考虑大变形因素的高空作业车倾覆稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空作业车在市政、风电、机场、消防等上有广泛的应用和极其重要的用途。近年来,引起了研究者的特别关注,特别是作业高度超百米高空作业车。作业高度超百米高空作业车整机倾覆稳定性问题是保证其基本性能的安全要求关键内容,整机倾覆稳定性的稳定与否直接影响高空作业车基本性能及其倾覆事故发生。但是针对作业高度超百米高空作业车倾覆稳定性研究还比较少见,并且国内目前尚未见较成熟的设计分析理论依据。因此,本文以作业高度超百米高空作业车为研究对象,运用空间梁单元几何非线性有限元法分析其臂架的大变形,在此基础上引入零力矩点(Zero Moment Point, ZMP)动态稳定性判别方法,对高空作业车整机倾覆稳定性问题进行系统深入研究。
     目前设计中使用的臂架变形分析方法没有考虑臂架扭转、变幅与回转平面内的耦合作用等问题。因此,对高空作业车臂架的大变形分析精度不高并且设计分析方法不够完善。本文首先假设空间梁单元的几何关系;然后论述和推导具有初始挠度的空间梁单元力学模型(切线刚度矩阵、单元坐标转换矩阵与单元杆端抗力)与采用牛顿法的空间梁系结构几何非线性有限元计算流程;最后利用MATLAB语言编制了空间梁系结构几何非线性有限元程序,实现了综合考虑上述因素影响下的作业高度超百米高空作业车臂架的大变形计算。通过算例分析比较,验证了本文梁单元力学分析模型的实用性和程序的可行性。
     本文将ZMP法稳定性判别方法引入到作业高度超百米高空作业车的倾覆稳定性研究中,首先介绍了高空作业车倾覆稳定性假设条件;然后推导了基于ZMP法高空作业车整机动态ZMP点坐标值与稳定裕度计算方法;最后利用臂架大变形计算结果修正臂架位姿,在臂架新的位姿下,论述了基于ZMP法高空作业车整机倾覆稳定性的计算方法,从而实现了考虑大变形因素的整机倾覆稳定性的算法研究。
     本文研究成果对高空作业车抗倾覆稳定性校核设计提供重要理论参考,并对伸缩式臂架系统设计与结构刚度分析具有重要的参考价值。并且该研究成果应用到我校工程机械研究中心和中联重科专车有限公司合作实际项目——GHK111米大臂架高空作业车产品设计开发中,对其设计提供了理论上的参考。
For its extensive applications in services, wind power, airport and fire, aerial work platform (AWP) has captured special attention of many researchers in recent years, working height over one hundred meters especially. Overturning stability analysis of working height over one hundred meters AWP is the key component of its safety requirements of basic performance. And the overturning stability characteristics of AWP affect directly the basic performance and overturning accidents occurred. However, overturning stability analysis of working height over one hundred meters AWP is still relatively rare, and there is not yet mature design and analysis theory. Therefore, the working height over one hundred meters AWP was taken as the research object, and the theory of the geometric nonlinearities 3D beam element and the algorithm of finite element method are applied in the research of the nonlinear large deflection of AWP boom, and the Zero Moment Point (ZMP) dynamic stability determination method was introduced, systemic research has done at the overturning stability analysis of AWP based on large deflection in this paper.
     The current deflection analysis of boom doesn't take into account of torsion of boom, coupling effect of range plane and revolution plane, and the nonlinear factor. Therefore, accuracy of analysis is not high. In this paper, the geometry of 3D beam element was assumed, then the 3D beam element mechanical model, which had the initial deflection, and the 3D beam element geometric nonlinear finite element method calculation process was discussed. The incremental Newton-Rapson method was adopted. The mechanical model includes element tangent stiffness matrix in elemental coordinate system, element coordinate transformation matrix, and the element rod end resistance. Finally, the 3D beam element geometric nonlinear finite element program was developed, which was structured based on MATLAB language, and which can analyzed the large deflection of AWP boom. Two numerical examples are analyzed. The numerical result illustrates the beam analytical model and analytical methods presented in this paper are accurate and effect.
     ZMP method was introduced to analyze the overturning stability of working height over one hundred meters AWP. First, the working height over one hundred meters AWP the overturning stability assumptions was introduced. Then, the expression of the ZMP point coordinate based on ZMP method was given. The value of the dynamic stability margin was derived. Finally, the method of overturning stability analysis of working height over one hundred meters AWP was discussed, which based on boom new pose by the results of boom large deflection. The ZMP dynamic stability determination method was adopted. The method and algorithm for solution the overturning stability problem of AWP based on large deflection is obtained.
