双排尾重浮联合分选机的分级与旋流分选充气机构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对浮选中粗粒煤易损失、尾煤中粗粒含量不可控的问题,将浮选和分级相结合,重选与浮选相联合,形成浮选粗选—浮选尾矿分级—重力扫选—重选精矿再浮选的分选模式,构建了新型双排尾重浮联合分选机,利用浮选和重选实现细粒和粗粒高灰尾矿的分别排出,为细粒煤分选提供了一种新方法,对于提高整体分选效率、缩短浮选尾煤处理流程具有重要意义。
     研制了能置于浮选柱内部的内溢流式分级装置。考察了流量和分流比对分级底流分配率的影响,结果表明,内溢流式分级装置在适当条件下能排出1/2~2/3的高灰细泥(-0.074mm)。在分级试验数据基础上,构建了单一粒度变量的分级曲线数学模型,能很好地模拟“鱼钩”形分级曲线。通过分析模型参数与试验操作参数之间的相关关系,进一步构建了包含粒度d、入料流量Q、分流比Rf和给矿浓度C的多变量分级曲线综合数学模型,模型说明,入料流量和入料浓度决定分级过程的好坏,而底流分流比主要影响夹带。综合数学模型的建立对于预测分级效果,确定适宜的分级条件,通过调整操作变量来实现对分级过程的有效控制具有积极的指导意义。
     研制了布置于浮选柱底部的外溢流式分级装置。研究了内桶直径、内桶高度、沉降锥等结构参数与操作参数对-1mm煤分级效果的影响规律。试验结果表明,入料流量越大,分级粒度越粗;底流夹带量与底流分流比Rf近似呈线性增长关系。该分级装置无论从底流夹带还是溢流跑粗方面,较内溢流式分级装置都有了很大的改善,达到了双排尾重浮联合分选机所需要的分级目的。
     设计制作了工业型独立分级单元,成功应用于曙光煤业选煤厂的浮选尾煤分级,与一台三产品旋流器扫选搭配,实现了双排尾重浮联合分选机的拆分式工业应用。工业运行数据显示,在有限的空间条件(即过大的单位面积处理量)下,该分级装置发挥了一定的脱泥和分级作用,降低了进入浓缩机的粗颗粒含量,对于回收损失的粗颗粒低灰煤起到了积极的促进作用。
     构建了管式外溢流式分级装置和周边外溢流式分级装置的物理模型。采用计算流体动力学软件FLUENT就内桶直径、内桶高度、锥形挡板、入料流量、底流分流比等对分级装置内流场的影响规律进行了研究。多相流模拟结果表明:溢流浓度明显低于底流浓度;颗粒在底锥段实现浓缩,并在底锥锥面上堆积形成沉积层;粗颗粒主要沉积在底锥锥面上,而细颗粒主要浓缩悬浮于底锥段;分级装置的下部湍流强度较大,利于颗粒松散分层;环形上升水流区内湍流强度很低,利于颗粒沉降。随着流量的增大,分级粒度变粗,该结论与试验结果一致。
     研制了Φ150mm旋流分选充气器,清水和带煤充气试验表明,该设备具有很好的充气性能。以充气量、气液比和临界水柱高度为比较指标,系统考察了叶片、入料压力(流量)和溢流管直径、溢流管插入深度、底流口直径等结构参数对充气性能的影响规律。结果表明,叶片是强化旋流分选充气器充气性能的根本所在,它使旋流分选充气器的充气量提高50%以上。充气量随入料压力的增大而增大,二者近似呈线性关系。
     研究了旋流分选充气器对-1mm煤的重力分选效果,加入叶片使溢流灰分和底流灰分同时降低。通过分配曲线可知加入叶片降低了分选密度,对粗粒煤的分选精度还有促进作用。这为在线调整旋流器分选密度提供了一种新的思路。
     采用雷诺应力湍流模型和VOF多相流模型对旋流分选充气器内部流场进行模拟,考察了入料压力、叶片、结构参数对流场的影响,得出以下结论:①无论是体积分数、静压分布、速度分布还是湍流强度分布,旋流分选充气器内水相和气相都有着清晰的界面,且叶片对旋流分选充气器中液相各指标的影响都很小,而对于气相影响非常显著。②旋流分选充气器中空气柱近似呈圆柱形,但上下并不完全等径,空气柱直径随溢流管直径的增大而变粗;①150mm旋流分选充气器上半部空气柱直径约34-35mm(以气水体积分数各0.5处为界,溢流管直径48mm);空气柱贯穿旋流分选充气器的过程中具有不稳定性,且溢流管越粗,里面的空气柱越不稳定;③叶片提高旋流分选充气器的充气性能的根本在于它大幅度提高了空气柱内的负压绝对值和空气的轴向速度,使得空气通量大幅度提高。空气流量、水流量随入料压力的增长规律与试验结果一致。④叶片对靠近溢流管壁附近内旋流的轴向速度有轻微削弱作用,这可能是导致精煤产率和灰分降低的重要原因。
     制作了浮选柱直径为400mm的双排尾重浮联合分选机试验样机,进行了初步流程试验。试验结果表明,双排尾重浮联合分选机对-1mm煤具有很好的分选效果,并实现了粗、细粒尾矿的分别排放,粗、细粒尾矿灰分分别达到54.93%和56.54%。分级和重选流程试验表明,一次排尾分级装置能够排放约90%的-0.044mm细泥,可有效避免高灰细颗粒返回浮选无效再处理;二次排尾重选装置-旋流分选充气器成功实现了对排细泥后分级底流的扫选,排出粗粒尾矿。
     设计、加工了结构紧凑的Φ600mm可移动式双排尾重浮联合分选机,配套了辅助试验系统及平台,完善了测试与控制系统,为推进双排尾重浮联合分选机的工业化进程奠定了基础。
To reduce the coarse particle losses in flotation, and solve the problem of uncontrollable size constitution in flotation tailings, flotation is integrated with classification and gravity concentration is united into flotation, which brings about the construction of new Gravity&Flotation Separator with Double-Tailing Discharge (GFS). The GFS utilizes flotation and gravity concentration to discharge fine and coarse tailings separately. The successful construction of it provides a new efficient method for fine coal separation, and show significance for improving the overall separation efficiency and shortening the treating process of flotation tailings.
