人体下肢肌肉功能模型及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究人体在运动过程中,肌肉长度、肌长度变化速率、肌力臂等肌肉功能参数以及肌肉功能的动态变化,是运动生物力学、运动解剖学、运动生理学和体育训练学等学科领域中十分关注的课题,它们对于深入探讨人体运动规律、肌肉的神经控制与工作特性以及制定肌肉专项力量训练方案等均具有非常重要的理论和实践意义。为此,本文将以人体下肢肌肉附着点(肌肉起止点、代起止点)、关节转动中心在相应环节基准坐标系中的坐标为基础,建立适合于活体应用的下肢肌肉功能模型。该模型不但能详尽地定量评定下肢于不同状态下肌肉所具有的潜在功能,而且也能获得人体在运动过程中下肢肌肉功能参数的动态变化状况。同时,本研究通过步态分析的实例,初步检验了模型的可用性和可靠性。
    本研究主要内容:
    1.使用近景摄影技术(DLT 法,全站仪法)测量尸体下肢整体骨骼标本中肌肉附着点和有关骨性形态学标记点的空间三维坐标;
    2.利用人体骨性形态学参数和肌肉附着点坐标,建立可用于推测活体肌肉附着点三维坐标的回归方程。
    3.研究髌骨对推算股四头肌长度及对膝关节力臂的影响,建立髌骨上下缘点三维坐标随膝关节角度变化的拟合方程;
    4.使用描述刚体之间方位相对变化的广义坐标——布里恩角,建立人体下肢肌肉功能模型,并编制相应的计算机软件——下肢肌肉功能模型计算机应用分析系统;
    5.评定下肢于基准解剖位时,下肢各肌肉的功能;
    6.评定下肢肌肉功能随关节角度变化而发生的变化;
    7.以步态分析为例,检测模型在人体运动中分析肌肉功能参数的可用性和可靠性,并在方法学上,为肌肉功能模型结合多机同步测试进行研究作初步的探索。
    本研究通过对实验测试结果的分析得到以下主要结论:
    1.本研究为进一步建立全面完整的国人肌肉功能模型奠定了一定的基础,模型中肌肉附着点三维坐标数据具有较高的精度;推测肌肉附着点三维坐标的回归方程,有较高的可信度和可靠性。
    2.肌肉代起止点、肌肉当量力臂和肌肉功能转换角,对定量评定肌肉功能有重要的理论意义和应用价值。肌肉功能转换角是肌肉功能发生转换的标志,肌肉当量力臂为0 值时,也是肌肉缩短或伸长至极限的标志。
    3.下肢大多数肌肉对额状轴作用最大,矢状轴次之,垂直轴最小。环节运动过程中,由于环节位置的变化,肌肉对关节各轴上的功能参数都将随之改变;不仅肌肉功能参数会发生量的变化,甚至肌肉功能会发生质的改变。
    4.髋关节肌的功能特点之一是存在当量力臂为0 值的情况。这表明大腿在髋关节整个活动范围内运动时,一部分肌肉始终参与工作;一部分肌肉由于功能消失而退出工作;另一部分开始并不参与工作的肌肉,随环节运动具有了参与该运动的功能。即,髋关节肌有所谓“功能补偿”的现象。
    5.在解剖基准位,髂腰肌、耻骨肌、长收肌、短收肌、大收肌下部对髋关节有旋内功能;而股薄肌有旋外功能。臀大肌(上部)具有双关节肌的作用,对膝关节的屈伸产生一定效应。
    6.髌骨上下缘点随膝角变化的运动轨迹类似于抛物线形状;髌骨对增大股四头肌对膝关节力臂有重要的影响;在解剖基准位,髌骨使力臂长度增加了约2.5 倍;900-00的伸膝范围是髌骨起增大力臂作用的主要范围。
    7.肌肉功能模型与多机同步测试相结合分析人体步态的实验证明,肌肉功能模型的实用性、可靠性较高。下肢肌肉功能模型计算机应用分析系统经进一步完善后有重要的应用推广价值。
It has drawn a wide attention in the research field of sports biomechanics, sports anatomy, sports physiology and athletic training to study the changes of kinematics and kinetics of the muscular work state during exercise, such as muscular length, its variable velocity and the arm of muscular force. It will do much help not only in penetrating into the law of movement and muscular working characteristics and nerve controlling, but also in drawing the project of muscular strength training. For this purpose, A muscular function model of the lower extremities suited to be applicable on live body has been developed based on the coordinates of muscle attachments of lower extremities(mark of muscles origins and terminations, substitute mark of muscles origins and terminations) and coordinates of joint turning center in the corresponding benchmark coordinates system of segments. The muscular function model can be used not only to rationally assess the muscles′potential enginery of lower limbs in different state, but also to provide dynamic changes in function parameter of lower limbs during body moving. At the same time, the article makes a sample of gait analysis, preliminarily testing the usability and reliability of the model.
