仿青蛙跳跃机器人稳定跳跃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生跳跃机器人在越障和运动的敏捷性上具有突出优势,但由于可控时间短,腾空阶段具有不确定性,跳跃的稳定性对于其运动性能至关重要。姿态稳定性影响机器人能否安全着陆和连续运动,轨迹稳定决定能否到达预设的地点。本文以仿青蛙跳跃机器人为研究对象,对后足起跳、前足着地的间歇式跳跃机器人进行稳定性的研究。
     机器人的跳跃稳定需要可靠的机械和控制系统的支持,并具有感知自身姿态和外部环境的能力。本文通过分析已有机器人样机在结构和性能上的不足,对起跳机构和驱动系统提出改进方案,建立多传感器平台以提高机器感知姿态的能力。
     结合青蛙跳跃过程的特点,针对跳跃机器人的轨迹和姿态的获取方法进行研究,利用加速度和角速度数据,求取机器人各阶段运动姿态,提出起跳速度和机器人运动轨迹的获取方法,对机器人四肢末端相对于质心位置进行求解以进行碰撞预测。
     现阶段仿生机器人的稳定性研究方法,多从几何结构出发,辅以能量和力的分析,进而提出稳定判据。本文通过对实际青蛙跳跃模型的观察,归纳影响跳跃稳定性的因素,分析造成跳跃失败的原因。从起跳过程角度和摩擦力的影响,腾空阶段收腿的作用和落地后震荡情况等因素分析机器人的稳定性。运用零力矩点法和能量稳定边界法提出了稳定着陆的判据,并对机器人跳跃的稳定性过程进行综合探讨。
     设计基于多传感器的机器人控制系统,构建无线通信指令集,编写上位机人机交互程序和DSP机器人控制程序,建立实验平台。对不同情况下机器人的跳跃进行实验,研究起跳角、地面摩擦等参数对稳定跳跃的影响,验证稳定性判别条件。
Biomimetic jumping robot has outstanding advantages when facing obstacles and agile movement. As a result of the uncertainty of flying phase and with short-time controllable, the stability of jump performance is critical for a movement. Posture stability of the robot decides whether a safe landing and continuous movement is performed, while trajectory stability determines how accurate a landing location is. In this paper, a frog-inspired biomimetic jumping robot, which uses leg to take-off and arm landing, is studied as an example to solve the stable landing problem.
     Jumping stability of the robot requires a reliable mechanical and control system, and the capability to perceive itself and the environment. Based on the limitations of the existing robot, some suggestions to improve the structure and performance are proposed. A multi-sensor platform is also built to enhance the ability of collecting information.
     With the characteristics of real frog jump, methods to obtain the trajectory and posture of jumping robot are studied. The posture of a specified moment can be calculated with the equations of kinemics transform using the data from accelerometer and gyroscopes. The position of the ends of legs can be calculated for prediction of the impact.
     Methods to study the stability of biomimetic robot usually start from the geometric structure, supplemented by energy and force analysis to build the stability criterion. Based on the observation of actual frog hopping model, this paper summarized the factors affecting the stability of jump and reasons resulting failure. From the take-off angle and friction factor of the ground, movement of legs during flight phase and the impact when landing, stability of robot is analyzed. ZMP method and energy analysis are used for the stability criterion when landing.
     A control system based on multi-sensor with wireless communication is built. We establish a platform for experimental including a control interface on PC and embedded program in DSP. Jumping processes with different factors such as friction factor and initial angle to verify the stability criterion conditions are experimentized.
引文
[1]刘壮志,席文明,朱剑英.弹跳式机器人的研究[J].机器人. 2003, 25(6): 568-573
    [2]吉爱红,戴振东,周来水.仿生机器人的研究进展[J].机器人. 2005, 27(3): 284-287.
    [3] Kaplan M H, Seifert H. Hopping Transporters for Lunar Exploration[J]. Journal of Spacecraft and Rockets. August,1969,6(3):917-922
    [4] Raibert M H. Legged Robots that Balance[M]. Cambridge: MIT Press, 1986:45-80
    [5] Zeglin G J. Uniroo: A one-legged dynamic hopping robot [D]. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1991
    [6] http://www.ai.mit.edu/projects/leglab/robots
    [7] Zeglin G Z, Brown H B. First hops of the 3D Bow Leg[J]. Proceedings of the 5th International Conference on Climbing and Walking Robots, 2002:357-364
    [8] Burdick J, Fiorini P. Minimalist Jumping Robots for Celestial Exploration[J]. The International Journal of Robotics Research. 2003,7-8:653-674
    [9] Hale E, Schara N, Burdick J, Fiorini P, et al . A Minimally Actuated Hopping Rover for Exploration of Celestial Bodies[C]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, April 2000
    [10] Fiorini P, Burdick J. The Development of Hopping Capabilities for Small Robots[J]. Autonomous Robots.2003, 14:239-254
    [11] Kova? M, Fuchs M, Guignard A, et al. Miniature 7g Jumping Robot[C]. 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, 2008,19-23(5):373-375
    [12] Scarfoglierol U, Stefanini C, Dariol P. Design and Development of the Long-Jumping―Grillo‖Mini Robot[C]. 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 :467-469
    [13] Hyon S H, Mita T. Development of a biologically inspired hopping robot-kenken[C]. IEEE International Conference on Robotics and Automation. 2002(4):3984-3991
    [14] Singh P N, Waldron K J. Attitude estimation for dynamic legged locomotion using range and inertial sensors[C]. IEEE International Conference on Robotics and Automation, 2005:1663-1668
    [15] Playter R, Buehler M, Raibert M. BigDog[J]. Unmanned Systems Technology VIII, 2006:6230
    [16] Niiyama R, Nagakubo A, Kuniyoshi Y. Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System[C]. 2007 IEEE International Conference on Robotics and Automation. Roma, Italy, 10-14 April 2007
    [17]谭定忠,王叶兰等.弹跳式机器人的发展现状[J].机械工程师, 2005(3):30-31
    [18]杨煜普,耿涛,郭毓.一种新型翻转跳跃运动机器人的运动结构与轨迹规划[J].上海交通大学学报, 1997,33(7):1110-1113.
