基于磁流变阻尼器的高速机车横向振动控制与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铁路运输对我国经济的发展起着重要作用,高速化成为近年来的发展方向。随着运行速度的日益提高,车辆振动加剧,运行平稳性、稳定性及行车安全性受到威胁。车辆运行速度愈高,引发的动力学与振动问题愈加突出,安全问题愈加严重。因此,研究高速机车系统的动力学行为和振动控制以及控制过程中的时滞问题,改善振动,特别是改善横向振动,显得十分必要。
     本文采用理论分析和数值仿真的方法,对应用磁流变阻尼器的高速机车系统进行建模和动力学分析,对半主动悬挂控制策略、控制系统的时滞问题进行研究。论文的主要研究工作和创新性成果如下:
     (1)在分析磁流变阻尼器动力学特性的基础上,提出将磁流变阻尼器作为抗蛇行减振器和二系横向阻尼器应用于高速机车系统,分别建立了基于磁流变阻尼器的17自由度和21自由度高速机车横向动力学模型。对动力学模型进行仿真分析,验证了磁流变阻尼器应用于高速机车系统是可行的。
     (2)在对比被动控制、半主动开-关控制、一般模糊控制策略的基础上,提出了一种自适应模糊控制策略。对不同控制策略进行了仿真分析和比较,结果表明,自适应模糊控制相对于一般模糊控制、半主动开-关控制能够取得更好的控制效果,能在一定范围内有效地衰减高速机车的横向振动、抑制蛇行失稳。
     (3)对高速机车系统的临界速度进行求解。分析临界状态下的极限环和分岔现象,验证了自适应模糊控制策略对提高系统临界速度的有效性。利用平均法求出了磁流变控制系统的一次近似解,运用奇异性理论对系统的分岔集、滞后集和双极限集进行讨论。仿真分析了系统参数对幅-频响应曲线的影响。
     (4)对铁道机车系统横向动力作用进行研究。分析机车结构参数、一系悬挂参数、二系悬挂参数以及车轮踏面对横向动力作用的影响。得出了铁道机车横向低动力和高速运行稳定性对机车结构、一系悬挂、二系悬挂以及车轮踏面提出的设计要求。并根据分析结果给出了高速机车系统参数的优化建议。
     (5)理论研究和仿真分析磁流变阻尼器应用于高速机车系统后,四分之一机车系统模型和整车系统模型中控制时滞在不同控制策略下的动力学特征。运用多尺度理论研究磁流变控制系统中时滞的主共振特征,并分析了系统参数对稳定性的影响。
     图102幅,表13个,参考文献260篇。
ABSTRACT:Railway transportation plays an important role in social economy. It is a general trend to develop high-speed railway in recent years. With the increase of the train speed, vibrations of vehicle increase sharply. Riding stability, comfort and road safety become worse gradually. The higher speed that causes the more prominent dynamics and vibration problems, the more serious security will be. So, the study of high speed vehicle's dynamic behaviors, vibration control and time delay to restrain vibration, in particular, to restrain the lateral vibration is extremely necessary.
     This dissertation deals with building high-speed locomotive model and dynamic analysis based on magnetorheological damper, studying semi-active control strategy and time delay in control system. The main work and innovative contributions of this dissertation are as follows.
     (1) On the basis of analyzing dynamic characteristics of magnetorheological damper, it is proposed that magnetorheological dampers can be applied to high-speed locomotive as anti-snake shock absorber and the secondary lateral damper.17degrees of freedom lateral semi-active control model and21degrees of freedom lateral semi-active control model of high-speed whole locomotive with MR dampers are established. Simulation analysis is performed to verify that the magnetorheological damper is applied to high-speed locomotive is feasible.
     (2) After analyzing and comparing passive control, semi-active on-off control, and general fuzzy control strategy, a self-adapt fuzzy control strategy is put forward. The simulations are performed for the different control strategy to the high-speed locomotive lateral dynamic model based on magnetorheolotical damper. The simulation results show that the self-adapt fuzzy control strategy can lower the lateral vibration of the locomotive effectively, restrain snaking motion, and improve the riding comfort obviously than others.