    Main content:
    1. Space three-dimensional coordinates of muscle attachments and skeletal morphological marker of lower extremities had been scaled by close shot photography technology(DLT and the Total Station Method)
    2. By utilizing skeletal morphological parameter and coordinates of the muscle attachments, regression equation of three-dimensional coordinates in the responding benchmark coordinates system is established through which the muscle attachments of living body could be speculated on.
    3. Influence of the knee cap in calculating the length of quadriceps femoris and the arm of force of the knee have been studied, and the emulate equation of three-dimensional coordinates of the point of upper and lower edge of the knee cap according to changes of the knee angle have been established.
    4. The muscular function model of the lower extremity had been established according to Bryant angle —which was applied to describe relatively change of the rigid body azimuth generalized coordinates; corresponding software —applied computer analysis system of the muscular function model of the lower extremity was work out.
    5. The muscular function of the lower extremity was assessed when it was at standard anatomic attitude.
    6. The muscular function change in the lower extremity according to the angle of joint was assessed.
    7. Make a sample of the gait analysis, the usability and reliability of the muscular function parameter of the model in body moving analysis was tested, preliminary research combined the muscular function model of the lower extremity with multi-equipment synchronization had been done in methodology.
    Main conclusion: 1. The study laid a foundation for further complete establishment of the rounded muscular function model of Chinese; the model offered further precise three-dimensional coordinates of the muscle attachments; regression equation of three-dimensional coordinates of the muscle attachments had the higher reliability and dependability. 2.Substitute mark of the muscles origins and terminations , the bogus arm of muscular force and the angle of the muscular function conversion,have important theoretical meaning and applied value in rational assessment of the muscular function. The angle of the muscular function conversion is the sign of function diversion of the muscles, and the sign that muscular shortened or protracted to maximum-point when the bogus arm of muscular force drop to zero. 3.Most lower extremity muscles had the strongest effect on frontal axis, sagittal axis takes the second place, the third is vertical axis. Because of the moving of the segment, muscular function parameters acted to all these axis would be changed correspondingly; not only in quantity, but also in quality. 4. One of the function characters of muscle in the hip joint is that the value for the bogus arm of the muscular force is zero. It indicates that a part of muscle has been working all the time, some of them stopped working because of the disappearing of its function, some of other muscle which did not work at initial stages began to work accompanying the movement of segment during thigh moving in whole range of the hip joint. This is the phenomenon of so-called “function compensation”of muscle in hip joint. 5.At standard anatomic attitude, the iliopsoas, pectineus, adductor longus, adductor brevis,lower part of adductor magnus have the function of inside-revolve to hip joint and gracilis has outside-revolve function. The upper part of the gluteus maximus can function as double joint muscle, and has effect on the bending and extending of knee joint. 6. With the changes of knee angle, the moving track of upper and lower edge point of the knee cap is similarly a parabola; knee cap has important influence on the increase of the arm of force of quadriceps femoris to knee joint; at standard anatomic attitude, knee cap made the length of force arm increase about 2.5 times; the main range that knee cap increase the arm of force is 900-00 when knee joint extended. 7. Experiment that combined the muscular function model of the lower extremity with multi-equipment synchronization proved the higher practicability and reliability of the muscular function. Once the applied computer analysis system of the muscular function model of the lower extremity is perfected, it will be more valuable in application and popularization.
