基于有序决策树的故障程度诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,人工智能,尤其是机器学习和模式识别技术大量应用于设备状态监测和故障诊断领域,采用智能技术检测和分析机械故障成为一种趋势。在故障分析中,用户除了需要知道某设备是否发生故障以及为何种故障外,还需获得故障的严重信息,从而制定适当的维修策略和检修方案。
     故障程度的智能检测本质上是有序分类问题:将故障程度用一组有序整数n表示(n=1, 2, 3,…),表示‘轻微故障’、‘中等故障’‘严重故障’等。相比于经典分类问题,有序分类的类别号(即故障程度)之间存在大小关系。由于存在这种序的关系,在分类器设计原则上以及分类器性能评价准则上都与经典的模式分类问题有所差别。
     在故障程度分析中,当表征故障严重性的特征值增加(或减少)时,故障程度随之增加,即故障特征与故障严重性之间存在单调性的约束。称这种能表征故障程度的特征为单调故障特征。这种单调性故障特征为故障程度诊断提供简便实用的信息,可以根据这种特征来衡量故障程度。
     本文从模式识别中的有序分类问题出发,研究了有序分类问题的本质和从数据中归纳学习有序分类模型的方法,提出2种有序分类规则学习算法,并将其应用于机械故障严重程度建模。具体内容如下:
     首先,本文系统地介绍了模式识别与机器学习领域中的有序分类问题,指出该问题与经典模式分类问题相比较,发展历史与研究深度相对简单,还有很大的研究空间。
     其次,介绍了单调分类中特征与决策之间的单调性约束。现有分类器只有在数据集是单调一致时才能训练出单调的分类模型,而现实中非单调噪声广泛存在,单调一致数据集很难得到。本文引入一种衡量特征与决策之间随机单调约束的指标,指出特征与决策是概率上的单调。介绍了有序信息熵模型,该模型继承了经典信息熵的鲁棒性,且能够反映特征与决策之间的随机单调相关性。最后基于该理论构造了基于有序信息熵的决策树学习算法。
     再次,针对部分特征与决策单调,部分特征不单调的决策问题,构造了随机有序混杂决策树算法。首先用非单调特征分裂数据,再用单调特征继续细化。为测试本文提出方法的性能,分别在人工数据和标准数据上用本文算法与其他经典有序分类算法进行了比较。结果显示,本文提出的两种算法鲁棒性好、泛化误差小。
     最后,将本文提出的算法应用于实际故障诊断。本文应用在齿轮裂缝故障程度监测实验中。在实验中,用位移传感器监测齿轮箱的振动,由此反映齿轮的故障严重程度。为区分故障等级,人为制造不同深度的齿轮裂缝。在不同负载和转速情况下得到振动数据,然后在频域与时域上提取了一系列特征得到故障数据。结果显示,本文方法分类损失低,展示了该方法的有效性。
With the development of artificial intelligence, especially machine learning and pattern recognition, intelligent techniques in detecting of mechanical failure become popular. In practice, we should know not only whether a device is failure or not but also the severity of the failure. Machine systems should reach a certain level before shutdown: It will cause unnecessary waste if shutdown is too early, and will cause a serious accident if too late.
     In the field of pattern recognition, fault level detection can be seen as ordinal classification problem: the degree of failure can be represented by a group of integer n (n = 1, 2, 3, ...), means 'slight fault', 'medium failure', 'serious failure 'and so on. Compared with the classical classification, there exist ordinal relationships in decision class of ordinal classification (i.e. fault level). Due to this ordinal relationship, the design principle of classifier and evaluation criteria has to be reconsidered.
     Moreover, we consider a special task of fault level detection, in which when the value of a fault value increases(or decreases), fault level increases too. So there is a sort of monotonic constraint between fault features and fault levels. This type of fault features are named monotonic features, which can provide simple but useful information for detecting the level of mechanical failure.
     In this paper, we design two ordinal learning algorithms to deal with fault level detection, and the details are described as follows:
     Firstly, we give a systematic introduction to the field of ordinal classification. In literature, there are mainly 5 methods to solve this problem, that is ordinal classification, monotone classification, multiple criteria decision analyze, multi-objective optimize, and ordinal regression. We give a short introduction to each of these methods, and give some comments and cooperation between these methods.