     A classification device with inner overflow was developed, which can be arranged inside a flotation column. The effects of the flow-rate and the underflow proportion on the underflow partition curves were studied. The results show that the classification device with inner overflow can discharge1/2-2/3of-0.074mm slimes of high ash. On the basis of experimental data, a mathematical model with a single size variable for partition curve was constructed and showed good fitness for "fish-hook" partition curves. By analyzing the relationship between model parameters and experiment parameters, a multi-variable mathematical model was established involving size d, feeding rate Q, underflow split rate Rf and feeding concentration C. The model indicates that feeding rate and the concentration decide the goodness of classification process, while the underflow proportion mainly influences the entrainment. The establishment of this multi-variable model has a positive significance for predicting the classification result under certain conditions, pre-determining proper classification conditions, and realizing the controlling of process through operation variable adjusting.
     A classification device with outer overflow, which can be arranged at the bottom of flotation column, was developed. The effect of structure parameters and operation parameters on the classification performance of-1mm was studied.The results show that the partition size increases with the increasing of feeding rate. The fine entrainment in the underflow is proportional to the under proportion Rf. It showed much improvement in decreasing both the coarse loss into the overflow and entrapment in the underflow and can meet the classification requirements in GFS.
     An independent industrial classifier unit was designed and manufactured, and successfully applied in Shuguang Coal Preparation Pant. It was used to classify the flotation tailings, accompanied with a three-product cyclone. It realized separate application of GFS. The industrial operation data show that in a limited space, the classifier unit played a role of deslime and classification, reducing the coarse content into the thickener and showed significance for recovering coarse coal particles of low ash.
     Based on the models of the outer overflow classification devices of a tube-type and a peripheral-type, the influence of structural parameters including feeding rate, underflow proportion, sedimentary cone and the height of inner column on the flow field was investigated. The multi-phase simulation results show that:
     1) The concentration of the overflow is significantly lower than that of the underflow.
     2) The particles are concentrated in the area of the bottom cone and ultimately settle down onto the bottom surface to form a layer of sedimentation.
     3) The coarse particles mainly deposit on the surface of the bottom cone while the fine particles are mainly thickened and suspend inside the bottom cone.