引文
阿尔文.R.蒂利著朱涛译《人体工程学图解》中国建筑工业出版社1998.7 第1 版
    柏树令等《系统解剖学》(新世纪课程教材) 人民卫生出版社2001.9 第5 版
    程效军等近景摄影测量在人体骨架模型测量中的应用研究应用技术2002 第1 期P: 35-38
    戴维·温特刘志诚等译《人体运动生物力学》人民体育出版社1990.9 第1 版
    丁海曙等《人体运动信息检测与处理》宇航出版社1992.7 第1 版
    菲利普.J.拉希等著胡勤等译《运动学和应用解剖学》人民体育出版社1985.7 第1 版
    宫本庄通过下肢肌电观察对部分专门力量练习的分析体育科学1993 第14 卷第5 期P: 40-43
    顾孝烈等《测量学》同济大学出版社1999. 4 第2 版
    黄瀛等《中国人解剖学数值》人民卫生出版社2002.5 第1 版
    洪嘉振运动生物力学计算机仿真研究体育科学1989 第10 卷第3 期P:56-60
    洪友廉人体动作的计算机模拟和人体数学模型
    中国运动生物力学学会苏州大学体育系编印1986
    胡声宇等《运动解剖学》(全国体育学院教材委员会审定) 人民体育出版社2000.6 第2 版
    Kapandj.I.A 著周同轩译《图解关节运动生理学(下肢分册)》广东科技出版社1987.6 第1 版
    李诚志等短跑下地动作的生物力学分析体育科学1987第7卷第1期P:58-60
    李忠华等《解剖学技术》人民卫生出版社1997.10 第2 版
    李瑞祥等《简明人体解剖学彩色图谱》人民卫生出版社2001.11 第1 版
    卢德明等《运动生物力学测试方法》北京体育大学出版社2001.5 第1 版
    罗尔夫.沃赫德著王景贵等译《运动技能与运动器官学》黑龙江教育出版社1989.10 第1 版
    林建英等膝关节屈肌力矩与膝角的关系四川体育科学学报1984第1期P:64-68
    刘延柱等《多刚体系统动力学》高等教育出版社1989.3 第1 版
    潘慧炬等膝关节运动的生物力学特性研究北京体育大学学报1998 第22 卷第2 期P:33--35
    单大卯下肢肌骨系统解剖学模型的研究硕士研究生毕业论文1990
    单大卯魏文仪对下肢肌骨系统解剖学模型的研究上海体育学院学报1991a 第15 卷第2 期P:36-40
    单大卯下肢肌肉起止点位置简化中心的确定及应用山东体育学院学报1991b 第7 卷第13 期P:49-52
    单大卯对“用欧拉角描述人体髋关节运动”论点的商榷上海体育学院学报1991c 第15 卷第1 期P:32-35
    单大卯肌肉拉力作用线《现代科技综述大词典》下现代科技综述大词典编委会北京出版社1998.1 第一版P.2783
    单大卯魏文仪当今国际生物力学发展最新动态—第18 届国际生物力学大会简介体育科学2002 第22 卷第2 期P:126-127
    单大卯等一种人体下肢环节空间运动简化方法简介山东体育科技2002 第24 卷第3 期P:1-4
    单大卯等刚体方位广义坐标“布里恩角”在描述下肢环节定点运动中的应用西安体育学院学报2003 第20 卷第1 期P:60-63
    Serga.Tixa 著楚宪襄等译《触诊解剖学图谱》河南科技出版社2001.8 第1 版
    唐元生等《人体医学参数与概念》济南出版社1995.7 第1 版
    汤晓芙《临床肌电图学》北京医科大学中国协和医科大学联合出版社1995.9 第1 版
    王琨跳远运动员起跳腿专项能力测试与肌肉生物力学特性的研究上海体育学院博士学位论文2002.6
    王西十等一个解剖基人体下肢的生物力学模型(第三部分):肌肉效应力学与实践2000 第22 卷第3 期P:44-48
    王之卓《摄影测量原理》测绘出版社1979,1984
    王以进《骨科生物力学》人民军医出版社1989.8 第1 版
    王人成等人体下肢摆动相冗余肌力分析清华大学学报1999 第39 卷第11 期
    魏文仪人体空中动作的计算机模拟第四届全国运动生物力学学术会议论文集(2) 成都1983
    维滕伯格著谢传锋译《多刚体系统动力学》北京航空学院出版社1986.7 第1 版
    伍勰跳远起跳动作的计算机模拟上海体育学院博士学位论文2003.1
    伍勰应用计算机仿真技术探讨肢体开放链快速运动的力学机制体育科学2002 第22 卷第1 期P:127-130
    吴汝康《人体测量方法》科学出版社1984 第1 版
    Wernter 等著毕玉顺等译《人体解剖学及彩色图谱》山东科技出版社2001.6 第1 版
    Victor 等著黄庆森等译《骨骼系统基本生物力学》天津科技出版社1986.7 第1 版
    忻鼎亮运动生物力学发展若干问题的探讨体育科研(上海体科所) 1998(10) 增刊: P: 1-5
    忻鼎亮《运动生物力学》东华大学出版社2002.7 第1 版
    严波涛等运动协调能力研究现状与方法学问题西安体育学院学报1999 第16 卷第2 期P:33-35
    袁庆成等对短跑途中跑三维支撑反作用力的实测体育科学1985 第3 期P:66-87
    郑秀媛等编著《运动生物力学进展》国防科技出版社1998.4 第1 版
    郑秀瑗等《现代运动生物力学》国防工业出版社2002.10 第1 版
    扎齐奥尔斯基等著吴忠贯等译《人体运动器官生物力学》人民体育出版社1987.5 第1 版