     Secondly, we introduce monotonicity constraint between features and classes in ordinal classification. In literature, all learning algorithms can derivate monotonic models only if training samples are monotonic, which seldom happen in practice due to the presence of noise. To deal with this problem, we introduce a new constraint to describe the monotonicity between features and classes, namely, stochastic monotonicity constraint. We point out that features and classes are probabilistic monotone. Based on this idea, we introduce rank entropy model, which not only inherits the robustness of classical Shannon information entropy, but also reflects the probabilistic monotonicity between features and classes. Then we apply rank entropy to building decision tree, to deal with monotone classification and also give the theoretical proof of its properties.
     Thirdly, we recognize that not all features are monotonic. Some features have no such a monotonicity constraint. To solve this problem, Stochastic Hybrid Ordinal Tree (SHOT) is proposed. We conduct numerous experiment to test the performance of the two proposed methods on both artificial data and real-world data. One the one hand, compared with other classical classification algorithms, such as SVM, neural network, the proposed methods can be easy to understand by human beings, which helps us better understand the orderly classification of nature as well as the innate character of fault level detection. One the other hand, our methods are very competent among other ordinal and monotone methods. They are more robust, and produce low generalization error.
     Finally, we conduct the proposed methods on the practical application of the degree of gear crack fault monitoring experiments. The results show that our methods are very effective and efficient.
引文
1 Aiwina Heng, ShengZhang, AndyC.C.Tan, Joseph Mathew, Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing. 2009, 23: 724~739
    2熊伟,周献珠,徐志武.设备维修的重要性探讨.新疆纺织. 2002:27~30
    3 Frank E., Hall M. A simple approach to ordinal classification. ECML2001, LNAI 2167, 2001: 145~156
    4 S.J. Loutridis, Gear failure prediction using multiscale local statistics, Engineering Structures. 2008, 30:1214~1223
    5 T. Fakhfakh, F. Chaari, M. Haddar, Numerical and experimental analysis of a gear system with teeth defects, International Journal of Advanced Manufacture Technology. 2005,25: 542~550
    6 E.B. Halima, M.A.A. Shoukat Choudhury, S.L. Shah, et al., Time domain averaging across all scales: a novel method for detection of gearbox faults, Mechanical Systems and Signal Processing. 2008,22: 261~278
    7 X.F. Fan, M.J. Zuo, Gearbox fault detection using Hilbert and wavelet packet transform, Mechanical Systems and Signal Processing. 2006,20: 966~982
    8 F.K. Choy, D.H. Mugler, J. Zhou, Damage identification of a gear transmission using vibration signatures, Transactions of the ASME: Journal of Mechanical Design 125 (2003) 394~403. Mechanical Design. 2003, 125: 394~403
    9 C. Smith, C.M. Akujuobi, P. Hamory, et al., An approach to vibration analysis using wavelets in an application of aircraft health monitoring, Mechanical Systems and Signal Processing. 2007,21: 1255~1272
    10 Q. He, Z. Feng, F. Kong, Detection of signal transients using independent component analysis and its application in gearbox condition monitoring, Mechanical Systems and Signal Processing. 2007,21: 2056~2071.