     (3) The critical velocity of high-speed locomotive system is solved. The limit-loop and bifurcation is analyzed under critical state which verifies self-adapt fuzzy control strategy's validity. The first-order approximate solution of magnetorheolotical damper control system is obtained by the averaging method. According to singularity theory, the hysteretic integration and double limit integration of system are studied. And the effects of system parameters on amplitude frequency curve and stability are analyzed in detail.
     (4) The lateral dynamic action of locomotive system is studied. Effects of structure parameters and suspension parameters on lateral dynamic are investigated. Much of design requirements are put forward to reduce the lateral dynamic and enhance riding stability. According to the analyzed result, some advice to optimize parameters of locomotive system is given.
     (5) Theoretical studies and simulation are included about dynamic characteristics of the quarter and whole locomotive dynamic system based on magnetorheological damper with time delay. Through the method of multi-scale, the primary resonance of magnetorheological damper control system is analyzed in detail. The effects of system parameters on amplitude frequency curve and system stability are investigated.
引文
[1]高国生.高速机车分岔与横向振动的非线性控制研究[学位论文].北京:北京交通大学,2004.
    [2]铁道部.中长期铁路网规划(2008年调整)[R].国家铁道部.2008年11月.
    [3]Knothe K, Bohm F. History of stability of railway and road vehicle [J].Vehicle system dyanmics.1999,31:283-323.
    [4]True H. On the theory of nonlinear dynamics and its applications in vehicle systems dynamics [J].Vehicle system dynamics,1999,31:393-421.
    [5]杨明辉.半主动悬挂机车横向动力学性能研究[学位论文].成都:西南交通大学,2005.
    [6]沈志云,贺启庸.高速铁路列车系统中的动力学问题[J].力学进展,1995,25(1):134-143.
    [7]Ahmadian M, Yang Shaopu. Effect of system nonlinearities on locomotive bogie hunting stability [J]. Vehicle system dynamics,1998,29:365-384.
    [8]Yang Shaopu, Ahmadian M. The Hopf bifurcation in a rail wheelset with nonlinear damping [J]. Rail transportation, ASME 1996, RTD-Vol.12:113-120.
    [9]Ahmadian M, Yang Shaopu. Hopf bifurcation and hunting behavior in a rail wheelset with flange contact [J]. Nonlinear dynamics,1998,15:15-30.
    [10]翟婉明.车辆—轨道耦合动力学(第二版)[M].北京:中国铁道出版社,2002.
    [11]Chen G, Moiola J L, Wang H O. Controlling bifurcations:theories, methods, and applications [J]. International Jounral of Bifurcation and Chaos,2000,10 (3):511-548.
    [12]Kordonski W I. Magnetorheological effect as a base of new devices and technologies [J]. Magnetism & magnetic Mat.1993,122:395-398.
    [13]Goncalves F D, Ahmadian M, Carlson J D. Investigating the magnetorheolotical effect at high flow velocities [J]. Snart mater struct,2006,15:75-85.
    [14]Stanway R. Sproston J L, Stevens N G. Non-linear identification of an electrorhelological vibration damper [J]. IFAC Identification and system parameter estimation,1985:195-200.
    [15]Gamota D R, Filisko F E. Dynamic mechanical studies of electroheological materials moderate frequencies [J]. Journal of rheology,1991(35):399-425.
    [16]杨绍普,李韶华.磁流变阻尼力建模及主共振研究[J].动力学与控制学报,2004,2(4):62-66.
    [17]Bouc R. Forced vibration of mechanical systems with hysteresis[C]. Proceedings of the fourth conferencs on non-linear oscillation, Prague, Czechoslovakia,1967.
    [18]Wen Y K. Mehtod of random vibration of hysteretic systems [J]. Journal ofengineering mechanics division ASME,1976,102(EM2):249-263.
    [19]Wen Y K. Equivalent linearization for hysteretic systems under random excitation [J]. Journal of applied mechanics,1980,47(1) 150-154.
    [20]Spercer B F, Dyke S J, Sain M K,et al. Phenomenological model of a magnetorheological damper[J]. Journal of engineering mechanics,1997,123(3) 230-238.
    [21]高国生,杨绍普,陈恩利,马冰玉.高速机车悬挂系统磁流变阻尼器试验建模与半主动控制[J].机械工程学报,2004,40(10):87-91.