    扎齐奥尔斯基等著吴忠贯等译《运动计量力学》人民体育出版社1988.5 第1 版
    扎齐奥尔斯基等著《运动生物力学》国际奥林匹克委员会Blackwell Science 公司出版2000 第1 版
    扎西尔殷学锋等译2000 年的运动生物力学体育科技信息1994 第14 卷第6 期P:14-16
    周宾等双关节肌结构与分布的生物力学特征安徽体育科技1992第1期P:22
    Amtmann, E. et al.(1968) Die beanspruchung der menschlichen huftlagc links: II. Probe und richtung der huftgelenksresultierenden in der frontalebene. Z. Anat. EntwGesch.. 1968.V.127, Fasc. 4, 286-314.
    Apkarian J. et.al. (1989). A three-dimensional kinematical and dynamic model of the lower limb. Journal of Biomechanics, 1989, V.22 (2): 143-155
    Bobbert ,et al (1986) . A model of the human triceps surae muscle-tendon complex applied to jumping. Journal of Biomechanical Engineering, 1986, V.106: 97-103.
    Brand, R. et.al. (1982) A model of the lower extremity muscular anatomy. J. Biomechanical Engng,V 104, 304-310
    Brand, R. et.al. ( 1994). Comparison of hip force calculations and measurements in the same patient. Journal of Arthroplasty V.9,45-51
    Buschmann et al (1991) .Magnetic resonance imaging of anomalous leg muscles: accessory soleus, peroneus quartus and the flexor digitorum longus accessorius. Foot Ankle 1991 Oct; V.12(2) : 109-16
    Cappello.A. et.al. (1997). Multiple anatomical landmark. calibration for optimal bone pose estimation. Human Movement Science V.16, 259 274.
    Cappozzo,A. et.al. (1997) Surface-marker cluster design criteria for 3-D hone movement reconstruction. IEEE Transactions on Biomedical Engineering V.44, 1165-1174.
    Challis.J. et.al.(1993). An analytical examination ofrnusd force estimations using optimization techniques. Proccedingsofrt Institution of Mechanical Engineers, Part H, Journal of Engineeriii Medicine V.207, 139-148.
    Chow, W. et.al. (1999). Determing the force-length-velocity relations of the quadriceps muscle: Ⅰ. Anatomical and geometric parameters. Journal of Applied Biomechanics, 1999, V.15:182-190
    Christopher,et al(1992)《DYNAMICS OF HUMAN G AIT》南非1992 第2 版
    Crowninshield et al. (1978)A biomechanical investigation of the human hip. J. Biomechanics.1978, V.11, 75-85.
    Darryl G. (2003) Generating dynamic simulations of movement using computed muscle control Journal of Biomechanics 2003, V.36, 321–328
    DeLuca Carlo J.(1997) The use of surface electromyography in biomechanics. J Apply Biomechanics 1997; V.13:135-136.
    Denham, R. A. (1959) Hip mechanics. J. Bone Jt Surg.1959.V. 41-B, 550-557.