     The results in this paper provide an important theoretical basis for optimization, analysis and the design of the overturning stability analysis and the boom of working height over one hundred meters AWP, and have been used in the product design and development of GHK111 meters large boom AWP, which was the actual project cooperation by our school construction machinery research centers and Zoomlion Ltd.
引文
[1]张华,霍玉兰.我国高空作业车行业发展与展望[J].建筑机械,2009.12:38-43.
    [2]王金诺,于兰峰.起重运输机金属结构[M].中国铁道出版社,2002.
    [3]王勖成.有限单元法[M].清华大学出版社,2003.
    [4]Lu L. Stability of frames under primary bending moments[J]. Journal of the structural Division, ASCE,1963,89:35-62.
    [5]Saafan S. Nonlinear behavior of structural plane frames[J]. Journal of the structural Division, ASCE,1963,89(4):557-579.
    [6]Williams FW. An approach to the nonlinear behaviors of the members of a rigid jointed plane framework with finite deflections[J]. Quarterly journal of Mechanics and Applied mathematics,1964,17(4):451-469.
    [7]Oran C. Tangent stiffness in space frames[J]. Journal of structural Division, 1973,99(6):987-1001.
    [8]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [9]沈祖炎,陈扬骥.网架与网壳[M].上海:同济大学出版杜,1997.
    [10]Rand 0. Fundamental closed-form solutions for solid and thin-walled composite beams including a complete out-of-plane warping model. International Journal Solids and Structures,1998,35(21):2775-93.
    [11]J. E. Barradas Cardoso, Nuno M. B. Benedito, et. Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation[J]. Thin-Walled Structures,2009,47:1363-1372.
    [12]马春来.考虑剪切位移和多因素耦合影响下的空间梁非线性分析模型研究[D]:(博士学位论文).浙江大学结构工程专业,2008.
    [13]赵红华.基于多因素祸合影响下的空间梁弹性、材料非线性及几何非线性分析模型的研究[D]:(博士学位论文).同济大学,2003.
    [14]聂国隽.空间杆系钢结构非线性分析力学模型及分析方法的研究[D]:(博士学位论文)同济大学,2002.
    [15]陆念力,张宏生.一种高精度几何非线性递推凝聚梁单元[J].中国工程机械学报,2008,6(1):1-5.
    [16]夏拥军.计及二阶效应的柔性杆系动态分析及在起重机械中的应用[D]:(博士学位论文).哈尔滨工业大学机械设计及理论专业,2007.
    [17]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002.
    [18]胡大琳,艾夫-哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析[J].中国公路学报,1998,11(2):45-51.
    [19]Rankin, C. C., Brogan, F. A. An Element Independent Corotational Procedure for the Treatment of Large Rotations[J]. Journal of Pressure Vessel Technology,1986, 108:165-174.
    [20]吴庆雄,陈宝春,韦建刚.三维杆系结构的几何非线性有限元分析[J].工程力学,2007,24(12):19-24.
    [21]Maeda Y,Hayashi M. Finite displacement analysis of space framed structures[J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE,1976,253:13-27.
    [22]Yoshida Y, Masuda N, Morimoto T, Hirosawa N. An incremental formulation for computer analysis of space framed structures[J].Journal of Structural Mechanics and Earthquake Engineering, JSCE,1980,300:21-32.
    [23]MoGhee R,Frank A. On the stability properties of quadruped creeping gaits[J]. Math Biosc,1968(3):331-351.
    [24]McGhee R B,Iswandhi G I. Adaptive locomotion for amultilegged robot over rough terrain[C]. IEEE Trans on Systems, Man, and Cybernetics,1979,9(4):176-182.
    [25]Song S-M, WaldronK J. Machines thatwalk:adaptive suspension vehicle [M].MIT Press,1989
    [26]Zhang C, Song S-M. Gaits and geometry of awalking chair for the disabled[J]. J Terramechanics,1989,26 (3/4):211-233.
    [27]Messuri D A. Optimization of the Locomotion of a Legged Vehicle with Resprect to Maneuverability[D].Ohia:The Ohio State University,1985.
    [28]夏旭峰,葛文杰.仿生机器人运动稳定性的研究进展[J].机床与液压,2007,2:229-234.
    [29]文放,葛文杰.机器人运动稳定性判据概述[J].机械设计与制造,2008,11:188-190.