     4) The turbulence at the lower part of the classification device is relatively high, which is helpful for particle suspension and layering. By contrast, the turbulence in the upward ring area is relatively low, which is much useful for the particles to settle down.
     5) The partition size increases with the increasing of feeding rate, which agrees with the experimental results.
     A Cyclonic Separator and Aerator (CSA) of Φ150mm was developed and aerating experiments both in water and coal slurry were carried out. Taking aerating amount, air-water ratio and critical water column height as the comparison indexes, the effect of the lane, the feeding pressure and the structure parameters on the aerating performce was investigated. The experimental results prove that the lane is the critical element strenghening the aerating performance of CSA and increased the aerating amount by over50%. The aerating amount increases with the increasing of feeding pressure. They seem to have a linear relationship.
     The gravity concentration performance of CSA was investigated for-1mm coal. It was found that the lane may help decrease the separation density and improve separation efficiency, which provides a new idea of controlling separation density on line.
     The flow field simulation of CSA is carried out employing Reynolds Stress Model and VOF Multiphase model. The effects of feeding pressure, the vane, and the structure parameter on the flow field were investigated. The results show that:
     1) The air phase and the water phase in CSA have a distinct interface from all flow field varieties, involving the phase volume fraction, the static pressure contours, the velocity contours and the turbulence contours. The lane show more significant influence on the air phase rather than on the water phase.
     2) The air core in CSA is much like a column but has different diameter from down to top. The diameter of the vortex finder influences the diameter of the air core. Larger vortex finder means greater air core diameter. The diameter of the air core is about34-35mm in a0150mm CSA. The air core is not stable when going through CSA and larger vortex finder seems to cause the air core less stable.
     3) The significant increase in the axial velocity and negative pressure value is the critical reason why the lane has increased the aerating amount of CSA so much. The increasing mode of air flux and water flux with the feeding pressure agrees with that obtained in the experiments.
     4) The lane decreases the axial velocity of the internal vortex, which may have caused the decrease in ash content of the clean coal.
     An experimental model machine of GFS with a Φ400mm flotation column was made and experimented in flowsheet. The results show that GFS has good separation performance for-lmm coal and can realize the separate discharge for the fine and the coarse tailings, with ash content of54.93.%and56.54%, respectivley. The classification and gravity experiments show that the classification (first tailing-discharge) device can discharge90%of-0.044mm slimes, which can effectively avoid the null circulation and re-treatment of fine particles with high ash. The gravity concentration (second tailing-discharge) device realized the scavenging of the classification underflow after de-sliming and discharged coarse tailings after scavenging.
     A movable experimental system of GFS was ultimately designed and fabricated with supporting facilities and control system, which established the foundation of further industrialization of GFS.
引文
[1]R.H.Yoon细粒浮选的进展—微泡浮选[J],国外金属矿选矿,1993,30(6):1-4.
    [2]张强,王化军,李正龙.浮选柱的新发展[J],国外金属矿选矿,1991,28(9):1-13.
    [3]Tao.D.. Role of bubble size in flotation of coarse and fine particles-a review. Separation Science and Technology,2004,39 (4):741-760.
    [4]Bianca Newcombe, D. Bradshaw, E. Wightman. Flash flotation and the plight of the coarse particle [J]. Minerals Engineering,2012,34:1-10.
    [5]N.T. Moxon, R. Keast-Jones, J.R. Aston. Increased coarse coal yield from flotation using non-ionic frothers [J]. International Journal of Mineral Processing,1988,24, (3-4):295-305.
    [6]N.T. Moxon, R. Keast-Jones. The effect of collector emulsification using non-ionic surfactants on the flotation of coarse coal particles[J] International Journal of Mineral Processing,1986,18 (1-2):21-32.
    [7]张振旭,李克伦,王怀法.煤宽粒级悬浮试验研究[J].山西焦煤科技,2009,(10):19-23.
    [8]A. Dashti, M. Eskandan Nasab. Optimization of the performance of the hydrodynamic parameters on the flotation performance of coarse coal particles using design expert (DX8) software [J]. Fuel,2013, 107:593-600.