    Dostal, W.F. et al.(1981) A three-dimensional biomechanical model of hip musculature. J. Biomechanics, 1981,V.14, 11,803-812
    Eijden et al. (1985)The orientation of the distal part of the quadriceps femoris muscle as function of the knee flexion-extension angle J. Biomechanics. 1985 V.18, 803--809
    Eijden et al.(1986) A mathematical model of the patellofemoral joint J. Biomechanics. 1986, V.19, 219—229
    Giakas (2000) Time-frequency analysis and filtering of kinematic signal with impacts using the Wigner function. Journal of Biomechanics, 2000, V.33:567-574
    Glitsch, U. et al.(1997). The three-dimensional determination of internal loads in the lower extremity. J. Biomechanics,1997, V.30, No.11/12, 1123-1131
    Glitsch, U. (1992) Einsalz verschicdener Optimicrungsansalzc zur komplexen Belaslungsanalyse der unleren Extremitat. Ph.D. thesis, Deutsche Sporthochschulc, Koln
    Gruber K., H. Ruder, J. Denoth, K. Schneider(1998).A comparative study of impact dynamics: Wobbling mass model ver rigid body models. Journal of Biomechanics ,1998, V.31:439-444
    Hardt,(1978) Determining muscles forces in the leg during normal human gait—An apprication and evaluation of optimization methods. J. Biomechanical Engineering.1978 V. 100,72-78.
    Hawkins, D. et.al. (1990). A method for determining lower extremity muscle-tendon length during flexion/ extension movement. Journal of Biomechanics,1990, V.23, (5): 487-494.
    Hawkins, D. & Mark Smenlders. (1998). Relationship between keen joint torque, velocity, and muscle activation: Considerations for musculoskeletal modeling. J. of App. Biomechanics, 1998,V.14,141-157
    Hawkins, D. & Mark Smenlders. (1999). An investigation of the relationship between hip extension torque, hip extension velocity, and muscle activation. J. of App. Biomechanics, 1999, V.15,253-269
    Hay, J. G. et.al. (1999). Changes in muscle-tendon length during the take-off of a running long jump. Journal of Sports Sciences ,1999, V.17:159-172
    Herzog, W, et al.(1991). Validation of optimization mod that estimate the forces exerted by synergistic muscles. Journal of Biomechanics ,1991,V.24 (Suppl. 1), 31-39
    Herzog, W. (1996). Muscle function in movement and sports. Supplement to The American J. of Sports Med.1996,V.24, No.6, s14-s19
    Hollingshcad,W.,(1974).Textbook of Anatomy. Harper and Row,Philadelphia,PA. Hoy, M.G. et.al(.1990) A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J.Biomechanics, 1990,V.23, No.2, 157-169
    Inman, V. T. (1947) Functional aspects of the abductor muscles of the hip. J. Bone Jt Surg. 1947.V.29A, 607-609.
    ISB Book of Abstracts Int. Society of Biomechanics(ISB)XVIIIth Congress 2001.7
    Jensen et al.(1971) A technique for obtaining measurements of force generated by hip muscles. Arch. phys. Med. Rehabil. 1971.V.53; 207-215.
    Jensen et al(.1975)An investigation of muscle line of action about the hip: a centroid line approach VS the straight line approach .J. Biomechanics. 1975,V.8, 103-110.
    Kane, et.al. (1970). Human self-rotation by means of limb movements. J. Biomechanics, Vol. 3, No. 1, 56-63
    KaneT.R. et.al. (1983). Formulation of equations of motion for complex spacecraft. Journal of Guidance and Control .1983.V.3(2),99-112.
    KaneT.R.et.al.(1985)Dynamics:Theory and Applications.McGraw-Hill,NewYork. Kepple, T et.al. (1994). Assessment of a method to estimate muscle attachments from surface landmark a 3D computer graphics approach. Journal of Biomechanics 1994.V.27,365-371
    Kepple, T. et.al. (1998). A three-Dimensional musculoskeletal database for the lower extremities. J. Biomechanics,1998 Vol. 31, 77-80
    Koopman, B. (1989) The three-dimensional analysis and prediction of human walking. Ph.D. thesis. University of Twente Enschede.
    Lengsfeld M, et.al. (1993). [Experimental determination of muscle coordination of the lower extremity] Biomed Tech (Beri) 1993 Jun; 38(6): 139-43
    Luigi lucchetti et al. (1998) Skin movement artefact assessment and compensation in the estimation of knee joint kinematics J. Biomechanics. 1998,V. 31,977--984.