    [19]刘壮志.弹跳机器人若干关键技术研究[J].南京航空航天大学博士论文. 2004: 1-60
    [20]柏龙,葛文杰,陈晓红,张铭.用于行星探测的跳跃机器人研究[J].机器人, 2009(7):311-316
    [21]李涛.一种仿青蛙跳跃机器人机构设计与运动学分析[D].北方工业大学硕士学位论文, 2008
    [22]余杭杞.仿蝗虫四足跳跃机器人的机构设计和运动性能分析[D].哈尔滨工业大学硕士学位论文, 2006
    [23]王猛.仿青蛙跳跃机器人的研制[D].哈尔滨工业大学博士学位论文, 2009
    [24]王宏,聂义勇. 20世纪运动稳定性研究的三个重要结果[J].信息与控制, 2000, 29(5):393- 406.
    [25]夏旭峰,葛文杰.仿生机器人运动稳定性的研究进展[J].机床与液压, 2007, 25 (2):229-232
    [26] McGhee R, Frank A. on the stability properties of quadruped creeping gaits[J]. Math Biosci, 1968(3):331-351
    [27] Song S M, Waldron K J. Machines that walk: adaptive suspension vehicle[C]. MIT press, Cambridge, MA,1989
    [28] Zhang C, Song S M. Gait and geometry of a walking chair of the disabled[J]. Journal of Terramechanics. 1989,36:211-233.
    [29] Zhang C, Song S M. Stability analysis of wave-crab gaits of a quadruped[J]. Journal of Robotic Systems. 1990,7(2):243-276
    [30] Messuri D A. Optimization of the Locomotion of a legged Vehicle with Respect to Maneuverabiliy[D]. Ohio:The Ohio State Univesrity,1985.
    [31] Vukobratovi? M, Frank A, Juricic D. On the stability of biped locomotion[C]. IEEE Transactions on Biomedical Engineering, 1970, 17(l):25-36.
    [32] Orin D E. Interactive control of a six legged vehicle with optimization of both stability and energy[D]. Ph.D thesis. The Ohio State University. 1976
    [33] Kang D O, Lee Y J, et al. A study on adaptive gait for a quadruped walking robot under external forces[C]. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico. 1997(8):2777-2782
    [34] Yoneda K, Hirose S. Three-dimensional stability criterion of integrated locomotion and manipulation[J]. Journal of Robotics and Mechatronics. 1997 9(4): 267-274
    [35] Gregorio P, Ahmadi M, and Buehler M. Design, control andenergetics of an electrically actuated legged robot[J]. IEEE Transaction on Systems, Man and Cybernetics, 1997, 27(8). 626-634
    [36]王玲.双足步行机器人P3[J].国外科技动态, 2000(9):3-5.
    [37]新华网.本田类人型机器人-ASIMO. 2002
    [38]熊小琴,何广平.仿袋鼠单腿跳跃机器人动力学建模与仿真[J].北方工业大学学报. 2009, 21 (5):36-41
    [39]杨文纲,陆震.基于D-H表示法的多步态跳跃机器人稳定性研究[J].机械设计与制造. 2007,2(2):107-109
    [40] Dickinson M H, Farley C T. How Animals Move[J]. Science, 2000, 288 (7):100-106
    [41]罗庆生,韩宝玲.现代仿生机器人设计[M].电子工业出版社,北京, 2008: 160-161
    [42] Gillis G B, Biewener A A. Hindlimb Extensor Muscle Function During Jumping and Swimming in the Toad[J]. The Journal of Experimental Biology 2000(203):3549-3563
    [43]关山原野.仿生机器蛙跳跃机理分析及运动仿真[D].哈尔滨工业大学硕士学位论文, 2007.7
    [44]郭敏,尹光洪,田曦,唐修俊.基于三轴加速度计的倾斜角传感器的研究与设计[J].现代电子技术, 2010,319(8):173- 177
    [45]朱仕永,祖静.姿态角测试研究[J].电子设计工程.2009(17):12-14
    [46]薛定宇,陈阳泉.控制数学问题的MATLAB求解[M].清华大学出版社,北京, 2007:157-174
    [47] Hodgins J K, Raibert M H. Biped Gymnastics[C]. The International Journal of Robotics Research.,1990(9):115-128
    [48] http://en.wikipedia.org/wiki/Zero_Moment_Point
    [49] Vukobratovic M, Borovac B. Zero Moment Point-Thirty five Years of its Life[J]. International Journal of Humanoid Robotics, 2004(1):157-173
    [50]罗昌杰,邓宗全.基于零力矩点理论的腿式着陆器着陆稳定性研究[J].机械工程学报, 2010, 46 (5):38-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700