Becerra, F. Bellora Melcon. Seedbed compaction produced by traffic onfour tillage regimes in the rolling Pampas of Argentina. Soil&Tillage Research105(2009)128–134.
    16. Berg M.A non-linear rubber spring model for rail vehicle dynamic analysis[J].Vehicle SystemDynamiacs,1998,30(3/4):197~212.
    17. C.B.Кардащевсккий.播种机的播种装置.莫斯科:机械制造,1980.
    18. J.L.Halerson. Planter selection accuracy for edible beans. Transactions of the ASAE.1983,26(2):367~371.
    19. S.A.Shearer. Precision Seed Metering with a Submerged Turbulent Air-jet. Transaction of theASAE,1991,34(3):781~786.
    20. S. D. Kachman, J.A.Smith. Alternative Measuares of Accuracy in Plant Spacing for PlantersUsing Single Seed Metering. Transaction of the ASAE,1995,38(2):379~387.
    21. M.Iqbal, S.J.Marley, D.C.Erbach, T.C.Kaspar.An Evaluation of Seed Furrow Smearing.Transaction of the ASAE,1998,41(5):1243~1248.
    22. M.F.Kocher, Y. Lan, C. Chen, J.A. Smith. Opto-electronic Sensor System for Rapid Evaluationof Planter Seed Spacing Uniformity. Transaction of the ASAE,1998,41(1):237~245.
    23. J.W.Panning, M.F.Kocher, J.A.Smith, S.D.Kachman. Laboratory and Field Testing of SeedSpacing Uniformity for Sugarbeet Planters. Applied Engineering inAgricalture,2000,16(1):7~13.
    24. A. Ozmerzi, D. Karayel,et al. Effect of Sowing Depth on Precision Seeder Uniformity.Biosystems Engineering,2002,82(2):227~230.
    25. D. Karayel, M. Wiesehoff, A. O¨ zmerzi, J. Muller. Laboratory measurement of seed drill seedspacing and velocityof fall of seeds using high-speed camera system.Computers andElectronics in Agriculture50(2006)89–96.
    26. Arzu Yazgi, Adnan Degirmencioglu. Optimisation of the seed spacing uniformity performanceof a vacuum-type precision seeder using response surface methodology. B I O S YSTEMSENGINE E R I N G97(2007)347–356.
    27. S. Fallahi, M.H. Raoufat. Row-crop planter attachments in a conservation tillage system: Acomparative study. Soil&Tillage Research98(2008)27–34.
    28.马成林等.精密播种的统计模拟探讨.吉林工业大学学报.1984(3):24~31.
    29.孙肇端等.精密播种机的粒距和植株分布的计算机模拟方法.农业工程学报.1988,4(2):1~8.
    30.马旭,马成林,张守勤等.精密播种机粒距分布计算机仿真的研究.农业工程学报.1992,8(2):35~44.
    31.马旭,于海业,杨海宽.种子落于种沟后弹跳滚动位移的测定及建模.农业机械学报.1998.8,29(增刊):58~62.
    32.王玉顺,司慧萍等.精密播种机粒距的概率分布.农业机械学报.2001,32(3):40~43.
    33.于建群,马成林,张格.组合内窝孔精密排种器护种和投种过程分析.农业机械学报.2001,32(4):28~30.
    34.于建群,马成林,王立鼎.组合内窝孔精密排种器充种过程分析.农业机械学报.2001,32(5):30~33.
    35.张泽平,马成林,左春柽.精密排种器及排种理论研究进展.吉林工业大学学报.1995,25(4):112-117.
    36.孙福辉,封俊等.单体仿形压轮式播种单组结构参数的模拟计算.中国农业大学学报.1998,3(5):67~72.
    37.孙齐磊,张晓辉,牟宗桂等.排种器的机理及影响因素的研究.农机化研究.2002,(3):40~41.
    38.马连元,刘俊峰等.内侧充种垂直圆盘排种器的结构、原理和应用.农业机械学报.2001,32(增):43~47.
    39.杜辉,樊桂菊,刘波.气力式精量播种机与排种器的研究现状.农业装备技术.2002,105(3):13~14.