    [22]夏兆旺,杨绍普,等.基于磁流变液的半主动控制研究[J].现代机械,2005(6):25-26.
    [23]周丽,张志成.基于磁流变阻尼器的结构振动优化控制[J].振动工程学报,2003,16(1):109-113.
    [24]王代华,袁刚,李一平.一种磁流变阻尼器的阻尼器控制器的实验测试[J].功能材料,2006,36(7):1156-1159.
    [25]王恩荣,陈余寿,等.MR阻尼器控制与滞环特性相分离的F-v模型[J].机械工程学报,2005,41(7):186-191.
    [26]涂建维,瞿伟廉.MR智能阻尼器试验研究及径向基网络模型[J].武汉理工大学学报,2003,(1):43-45.
    [27]王昊,胡海岩.磁流变阻尼器的模糊逼近[J].振动工程学报,2006,19(1):31-36.
    [28]王昊.整车悬架振动智能半主动控制研究[学位论文].南京:南京航空航天大学,2006.
    [29]石秀东.磁流变减振系统关键技术研究[学位论文].南京:南京理工大学,2006.
    [30]杨礼康.基于磁流变技术的车辆半主动悬挂系统理论与试验研究[学位论文].杭州:浙江大学,2003.
    [31]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[学位论文].南京:南京航空航天大学,2001.
    [32]Pan Gongyu. Analytical model of a magnetorheological damper and its application to the vibration control.2000 IEEE [C],2000:1850-185.
    [33]郭大蕾基于磁流变阻尼器的车辆悬架半主动控制研究——建模与直接自适应控制[J].振动工程学报,2002,15(1):10-14.
    [34]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究——间接自适应控制与实验[J].振动工程学报,2002,15(3):285-289.
    [35]郭大蕾.车辆悬架振动的神经网络半主动控制[学位论文].南京:南京航空航天大学,2001.
    [36]熊超,郑坚,等.磁流变阻尼器力学特性及其在车辆悬挂系统中的应用[J].液压与气动,2006(1):47-49.
    [37]杜建刚,刘晃.磁流变减振器的模糊控制及实验研究[J].农业装备与车辆工程,2006(12):21-23.
    [38]倪平涛,王开文,等.抗蛇行减振器对磁流变耦合轮对车辆的临界速度与高速曲线通过性能的影响[J].铁道学报,2007,29(3):34-39.
    [39]高国生,杨绍普,郭京波.基于磁流变阻尼器的机车横向悬挂半主动控制研究[J].功能材料,2006,2006(5):802-804.
    [40]陆正刚,胡用生.基于磁流变阻尼器的铁道车辆结构振动半主动控制[J].机械工程学报,2006,42(8):95-100.
    [41]池茂儒.耦合轮对车辆动力学性能的研究[学位论文],成都:西南交通大学,2003.
    [42]Li Ping, Goodall R. Estimation of railway vehicle suspension parameters for condition monitoring. Control engineering practice 2007, (15):43-55.
    [43]王月明.高速客车半主动悬挂控制技术研究[学位论文].成都:西南交通大学,2002.
    [44]丁问司,卜继玲,刘友梅.我国高速列车横向半主动悬挂系统控制策略及控制方式[J].中国铁道科学,2002,23(4):1-7.
    [45]丁文镜.减振理论[M].北京:清华大学出版社,1988.
    [46]Karnopp D C, Croby M J, Harwood R A. Vibration control using semi-active fore Generatorrs [J]. ASME Journal of Engineering for Industry,1974,96(2):619-626.
    [47]Goodall R. Active railway suspensions:Implementation status and technological trends [J]. Vehicle system dynamics,1997,28:87-117.
    [48]Hedrick J K. Railway vehicle active suspensions [J]. Vehicle system dynamics,1981, 10:267-283.
    [49]佐佐木,君章.改善高速列车的横向乘坐舒适度——主动悬挂减振装置的应用[J].铁道学报,2004,26(1):105-115.
    [50]俞展猷.铁道车辆振动控制技术—有源与半有源悬挂分析[J].中国铁道科学,2003,24(6):15-18.
    [51]Miyanoto M, Suda Y. Recent research and development on advanced technologies of high-speed railways in Japan [J]. Vehicle system dynamics,2003,40:55-99.