    11 I.Y. Tumer, E.M. Huff, Analysis of triaxial vibration data for health monitoring of helicopter gearboxes, Transactions of the ASME: Journal of Vibration and Acoustic. 2003,125: 120~128
    12 A. Raad, J. Antoni, M. Sidahmed, Indicators of cyclostationarity: theory and application to gear fault monitoring, Mechanical Systems and Signal Processing. 2008,22: 574~587
    13 S. Loutridis, Damage detection in gear systems using empirical mode decomposition. Engineering Structures. 2004, 26:1833~1841
    14刘占生.旋转机械故障诊断专家系统及其知识自动获取方法研究[D].哈尔滨工业大学, 1995
    15 McCormick, A.C., Nandi, A.K. Classification of the rotating machine condition using artificial neural networks. Proceedings of IMechE, Part C: Journal of Mechanical Engineering Science. 211:439~450
    16 Dellomo, M.R., 1999. Helicopter gearbox fault detection: a neural network-based approach. Transactions of the ASME, Journal of Vibration and Acoustics. 121, 265~272
    17柴春胜,基于决策树的坦克故障诊断系统的设计与实现[D].大连理工大学, 2006
    18王惠莲.决策树算法在火电机组故障诊断中的应用[D].华北电力大学, 2006
    19袁英.模糊决策树在采煤机故障诊断中的应用研究[D].太原科技大学,2006
    20 Pawlak Z. Rough Sets. International Journal and Computer Sciences. 1982, 11(5): 341~356
    21黄文涛,赵学增,王伟杰,代礼周.基于粗糙集理论的故障诊断决策规则提取方法.中国电机工程学报, 2003(11)
    22袁小宏,赵仲生,屈梁生.粗糙集理论在机械故障诊断中的应用研究.西安交通大学学报, 2009(09)
    23张琦,韩祯祥,文福拴.一种基于粗糙集理论的电力系统故障诊断和警报处理新方法.中国电力, 1998(04)
    24 Frank E., Hall M. A simple approach to ordinal classification. ECML. 2001: 145~156
    25雷金波.基于逻辑回归和支持向量机的设备状态退化评估与趋势预测研究[D].上海交通大学, 2009
    26田英.滚动轴承内圈故障劣化状态辨识的研究[D].太原理工大学,2009
    27郭磊.基于核模式分析方法的旋转机械性能退化评估技术研究[D].上海交通大学, 2009
    28刘雨.基于支持向量数据描述与信息融合的设备性能退化评估研究[D].上海交通大学, 2009
    29朱义.基于CHMM的设备性能退化评估方法研究.上海交通大学, 2009
    30 J. S. Cardoso, J. F. Pinto da Costa. Learning to Classify Ordinal Data. The Data Replication Method. 2007,8: 1393~1429
    31 Fen Xia, Wensheng Zhang, Fuxin Li, Yanwu Yang. Ranking with decision tree. Knowl Inf Syst. 2008, 17: 381~395
    32 A. Ben-David, L. Sterling, Y. H. Pao. Learning and classification of monotonic ordinal concepts. Computational Intelligence. 1989, 5(1): 45~49
    33 A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge-based DSSs: methodologyand applications. Decision Sciences. 1992, 23(6):1357~1372
    34 R. Potharst and J. Bioch. Decision trees for ordinal classification. Intelligent Data Analysis. 2000, 4(2): 97~112
    35 R. Potharst, A. J. Feelders: Classification trees for problems with monotonicity constraints. SIGKDD Explorations. 2002, 4(1): 1~10
    36 K. Cao-Van, B. D. Baets. Growing decision trees in an ordinal setting. International Journal of Intelligent Systems. 2003, 18: 733~750
    37 N. Barile, A. J. Feelders: Nonparametric Monotone Classification with MOCA. ICDM. 2008: 731~736
    38 W. Kot?owski, R. S?owiński, Rule learning with monotonicity constraints. Proceedings of the 26th Annual International Conference on Machine Learning. 2009, 14-18: 537~544
    39 Q. H. Hu, M. Z. Guo, D. R. Yu, J. F. Liu. Information entropy for ordinal classification. Science in China Series F: Information Sciences. 2010, 53(6): 1188~1200
    40 Rob Potharst, ArieBen David, Michielvan Wezel. Two algorithms for generating structured and unstructured monotone ordinal data sets. Engineering Applications of Artificial Intelligence. 2009,22: 491~496
    41 J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, K. Deb. Multiple Criteria Decision Making,Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. Management Science. 2008,54(7): 1336~1349
    42 J. S. Dyer, P. C. Fishburn, R. E. Steuer, J. Wallenius, S. Zionts. Multiple criteria decision making, multiattribute utility theory: The next ten years. Management Science. 1992, 38: 645~654
    43 Constantin Zopounidis, Michael Doumpos, Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research. 2002, 138: 229~246
    44 M. Doumpos, Y. Marinakis, M. Marinaki, C. Zopounidis. An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research. 2009,199: 496~505
    45 Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht, 1991