    40.李成华,夏建满,何波.倾斜圆盘勺式精密排种器投种过程分析.农业机械学报.2005,36(3):48~50.
    41.蔡晓华,吴泽全,刘俊杰,谢玮,李源源.基于计算机视觉的排种粒距实时检测系统.农业机械学报.2005,36(8):41~44.
    42.李卫红,李民朝,单士睿.往复式排种器设计.广东农业科学,2010,(5)198-199,205.
    43.姜峰,陈海涛,王业成.小区育种插装式排种器的设计.农业工程不报,2010,26(10):9-12.
    44.王熙,张海玉,赵军,李玉清,张伟.大豆播种机电液仿形机构研究.农机化研究,2010(1):227-229.
    45.李景安.1YM-6型苗眼镇压器[J].粮油加工与食品机械,1988,3(1):39-40.
    46.闻金光,李馨宇.旱坡地播后轻重型镇压效应的研究[J].内蒙古农业科技,1990,(3):12-14.
    47.李云飞,张盛文.垄作种床松散土壤力学特性的研究[J].农业机械学报,1995,26(4):68-72.
    48.郭颖杰,李云飞.春播镇压对淡黑钙土含水量影响的试验研究[J].吉林农业大学学报,1999,21(2):66-69.
    49.孙毅,马骞.半干旱区机播保苗综合增产技术研究[J].水土保持研究,1996,(3):58-62.
    50.孟宪玉.螺旋镇压器[J].农牧与食品机械,1993,(5):24-25.
    51.罗红旗,高焕文等.免耕播种机组合镇压器设计研究[J].北京工商大学学报,2008,26(3):21-24.
    52.廖先国,单北汉.几种局部镇压器的改装与应用[J].新疆农机化,1999(2):17.
    53.刘伟光,张印生,郭春雨.多功能碎土镇压器的设计[J].现代化农业,2011,(2):38.
    54.马爱平,靖华等.农田轻便土壤悬虚镇压器的研制与应用[J].农机化研究,2011,(7):97-99.
    55.张智泓,佟金等.不同材质仿生凸齿镇压器滚动件的模态分析[J].农业工程学报,2012,(7):8-14.
    56. A. Tolon-Becerra, M. Tourn, G.F. Botta, X. Lastra-Bravo.Effects of different tillage regimeson soil compaction, maize (Zea mays L.) seedling emergence and yields in the easternArgentinean Pampas region [J]. Soil&Tillage Research,2011,117:184–190.
    57. G.F. Botta, A. Tolon-Becerra, X. Lastra-Bravo, M. Tourn. Tillage and traffic effects (plantersand tractors) on soil compaction and soybean (Glycine max L.) yields in Argentinean pampas[J]. Soil&Tillage Research,2010,110:167–174.
    58. G.F. Botta, A. Tolon-Becerra, M. Tourn, X. Lastra-Bravo, D. Rivero. Agricultural traffic:Motion resistance and soil compaction in relation to tractor design and different soil conditions[J]. Soil&Tillage Research,2012,120:92–98.
    59.王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社.2002.
    60.罗海玉,牛永江.基于特征的机械产品三维参数化造型研究.机械研究与应用.2005,18(3):100~101.
    61.曾杰,鲁东.计算机辅助设计(CAD)在农业机械中的应用及实践[J].中国农机化.2000,(4):33~34.
    62.金昊,籍国宝,柯冬香.犁体CAD通用数字模型的研究[J].农业机械学报.1998,29(1):145~149.
    63.杨福增,傅向华,杨芳,薛惠岚,李新广,王鹏飞.基于Solidworks的播种机零部件参数化造型.农业机械学报.2002,33(4):66~68.
    64.杨欣,刘俊峰,冯晓静.小麦精密排种器特征造型及装配关联设计.农业工程学报.2004,20(3):89~92.
    65.贾晶霞,张东兴,郝新明,刘汉武.马铃薯收获机参数化造型与虚拟样机关键部件仿真.农业机械学报.2005,36(11):64~67.
    66.何波,李成华.基于Solidworks的铲式成穴器几何建模和运动仿真.机械设计与制造。2006,6:48~49.