    [52]Shen Yongjun, Yang Shaopu. Application of magnetorheological damper in vibration control of locomotive [C]. The 6th world congress on intelligent control and automation,2006: 8113-8116.
    [53]Lei X. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile [J]. Joural of sound and vibration,2002,258(1):147-165.
    [54]丁问司,卜继玲.铁道车辆横向开关半主动悬架系统研究[J].机械工程学报,2004,40(9):161-164.
    [55]潘双夏,杨礼康,冯培恩.高速列车及其减振系统的发展趋势[J].中国机械工程,2002,13(24):2157-2160.
    [56]Cooperrider N K. The hunting behavior of conventional railway trucks [J]. ASME J. Eng. Industry,1972, (94):752-762.
    [57]True H, Christian K P. A bifurcation analysis of nonlinear oscillations in railway vehicles [J]. Proc.8th IAVSD Symposium,1983,655-664.
    [58]Christian K P, True H. Periodic, biperiodic and chaotic dynamical behaviour of railway vehicles [J]. Proc.9th IAVSD, Symposium,1985:208-221.
    [59]True H. Bifurcation problem in eailway vehicle dynamics [J]. International series of numerical mathematics,1987(79):319-333.
    [60]True H. Some recent developments in nonlinear railway vehicle dynamics [J]. lth European nonlinear oscillation congerence,1993:129-147.
    [61]Moelle D, Gasch R. Nonlinear bogie hunting [J]. Proc.7th IAVSD, Symposium, 1981:455-467.
    [62]Law E H, Brand R S. Analysis of the nonlinear dynamics of a railway vehicle wheelset [J]. Journal of dynamic systems, measurement and control, Trans. ASME, Series G,1973, 95(1):28-35.
    [63]Law E H, Cooperrider N K. A survey of railway vehicle dynamics research [J]. Journal of dyanmic systems, measurement, and control,1974(6):132-146.
    [64]Franke C. Periodic motions and nonlinear dynamics of a wheelset model [J]. International journal of bifureation and chaos in applied sciences and engineering,1999,9(10):40-43.
    [65]Dukkipati R V, Narayana S S, Osman M O M.Curving analysis of modified designs of passenger railway vehicle trucks [J]. Mech. Mach. Theory,2002,25(1):159-167.
    [66]Zboinski K. Dynamical investigation of railway vehicles on a curved track [J]. Eur.J. Mech. A/Solids,1998,17(6):1001-1020.
    [67]Zboinski K. Importance of imaginary forces and kinematic type non-linearities for description of railway vehicle dynamics [J]. Proc. Inst. Mech. Eng., F J. Rail rapid transit,1999, 213(4):199-210.
    [68]Zboinski K, Dusza M. Analysis and method of the analysis of non-linear lateral stability of railway vehicles in curved track [J]. Veh. Syst. Dyn.,2004,41(supplement):222-231.
    [69]Zeng J, Wu P. Stability analysis of high speed railway vehicles [J]. JSME Int. J.. Ser. C,2004, 47(2):464-470.
    [70]林锐,陈予恕.多自由度非线性振动系统的新解法及其在分析机车蛇行中之运用[J].应用力学学报,1986,3(4):22-32.
    [71]詹斐生,黄成荣.机车非线性横向稳定性分析的数值分叉方法[J].铁道学报,1994,15(4):1-7.
    [72]马卫华,罗世辉,王自力.提速机车横向振动问题分析[J].铁道学报,2006,28(3):32-37.
    [73]张曙光,池茂儒,刘丽.机车车辆动力学研究及发展[J].中国铁道科学,2007,28(1):56-62.
    [74]陈春俊,王开云.高速列车横向半主动悬挂系统建模研究及分析[J].振动与冲击,2006,25(4):151-154.
    [75]王帆,任尊松.转向架构架动应力影响因素研究[J].铁道机车车辆,2007,127(2):1-4.
    [76]周劲松,沈刚.车辆动力学仿真中关键元件的建模[J].交通运输工程学报,2007,17(5):1-5.
    [77]周劲松,任利惠,等.高速列车横向平稳性主动控制规律研究[J].铁道学报,2004,26(5):31-35.
    [78]刘宏友,王伟.青藏客车轮缘异常磨耗分析[J].铁道车辆,2008,146(5):1-6.