    [9]J. Cowbum, G. Harbort, E. Manlapig, et al. Improving the recovery of coarse coal particles in a Jameson cell [J], Minerals Engineering,2006, (19):609-618.
    [10]M.C. Harris, J-P. Franzidis, C.T. O'Connor. An evaluation of the role of particle size in the flotation of coal using different cell technologies [J]. Minerals Engineering,1992,5 (10-12):1225-1238.
    [11]S. Ata, G.J. Jameson. The formation of bubble clusters in flotation cells [J]. International Journal of Mineral Processing,2005,76(1-2):123-139.
    [12]杨润全,王怀法.宽粒级煤泥浮选机流体动力学模拟与试验研究[J].煤炭科学技术,2012,40(11):120-128.
    [13]谢广元,吴玲,欧泽深等.煤泥分级浮选工艺的研究[J].中国矿业大学学报,2005,34(6):756-760.
    [14]Xie Guang-yuang, Wu Ling, Ou Ze-shen, et al. Research on fine coal classified flotation process and key technology [J]. Procedia Earth and Planetary Science,2009,1:701-705.
    [15]李振涛,谢广元,彭耀丽.浮选柱串联工艺改善粗颗粒煤泥浮选效果的探索[J].煤炭工程,2011,(1):85-88.
    [16]桂夏辉.煤泥分选过程强化及两段式分选研究[D].徐州:中国矿业大学,2012
    [17]R.Q. Honaker, M.K. Mohanty. Enhanced Column Flotation Performance For Fine Coal Cleaning [J]. Minerals Engineering,1996,9 (9):931-945.
    [18]D. Tao, G.H. Luttrell, R.H. Yoon. An experimental investigation on column flotation circuit configuration [J]. Int. J. Miner. Process.,2000,60:37-56.
    [19]戴少康.选煤工艺设计实用技术手册[M].北京:煤炭工业出版社,2010:219-220.
    [20]Miller J.D.. Air-sparged hydrocylone and method [P]. US,4279743,1981-7.
    [21]Miller J.D., Van Camo M.C.. Fine coal flotation in a centrifugal field with an air-sparged hydrocyclone [J]. Mining Engineering,1982, (11):1575.
    [22]庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社,2011:330-331.
    [23]褚良银.水力旋流器式浮选机的研究进展[J].国外金属矿选矿,1993,11:6-15.
    [24]杨泽坤.充气式水力旋流器的研究现状及其在选煤领域中的应用[J].矿山机械,2006,4:58-62.
    [25]张安朝,吴彦波.气浮水力旋流器用于细粒浮选的探讨[J].金属矿山,2010,9:115-118.
    [26]Honaker R.Q., Manoj M.K., Ho K.. Comparison of column flotation cells [J]. Proceedings 12th International Coal Preparation Exhibit and Conference, Lexington, KY, USA,1995:175-189.
    [27]郭德.煤泥浮选旋流器的研究[J].选煤技术,1996,(6):28-29.
    [28]许占贤,郭德,康文泽等.喷射吸气式浮选旋流器[P].中国,发明专利,98101978.1.
    [29]刘炯天.旋流—静态微泡柱分选方法及应用(之一):柱分选技术与旋流—静态微泡柱分选方法[J].选煤技术,2000,(1):42-44.
    [30]刘炯天.旋流-静态微泡浮选柱与洁净煤制备研究[D].北京:中国矿业大学,1999.
    [31]刘炯天.静态微泡浮选柱强化分选方法及装置[P].中国,发明专利,1997,8,97107091.1.
    [32]高振森.新型高效圆形离心浮选机[J].洁净煤技术,1998(4):16-18.
    [33]刘炯天,周晓华,王永田等.浮选设备评述[J].选煤技术,2003,(6):25-33.
    [34]郭德.离心力场中浮选的先进性和缺陷[J].辽宁工程技术大学学报,2002,21(6):703-705.
    [35]J.A. Finch. Column Flotation:A Selected Review-Part IV:Novel Flotation Devices [J]. Minerals Engineering,1995,8 (6):587-602.
    [36]G. Harbort, S. De Bono, D. Carr, V. Lawson. Jameson Cell fundamentals-a revised perspective [J]. Minerals Engineering,2003,16:1091-1101.