    67. P. A. Cundall, O. L. Strack. A discrete numerical model for granular assembles[J].Geotechnique.1979,29(1):47~65.
    68. Thornton C. Interparticle Sliding in the Presence ofAdhesion.J Phys D:Appl Phys.1991,24:1942~1946.
    69. Lanstong P A, Tusun U, heyes D M.Discrete Simulations of Granular Flow in2D and3DHoppers: Dependence of Discharge Trate and Wall Stress on ParticleInteractions.Chem.Engng. Sci,1995,50:967~987.
    70. Lu Z, Negi S C, Jofriet J C. A numerical model for flow of granular materials in silos.Part1:model development [J].J. Agric. Engng. Res.1997,68:223~229.
    71.鲁军.离散单元法的数值模型研究及工程应用[D].北京:清华大学水电系.1996.
    72.邢纪波,俞良群,张瑞丰,王泳嘉.离散单元法的计算参数和求解方法选择.计算力学学报.1999,16(1):47~51.
    73.刘凯欣,高凌天.离散元法研究的评述[J].力学进展.2003,33(4):483~490.
    74.闫民等.振动磨DEM动力学分析模型.天津大学学报.2000,33(1):59~62.
    75.孙春宝.动筛跳汰过程的离散单元法模拟研究.东北大学博士学位论文.1994.7.
    76.李伟,胡选利,黄协清.不连续散粒体的离散单元法.南京航空航天大学学报.1999,31(1):85~91.
    77.于建群,马成林,王立鼎.组合内窝孔精密排种器充种过程分析.农业机械学报.2001,32(5):30~33.
    78.周德义,马成林,左春柽等.散粒农业物料孔口出流成拱的离散单元仿真.农业工程学报.1996,12(2):186~189.
    79.徐泳,K.D.Kafui, C.Thornton.用颗粒离散元法模拟料仓卸料过程[J].农业工程学报.1999,15(3):65~69.
    80.张锐,李建桥,李因武.离散单元法在土壤机械特性动态仿真中的应用进展.农业工程学报.2003,19(1):16~19.
    81.徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划.农业工程学报.2003,19(2):34~38.
    82.胡少兴,查红彬,马成林.基于遗传算法的种子图象目标点模式匹配.中国图象图形学报.2003,5.
    83.胡少兴,马成林,张爱武等.采用运动图像处理检测排种器充填性能.农业工程学报.2000,5.
    84. Belytschko T, Krongauz Y, Organ D,et al. Meshless methods: An overview and recentdevelopments.Comput Meth Appl Mech Engng,1996,139:3-47.
    85. Sulsky D, Chen Z, Schreyer H L.A particle method for history-dependent materials.ComputerMethods in Applied Mechanics and Engineering,1994,118(1-2):179-196.
    86. Sulsky D,Zhou S J,Schreyer H L.Application of a particle-in-cell method to solid mechanics.Computer Physics Communications,1995,87(1-2):236-252.
    87. Allen R,Sulsky D, Schreyer H L.Fluid-membrane interaction based on the material pointmethod.Int J Numer Meth Engng,2000,48:901-924.
    88. Chen Z,Feng R,Xin X,et al.A computational model for impact failure with shear-induceddilatancy. International Journal for Numerical Methods in Engineering,2003,56(14):1979-1997.
    89. Qian S,Weiss J.Wavelets and the numerical solution of partial differential equations. Journalof computational physics,1993,106:155-175.
    90. Melenk J M, Babuska I.The partition of unity finite element method:Basic theory andapplication. Comput Methods Appl Mech Engrg,1996,139(3):289-314.
    91. Yagawa G, Yamada T.Free mesh method:a new meshless finite element method.Computational Mechanics,1996,18:383-386.
    92. Wendland H. Meshless Galerkin method using radial basis functions.Math Comput,1999,68(228):1521-1531.
    93.孙一源,高行方,余登苑.农业土壤力学.农业出版社.1985.
    94.李可亮.机械土壤动力学[Z].中国图书年鉴.1996
    95.刘菊兰主编.机械土壤动力学[Z].中国出版年鉴.1996
    96.华云龙,张伟,董务民.力学可以为农业现代化作贡献[J].力学进展,1998,28(3):289-298.