    [30]江继勋.大型移动式工程机械的稳定性研究[J].机电产品开发与创新,2005,18(6):32-34
    [31]Vukobratovic M, Juricic D. Contributions to the synthesis of biped gait[C]. IEEE Transaction on Biomedical and Engineering,1969,16(1):1-6.
    [32]Sugano,S., Q. Huang, I. Kato. Stability criteria in controlling mobile robotic systems[J]. Proceedings of the IEEE/RSJ International conference on intelligent robots and system, Yokohama, Japan.1993(3).
    [33]. Jong Hyeon Park. Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots [J].Fuzzy Sets and Systems,2003,134:189-203.
    [34]Jimmy Or. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot[J]. Neural Networks,2009,11:1-9.
    [35]汤卿.仿人机器人设计及步行控制方法[D]:(博士学位论文).浙江大学控制科学与工程专业,2009.
    [36]王旭阳.类人机器人非规则运动规划与抗干扰控制研究[D]:(博十学位论文)上海交通大学机械电子工程专业,2008.
    [37]徐兆红.腿式跳跃机器人运动规划与稳定性恢复研究[D]:(博十学位论文)上海交通大学机械电子工程专业,2009.
    [38]王伟东,孔民秀,杜志江等.移动手臂对机器人越障性能影响及运动规划[J].机械工程学报,2009,8(45):6-10.
    [39]吕和祥,蒋和洋.非线性有限元[M].北京:化学-工:业出版社,2004.
    [40]ANSYS公司. Release 11.0 Documentation for ANSYS:14.4. BEAM4 - 3-D Elastic Beam.
    [41]Lip H. Teh, Murray J. Clarke. Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements[J]. Journal of Constructional Steel Research,1998(148):123-144.
    [42]吴亮.柔性悬索桥空间几何非线性分析[D]:(硕士学位论文).西南交通大学,桥梁与隧道工程,2010.
    [43]张年文.框架几何非线性分析的若干问题[D]:(博士学位论文).浙江大学,结构工程专业,2010.
    [44]李明瑞.梁板壳的几何大变形-从近似的非线性理论到有限变形理论[J].力学与实践,2003(25):1-8.
    [45]唐茂林.悬索桥空间几何非线性分析与软件开发[D]:(博十学位论文).西南交通大学,桥梁与隧道工程,2003.
    [46]Kuo Mo Hsiao, Jer Yah Lin,Wen Yi Lin.A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams[J]. Comput. Methods Appl. Mech. Engrg,1999,(169):1-18.
    [47]万金国.钢结构非线性分析方法研究及其在软件中的实现[D]:(博士学位论文).武汉大学结构工程专业,2010
    [48]Mingrui Li. The finite deformation theory for beam, plate and shell Part Ⅰ. The two-dimensional beam theory[J]. Comput. Methods Appl. Mech. Engrg,1997(146):53-63.
    [49]Mingrui Li. The finite deformation of beam, plate and shell structures Part Ⅱ. The kinematic model and the Green—Lagrangian strains [J]. Comput. Methods Appl. Mech. Engrg,1998(156):247-257.
    [50]Mingrui Li. The finite deformation theory for beam, plate and shell Part Ⅲ. The three-dimensional beam theory and the FE formulation[J]. Comput. Methods Appl. Mech.Engrg,1998(162):287-300.
    [51]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999:41-46.
    [52]陈军明,陈应波,吴代华.必何大变形三维梁单元的U.L列式[J].武汉理工大学学报,2001(23):46-49.
    [53]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [54]中国机械工程学会.中国机械设计大典[M].江西科学技术出版社,2001.
    [55]徐荣桥.结构分析的有限元法与MATLAB程序设计[M].人民交通出版,2006.
    [56]秦爱中.基-于ZMP的双足步行机器人步态规划研究[D]:(硕十学位论文).西安:西北工业大学机械电子工程专业,2005.
    [57]Taesin Ha, Chong-Ho Choi. An effective trajectory generation method for bipedal walking [J]. Robotics and Autonomous Systems,2007,55:795-810.
    [58]Jimmy Or. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot [J]. Neural Networks,2009,11:1-9.
    [59]Jong Hyeon Park. Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots [J]. Fuzzy Sets and Systems,2003,134:189-203.
    [60]ANSYS公司Release 11.0 Documentation for ANSYS:2.14. Shear Deflection.
    [61]纪爱敏,彭铎,刘木南等.QY25K型汽车起重机伸缩吊臂的有限元分析[J].工程机械,2003,1:19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700