    [37]Huseyin Vapur, Oktay Bayat, Metin Ucurum. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell [J]. Energy Conversion and Management, 2010,51:1891-1897.
    [38]李茂林,鲁晏,黄波.应用射流浮选柱分选微细粒煤泥的试验研究[J].煤炭加工与综合利用,2001,(2):21-23.
    [39]朱金波,吴大为,周伟.喷射式浮选机充气搅拌装置内流体阻力分析[J].安徽理工大学学报(自然科学版),2011,31(2):35-37.
    [40]程宏志,张孝钧,石焕等.我国选煤用机械搅拌式浮选机的新进展[J].选煤技术,2006,(5):29-32.
    [41]Jameson, Graeme J.. New concept in flotation column design [C]. Proceedings of an International Symposium on Column Flotation (Column Flotation'88). Soc of Mining Engineers of AIME, Littleton, CO, USA.1988:281-285.
    [42]吴寿培,刘炯天.采煤选煤概论[M].北京:煤炭工业出版社,1992.9:112-120,132-135.
    [43]中国煤炭教育协会职业教育教材编审委员会.选煤工艺:浮选[M].北京:煤炭工业出版社,2007,3.
    [1]张妍琴.浮选柱用射流器充气器充气性能研究[D].太原:太原理工大学,2008:21-22,85-86.
    [2]樊民强,董连平,韩小恒等.新型水介质旋流器分选粗煤泥的试验研究与工业应用[J],选煤技术,2007,(4):25-29.
    [3]董连平,樊民强.大锥角水介质旋流器的应用研究[J].煤炭科学技术,2004,32(1):4043.
    [4]董连平,樊民强,程玉明等.水介旋流器分选跳汰三段中煤的工业实践[J].选煤技术,2007,(4):70-72.
    [5]樊民强,董连平.水介旋流器分选粗煤泥的效果与工艺[C].2005年全国选煤学术会议论文集,2005,8:35-38.
    [6]安彩红.旋流—射流分选充气器充气性能的试验研究[D].太原:太原理工大学,2009.
    [7]安彩红,杨宏丽,董连平等.旋流-射流分选充气器充气性能的试验研究[J],选煤技术,2009,(3):1-3.
    [8]樊民强,杨宏丽,董连平等.一种旋流与射流充气方法及其装置[P],中国专利,ZL200910073681.3
    [9]樊民强,杨宏丽,董连平等.双排尾重浮联合分选方法及装置[P].中国专利,ZL 200910073976.0,2009-1.
    [l]戴少康.选煤工艺设计实用技术手册[M].北京:煤炭工业出版社,2010.
    [2]吴寿培,刘炯天.采煤选煤概论[M].北京:煤炭工业出版社,1992.9:112-120,132-135.
    [3]陆贵德.圆锥形斜板沉淀池在选煤厂中的应用(上)[J],煤矿设计,1988,(1):40-45.
    [4]张云录.圆锥形沉淀槽底流浓度的调节及控制[J].选煤技术,1995,(5):23-24.
    [5]齐明强,董广印,荣宗谦.东庞矿选煤厂煤泥水系统改造实践[J].选煤技术,2012,(5):68-72.
    [6]李忠信.试论煤泥浓缩设备中流体运动性状的应用及倾斜板式深锥浓缩机的设计fJ].选煤技术,1976,3:29-35.
    [7]M. Frachon, J.J. Cilliers. A general model for hydrocyclone partition curves [J], Chemical Engineering Journal,1999,73:53-59.
    [8]L.G.Austin, R.R.Klimpel. An improved method for analyzing classifier data [J], Powder Tech,1981,29: 277-281.
    [9]T.Braun, M.Bohner. Influence of feed solid concentration on the performance of hydro-cyclones [J], Chem.Rng.Tech.1990,13:15-20.
    [10]L.R.Plitt. A mathematical model of the hydrocyclone classifier, CIM Bull,1976:114-122.
    [11]K.J.Reid. Derivation of an equation for classifier performance curves [J], Can. Metall. Q.,1971,10 (3): 253-254.
    [12]梅芳,张庆红,陆后根.气流分级的“鱼钩效应”研究[J],粉体技术,1995,1(3):1-6.