    97.杜家瑶.耕作力学的开拓与探索[J].中国力学学会办公室、中国农业工程学会办公室编.力学与农业工程.科学出版社,1994,21-25.
    98.姬长英,潘君拯,湿软土壤剪切变形机理探析[J],农业工程学报,1994,10
    99.区颖刚,塑性土壤的弯曲破碎,农业工程学报[J],1997年,13
    100.林金天,土壤动力特性与节能耕作及机具设计[J],农业机械学报,1996,27
    101.王国林,马旭,耕作层土壤在动载作用下的力学特性[J1,农业机械学报,1997,28(2)
    102.李小显,王为,土壤抗剪强度的试验研究,农机与食品机械【J],1999,1:12一13
    103.陆怀民,切土部件与土壤相互作用的粘弹塑性有限元分析[J],土木工程学报,200年,35
    104.杨人凤,张永新,汤键,冲击+振动+静碾复合压实滚轮与土壤系统的动力学模型[J].长安大学学报(自然科学版),23(5):56一59
    105.徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34一37
    106.曹岩,王宏等.一种面向制造企业全面集成的虚拟制造系统体系结构.计算机辅助设计与制造,1999.3
    107.祝国旺,孙健,周济等.特征技术研究综述[J].中国机械工程.1995,6(2):7~10.
    108. Zhang X, Vu-Quoc L.Simulation of chute flow of soybeans using an improved tangentialforce displacement model[J].Mechanics of Materials,2000,32:115~129.
    109. E Sakaguchi, M Suzuki, J F Favier, Kawakami. Numerical Simulation of the ShakingSeparation of Paddy and Brown Rice Using the Discrete ElementMethod[J].Agric.EnggRes.2001,79(3):307~315.
    110. Tanaka H, Momozu M, Oida A, et al. Simulation of soil deformation and resistance at barpenetration by the distinct element method[J].Journal of Terramechanics,2000,37:41~56.
    111. Monozu M, Oida A, Yamazaki M.Simulation of Interaction Between Soil and Rotary Blade byModified Distinct Element Method.Proceeding of the7#European Conference of ISTVS,Ferara,1997:572~579.
    112. Kafui K D, Thornton C.Some Observations of Granular Flow in Hoppers and Silos[J].In:Behringer&Jenkins ed.Powders and Grains97, Balkema, Rotterdam,1997:511~514.
    113. Kamimoto T,Ahn S K,Chang Y J.Measurement of droplet diameter and fuel concentration ina non-evaporating spray by means of an image analysis of shadow photographs.ASAE840276,1984.
    114. Nishida K, Hiruyasu H.Characterization of combustion processes in pre-chamber and mainchamber of indirect injection diesel engine by high-speed photography.ASAE861181,1986.
    115. Johnson G R,Peterson E H,Stryk R A.Incorporation of an SPH option into the EPIC code
    116. Lucy L B.A numerical approach to the testing of the fission hypothesis.The AstronomicalJournal,1977,82:1013-1024.
    117. Libersky L D,Petschek A G.Smoothed particle hydrodynamics with strength of materials.Advances in the free lagrange method,Lecture notes in physics,1990,395:248-257.
    118. Johnson G R.Linking of Lagrangian particle methods to standard finite element methods forhigh velocity impact computations.Nucl Engrg Des.1994,150:265–274.
    119. Nayroles B,Touzot G,Villon P.Generalizing the finite element method:diffuse approximationand diffuse elements.Computational Mechanics,1992,10:307-318.
    120. Belytschko T,Lu Y Y, Gu L. Element-free Galerkin methods. International Journal forNumerical Methods in Engineering,1994,37:229-256.
    121. Chen Z,Hu W,Shen L.An evaluation of the MPM for simulating dynamic failure with damagediffusion. Engineering Fracture Mechanics,2002,69:1873-1877.
    122. Lucy L B.A numerical approach to the testing of the fission hypothesis.The AstronomicalJournal,1977,82:1013-1024.
    123. Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to nonspherical stars.Monthly Notices Rastronomy Soc.(MNRAS),1977,181:375-389.