    McMinn, R. et.al. (1977). Color Atlas of Anatomy. Year Book Medical Publishers, Chicago, IL.
    Meijer, K., et.al. (1998). The isometric knee extension moment-angle relationship: Experimental data and perditions based on cadaver data. J.of App.Biomechanics, V.14,62-79
    Mundale, P. et al.(1956) Evaluation of extension of the hip. Arch. phys. Med. Rehahil. 1956.V.37, 75-80.
    Olson, V. et al(.1972) The maximal torque generated by the eccentric, isometric and concentric contractions of the hip abductor muscles, Phys. Ther. 1972.V.52,149-158.
    Paul Allard,et al (1997) 《Three-dimensional Analysis of Human Locomotion》加拿大1997 第版
    Paul, J. P. (1965) Bioengineering studies of the forces transmitted by joints: (II) Engineering analysis. Biomechanics and Related Bio-Engineering Topics (Proceed-ings of a Symposium held in Glasgow, September, 1964, 369-380
    Pedotti et al.(1976) Optimization of muscle force sequencing in human locomotion. Mathematical Bioscrences.1976 V.53 57-76.
    Piazza, S.J., Delp, S.L., 2001. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. Journal of Biomechanical Engineering V.123, 599–606.
    Pohtilla, V. F.(1969) Kinesiology of hip extensors at selected angles of pelvifemoral extension. Arch. phys. Med. Rehahi.1969.V. 50,241-250.
    Richard, D.K., et.al. (1998). Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics. J. Biomechanics, 1998,V.31, 185-189
    Riley, P.O., Kerrigan, D.C., (1998) Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis. Journal of Biomechanics ,1998,V.31, 835–840.
    Sally J. Phillips et al (1983)Quantification of intersegmental reactions during rapid swing motion Journal of Biomechanics ,1983, V.16,(6):411-417
    Shipman, et.al.(1985).The Human Skeleton Harvard University Press,Cambridge,MA. Sommer, H. et.al. (1982). Three-dimensional osteometric scaling and normative modeling of skeletal segments Journal of Biomechanics 1982.V.15, 171-180.
    Sorbie, C. et al(.1964) Bioengineering studies of the forces transmitted by joints: (I) The phasic relationships of the hip muscles in walking. Biomechanics and Related Bio-Engineering Topics (Proceedings of a Symposium held in Glasgow, September, 1964, 359-367, Pergamon Press, Oxford.
    Seireg, A. et.al. (1973) A mathematical model for evaluation of forces in lower extremities of the musculo-skeletal system. J. Biomechanics 1973.V6, 313-326.
    Seireg, A. et.al. (1975) The prediction of muscular load sharing and joint forces in the lower extremities during walking. J. Biomechanics 1975. V8, 89-102.
    Sorbic, C. et al.(1965) Bio-engineering studies of the human forces transmitted by Joints (1) The phasicrelationship of the hip muscles in walking. J. Symposium on Biomechanics and Related Bioengineering Topice, ed. 1965
    Stefanyshyn D. et.al.(1998) Contribution of the lower extremity to mechanical energy in running vertical jumps and running long jumps. Journal of Sports Sciences ,1998, V.16:177-186.
    Spagele,T.,et.al(.1999) Modeling, Simulation and Optimization of a human vertical jump.J.Biomechanics,1999,V32:521-530
    Tung-Wu lu et al. (1998) Validation of a lower limb model with in vivo femoral forces telemetered from two subjects J. Biomechanics.1998, V. 31,63--69.
    Veeger H et.al. (2001) Shoulder Biomechanics ISB Book of Abstracts 2001.7
    White, S. et.al. (1989). A three-Dimensional musculoskeletal model for gait analysis: anatomical variability estimates. J. Biomechanics, 1989,Vol.22, No. 8/9,885-893
    Whittlesey, et.al. (1996). An alternative model of the lower extremity during locomotion. J.of App. Biomechanics,1996,V.12, 269-279
    Wittenberg, J. (1977). Dynamics of systems of rigid bodies. B. G. Teubner Stuttgart 1977,P:107-114
    Yamaguchi, et.al. (1990). Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation. IEEE Transactions of Biomedical Engineering ,1990, V,37, 886–902.
    Zajac,F.E.(1993) Muscle coordination of movement: A perspective. Journal of Biomechanics,1993,26, suppl.1:109-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700