    [13]K. Majumder, P. Yerriswamy, J. P. Barnwal. The "fish-hook" phenomenon in centrifugal separation of fine particles [J]. Minerals Engineering,2003,16:1005-1007.
    [14]A.K. Majumder, H. Shah, P. Shukla, et al. Effect of operating variables on shape offish-hook" curves in cyclones [J]. Minerals Engineering,2007,20:204-206.
    [15]E.J. Roldan-Villasana, R.A. Williams, T. Dyakowski. The origin of the fish-hook effect in hydrocyclone separators [J]. Powder Technology,1993,77:243-250.
    [16]K. Nageswararao. A critical analysis of the fish hook effect in hydrocyclone classifiers [J]. Chemical Engineering Journal,2000,80:251-256.
    [17]张宇,刘家祥.涡流空气分级柳“鱼钩效应”的试验研究[J].北京化工大学学报,2004,31(3):51-54.
    [18]R. Del Villar, J,A. Finch. Modelling the cyclone performance with a size dependent entertainment factor [J]. Minerals Engineering,1992,5 (6):661-669.
    [19]D.Hodouin, S.Caron, J.J.Grand, Modelling and simulation of hydrocyclone desliming unit [C], Proc. 1st World Cong, on Particle Technology, Nurnberg, Part Ⅳ,1986,507-522.
    [20]W. Kraipech, W. Chenb, F.J. Parmab, T. Dyakowskia. Modelling the fish-hook effect of the flow within hydrocyclones [J]. Int. J. Miner. Process.2002,66:49-65.
    [21]J. A. FINCH. Modelling a Fish-hook in Hydrocyclone Selectivity Curves [J], Powder Technology. 1983,36:127-129.
    [22]H. Benzer, L. Ergun, A. J. Lynch et al. Modelling cement grinding circuits [J], Minerals Engineering, 2001,14(11):1469-1482.
    [23]K. Nageswararao, D.M. Wiseman, T.J. Napier-Munn. Two empirical hydrocyclone models revisited [J]. Minerals Engineering,2004,17:671-687.
    [24]谢广元,张明旭,边炳鑫等.选矿学[M].徐州:中国矿业大学出版社,2002:103-109.
    [1]温正,石良臣,任毅如FLUENT流体计算应用教程[M].北京:清华大学出版社,2009,1.
    [2]韩占忠FLUENT--流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009,8.
    [3]谢广元,张明旭,边炳鑫等.选矿学[M].徐州:中国矿业大学出版社,2002.
    [4]Haider and Levensiel, Morsi and Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems [J]. J. Fluid Mech,1972,55 (2):193-208.
    [1]周力.水介质旋流器在选煤中的应用[J].选煤技术,1989,(4):31-33.
    [2]申克忠.旋流器选煤[J].选煤技术,2005,(2):55-57.
    [3]A.K. Majumder, J.P. Barnwal. Processing of coal fines in a water-only cyclone [J]. Fuel,2011, 90:834-837.
    [4]董连平,樊民强,程玉明等.水介旋流器分选跳汰三段中煤的工业实践[J].选煤技术,2007,(4):70-72.
    [5]董连平,樊民强.大锥角水介质旋流器的应用研究[J].煤炭科学技术,2004,32(1):40-43.
    [6]樊民强,董连平.水介旋流器分选粗煤泥的效果与工艺[C].2005年全国选煤学术会议论文集,2005,8:35-38.
    [7]樊民强,董连平,韩小恒等.新型水介质旋流器分选粗煤泥的试验研究与工业应用[J],选煤技术,2007,(4):25-29.
    [8]M.A. Hararah, E. Endres, J. Dueck, et al. Flow conditions in the air core of the hydrocyclone [J]. Minerals Engineering,2010,23:295-300.
    [9]李中,袁惠新.旋流器内的传递特性及其应用[J].化工装备技术,2008,29(1):1-4.
    [10]苗青,袁惠新,王跃进.水力旋流器内空气柱的形成规律初探.江南大学学报(自然科学版),2002,1(4):380-383.
    [11]苗青,袁惠新,王跃进.水力旋流器内空气柱直径的研究[J].金属矿山,2004,(6):33-35.
    [12]T. Neesse, J. Dueck. Air core formation in the hydrocyclone. Journal of Minerals Engineering,2007, 20:349-354.