    124. Libersky L D,Petschek A G.Smoothed particle hydrodynamics with strength of materials.Advances in the free lagrange method,Lecture notes in physics,1990,395:248-257.
    125. Johnson G R,Peterson E H,Stryk R A.Incorporation of an SPH option into the EPIC code
    126. Johnson G R,Peterson E H,Stryk R A.Incorporation of an SPH option into the EPIC code for awide range of high velocity impact computations.Int J Impact Engng,1992,14:385–94.
    127. Zhu T, Atluri S N.A local boundary integral equation(LBIE)method in computationalmechanics, and a meshless discretization approach.Comput Mech,1998,21:223-235.
    128. Atluri S N,Zhu T.A new meshless local Petrov-Galekin(MLPG)approach in computationalmechanics. Comput Mech,1998,22:117-127.
    129. Liu Xiao dong. Computer framework for feature-base design process planning. ComputerAided Design,2000,32(7):397~408
    130.高建民,周鹏,张兵,李发义.基于光滑粒子流体动力学的土壤高速切削仿真系统开发及试验[J].农业工程学报.2007(08)
    131.姜涛,张宪,乔欣,章劲,蒋建东.基于SPH法的土壤切削刀具三维数值模拟及优化[J].机电工程.2009(06)
    132.黄国权.有限元法基础及ANSYS应用北京:机械工业出版社,2004
    133.阮玉塘.基于ANSYS的某机枪有限元结构分析.南京理工大学.2007
    134.系统仿真学报2011年第23卷总目录[J].系统仿真学报.2011(12)
    135.《计算机仿真》2011年第28卷总目次[J].计算机仿真.2011(12)
    136.戴宁生,陆文龙,周桂生.三维CAD技术的推广与应用[J].机械制造与自动化.2007(06)
    137.戴宁生,孔良良.参数化设计的推广与应用[J].机电信息.2007(S1)
    138.李政.三维CAD技术在机械设计中的应用[J].装备制造.2009(08)
    139.杨福增,傅向华,杨芳,薛惠岚,李新广,王鹏飞.基于Solidworks的播种机零部件参数化造型[J].农业机械学报.2002(04)
    140.孙裕晶.虚拟样机技术及其在精密排种器部件设计中的应用[D].长春:吉林大学,2005.
    141.牛彦,王瑞丽,毛昆.基于COSMOS/works的深松铲强度有限元分析[J].辽宁工业大学学报(自然科学版).2008(03)
    142.罗海玉,牛永江,基于特征的机械产品三维参数化造型研究.机械研究与应用,2005,18(3):100~101
    143.张向东,辛爽,周梅.均匀设计在排矸石高强混凝土配合比中的应用.应用基础与工程科学学报.2003,(2):196~201.
    144.方开泰.均匀设计与均匀表.北京:科学出版社.1994.
    145.方开泰.均匀设计设计的理论、方法和应用.数理统计与管理.2004,23(3):69~80.
    146.姚钟尧.回归分析法在均匀设计数据分析中的地位.特种橡胶制品.1998,19(2):35~41.
    147.张胜国,张沛,耿孝正.用均匀设计方法优化啮合同向双螺杆挤出过程运转条件.中国塑料.1998,12(6):94~98.
    148.高玉根,王国彪,丁预展.起重机设计中基于均匀设计的遗传算法.起重运输机械.2002,(3):31~33.
    149.王德忠,黄震等.应用高速摄像技术研究柴油机的喷雾过程.上海交通大学学报,2000,34(4):453~457.
    150.胡少兴,查红彬,马成林.基于遗传算法的种子图象目标点模式匹配.中国图象图形学报.2003,5.
    151.胡少兴,马成林,张爱武等.采用运动图像处理检测排种器充填性能.农业工程学报.2000,5.
    152. Perrone N,Kao R.A general finite difference method for arbitrary meshes.Computers andStructures,1975,5:45-58.
    153. Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to nonspherical stars.Monthly Notices Rastronomy Soc.(MNRAS),1977,181:375-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700