    46 S. Greco, B. Matarazzo, R. Slowinski, a. Rough sets theory for multicriteria decision analysis. EuropeanJournal of Operational Research. 2001, 129: 1~47
    47 S. Greco, B. Matarazzo, R. Slowinski. Extension of the rough set approach to multicriteria decisionsupport. INFOR Journal. 2000, 38: 161~196
    48 S. Greco, B. Matarazzo, R. Slowinski, Rough approximation by dominance relations,International Journal of Intelligent Systems. 2002, 17: 153~171
    49 S. Greco , B. Matarazzo , R. Slowinski , and J. Stefanowski, Variable Consistency Model of Dominance-Based Rough Sets Approach. RSCTC. 2000: 170~181
    50 Silvio Giove, Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski, Variable Consistency Monotonic Decision Trees. RSCTC. 2002: 247~254
    51 Salvatore Greco, Benedetto Matarazzo, Roman Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research. 2002, 138: 247~259
    52安利平等.多准则分级决策的扩展粗糙集方法.系统工程学报, 2004, 19 (6): 559~565
    53安利平.基于粗集理论的多属性决策分析.北京:科学出版社, 2008
    54 Ye Chen, D. Marc Kilgour, and Keith W. Hipe, Using a Benchmark in Case-BasedMultiple-Criteria Ranking. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS~PART A: SYSTEMS AND HUMANS. 2009, 39(2)
    55 http://en.wikipedia.org/wiki/Multiobjective_optimization
    56 http://en.wikipedia.org/wiki/Pareto_efficiency
    57公茂果,焦李成,杨咚咚,马文萍,进化多目标优化算法研究. Journal of Software. 2009, 20(2): 271~289
    58 Ye Chen a, D. Marc Kilgour b, Keith W. Hipel, Screening in multiple criteria decision analysis. Decision Support Systems. 2008, 45: 278~290
    59 Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large Margin Rank Boundaries for Ordinal Regression. Advances in Large Margin Classifiers, MIT Press. 2000, 115~132
    60 Corinna Cortes and V. Vapnik, Support-Vector Networks, Machine Learning. 1995(20)
    61 A. Ben-David, L. Sterling, T. Tran. Adding monotonicity to learning algorithms may impair their accuracy. Expert Systems with Applications. 2009(36): 6627~6634
    62 H. Levy. Stochastic Dominance. Kluwer Academic Publishers, 1998
    63 S. Lievens, B. De Baets, K. Cao-Van, A probabilistic frameworkfor the design of instance-based supervised ranking algorithmsin an ordinal setting, Annals Operation research. 2008(163): 115~142
    64 W. Kot?owski. Statistical Approach to Ordinal Classification with Monotonicity Constraints. Ph.D. Thesis. Poznan University of Technology, 2009
    65 W. Kot?owski, K. Dembczynski, S. Greco, R. S?owiński. Stochastic Dominance-based Rough Set Model for Ordinal Classification. Information Sciences. 2008(178): 3989~4204
    66 Erico Marui Guizzo,―The Essential Message: Claude Shannon and the Making ofInformation Theory‖(M.S. Thesis, Massachusetts Institute of Technology, Dept. of Humanities, Program in Writing and Humanistic Studies. 2003, 14
    67 Q.H. Hu, J. F. Liu, D. Yu: Stability Analysis on Rough Set Based Feature Evaluation. RSKT. 2008: 88~96
    68 Peng H., Long, F., Ding C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(8): 1226~1238
    69 Fayyad U. M., Irani K. B. On the handling of continuous-valued attributes in decision tree generation. 1992, 8(1): 87~102
    70 Viola P., Wells W. M. III. Alignment by maximization of mutual information. International Journal of Computer Vision. 1997, 24 (2): 137~154
    71 J. R. Quinlan. Induction of decision trees. Machine learning. 1986, 1(1): 81~106
    72 J. R. Quinlan. C4.5: Programs for Machine learning. Morgan Kaufmann Publishers Inc, 1993
    73 Breiman, Leo; Friedman, J. H., Olshen, R. A., & Stone, C. J. Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. 1984
    74 http://archive.ics.uci.edu/ml/
    75 http://www.cs.waikato.ac.nz/ml/weka/
    76 Yaguo Lei, Ming J. Zuo. Gear crack level identification based on weighted k neighbor classification algorithm. Mechanical Systems and Signal Processing. 2009(23): 1535~1547
    77周瑞.基于第二代小波的机械故障信号处理方法研究[D].哈尔滨工业大学, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700