    [13]L.Y. Chu, W. Yu, G.J. Wang, et al. Enhancement of hydrocyclone separation performance by eliminating the air core [J]. Chemical Engineering and Processing,2004,43:1441-1448.
    [14]徐继润.水力旋流器强制涡及内部损失的研究[D].沈阳:东北工学院,1989.
    [15]钱爱军.重介质旋流器内空气柱与能耗关系的研究[J].选煤技术,2009,(3):4-6.
    [16]R. Sripriya, Nikkam Suresh, Sanjay Chandra, et al. The effect of diameter and height of the inserted rod in a dense medium cyclone to suppress air core [J]. Minerals Engineering,2013,42:1-8.
    [17]丁立亲等.浮选的理论和实践[M].北京:煤炭工业出版社,1987:188-196.
    [18]安彩红.旋流—射流分选充气器充气性能的试验研究[D].太原:太原理工大学,2009.
    [19]安彩红,杨宏丽,董连平等.旋流-射流分选充气器充气性能的试验研究[J],选煤技术,2009,(3):1-3.
    [20]樊民强,杨宏丽,董连平等.一种旋流与射流充气方法及其装置[P].中国,ZL200910073681.3
    [21]Hasan Hacifazlioglu. Application of the modified water-only cyclone for cleaning fine coals in a Turkish washery, and comparison of its performance results with those of spiral and flotation [J]. Fuel Processing Technology,2012,102:11-17.
    [22]樊民强,董连平,杨宏丽等.煤泥旋流重选柱[P].中国,ZL 200910073853.7.
    [1]王志斌,陈文梅,褚良银等.应用数值模拟方法对旋流器空气柱特性的探讨[J].化工装备技术,2005,26(6):14-18.
    [2]M.A. Hararah, E. Endres, J. Dueck, et al. Flow conditions in the air core of the hydrocyclone [J]. Minerals Engineering,2010,23:295-300.
    [3]T. Dyakow, R.A. Williams. Modeling turbulent flow with in a small diameter hydrocyclone [J]. Chem. Eng. Sci.,1993,48 (6):1143-1152.
    [4]王志斌,陈文梅,褚良银等.应用数值模拟方法对旋流器空气柱特性的探讨[J].化工装备技术,2005,26(6):14-18.
    [5]王志斌,褚良银,陈文梅等.基于高速摄像技术的旋流器空气柱特征研究[J].金属矿山,2010,(8):140:143.
    [6]徐继润,罗倩.水力旋流器流场[M].北京:科学出版社,1998.
    [7]A. Barrientos, R. Sampraio, F. Concha. Effects of the air core on the performance of a hydrocyclone [J]. Proceedings of ⅩⅧ International Mineral Processing Congress,1993:229-240.
    [8]V. Krishna, R. Sripriya, V. Kumar et al. Identification and prediction of air core diameter in a hydrocyclone by a novel online sensor based on digital signal processing technique [J]. Chemical Engineering and Processing:Process Intensification,2010, (49):165-176.
    [1]沈政昌.200m3超大型充气机械搅拌式浮选机设计与研究[J].有色金属,2009,(2):100-103.
    [2]吕玉庭,吴鹏,孙玉堂.中煤再洗工艺及其主要分选设备[J].选煤技术,2010,(4):43-45.
    [3]M.S. Jena. S.K. Biswal, S.P. Das, et al. Comparative study of the performance of conventional and column flotation when treating coking coal fines [J]. Fuel Processing Technology,2008,89:1409-1415.
    [4]Ali Guney, Guven Onal, Omer Ergut. Beneficiation of f ine coal by using the free jet flotation system [J]. Fuel Processing Technology,2002,75:141-150.
    [5]J.A. Finch. Column Flotation:A Selected Review--Part Ⅳ:Novel Flotation Devices [J]. Minerals Engineering,1995,8(6):587-602.
    [6]J. B. Yianatos. Fluid Flow and Kinetic Modelling in Flotation Related Processes Columns and Mechanically Agitated Cells--A Review [J]. Chemical Engineering Research and Design,2007,85(12): 1591-1603.
    [7]张妍琴.浮选柱用射流器充气器充气性能研究[D].太原:太原理工大学,2008:21-22,85-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700