    [79]范钦海.高速铁路的主要技术特征与高速动车组[J].机车电传动,2003,(5):5-9.
    [80]吕可维.车辆系统非线性动力学问题研究[学位论文].成都:西南交通大学,2004.
    [81]刘宏友.高速列车中的关键动力学问题研究[学位论文].西安:西安交通大学,2003.
    [82]Dukkipati R V, Swamy S N. Non-linear steady-state curving analysis of some unconventional rail trucks [J]. Mechanism and machine theory,2001,9:507-521.
    [83]Dukkipati R V, Swamy S N. Lateral stability and steady state curving performance of unconventional rail trucks [J]. Mechanism and machine theory,2001,36:577-587.
    [84]Margolis D L. Heavo mode dynamics of a tracked air custion vehicle with semi-active airbag secondary suspension[J]. ASM E J dynamic system, measurement and control,1997,119(4).
    [85]任勇生,周建鹏.汽车半主动悬架技术研究综述[J].振动与冲击,2006,25(3):162-165.
    [86]Sugahara Y, Takigami T, Mitsuji SAMPEI. Suppressing vertical vibration in railway vehicles through primary suspension damping force control [J]. Journal of system design and dynamics, 2007,1(2):224-235.
    [87]Adachi M, Shimomura T. Study on the effect of semi-active control for equivalent conicity [C]. Proceedings of the 2007 IEEE internatinal congerence on robotics and biomimetics,2007, Sanya, China.
    [88]Shen Y, Golnaraghi M F, Heppler G R. Semi-active vibration control schemes for suspension systems using magnetorheological dampers [J]. Jorunal of vibration and control,2006, 12(1):3-24.
    [89]Savaresi S M, Spelta C. A single-sensor control strategy for semi-active suspensions [C]. IEEE transactions on control systems technology,2009,17(1):143-152.
    [90]Li H. Linear and nonlinear Skyhook damping control way [J]. Suspensions control 1999,7(7).
    [91]周劲松,张洪,等.铁道车辆主动悬挂补偿滤波器控制算法[J].机电一体化,2004,(6):23-25.
    [92]周劲松.高速列车运行平稳性及其控制研究[学位论文].上海:上海交通大学,2003.
    [93]Williams R A. Active suspensions:Classical or optimal[C]. Proc.9th IAVSD Symp, Linkoping, Sweden,1985.
    [94]Pratt I, Goodall R M. Control strategies to improve ride quality in railway trains [J].1EE Conference,1994,389(3).
    [95]Pratt I, Goodall R M. Controlling the ride quality of the central portion of a high—speed railway vehicle[C]. Proceedings of the American control conference,1997,4-9.
    [96]Hirata T, Koizumi S, Takahashi R. Hoo control of railroad vehicle active suspension [J]. Automatica,1995,31(1):13-24.
    [97]Bruni S, Resta F. Active control of railway vehicles to avoid hunting instability [C].2001 IEEE/ASME international corference on advanced intelligent mechatronics proceedings,2001, 231-235.
    [98]Du H, Sze K Y, Lam J. Semi-active H∞ control of vehicle suspension with magneto-rheological dampers [J]. Journal of sound and vibratin,2005, (283):981-996.
    [99]Kim J M, Kim C K, Park M K, et al. A robust control of a magnetic suspension system with a flexible rail [C]. ISIE 2001, Pusan, Korea.
    [100]董仲美,王自力,蒋海波.基于最优控制的半主动悬挂机车非线性稳定性分析[J].内燃机车,2007,(3):13-16.
    [101]周劲松,张洪,等.基于轨道谱的铁道车辆主动悬挂轴间预瞄控制[J].同济大学学报,2006,32(2):239-243.
    [102]饶大可,刘少军.基于11自由度列车车辆模型的主动悬挂预见控制研究[J].交通与计算机,2004,22(1):57-60.
    [103]朱浩,刘少军.列车车辆垂向主动悬挂的最优预见控制研究[J].机械科学与技术2005,24(5):510-514.
    [104]陈春俊.高速列车横向主动-半主动悬挂控制研究[学位论文].成都:西南交通大学,2006.
    [105]Kim Y G, Park C K, Hwang H S, et al. Design optimization for suspension system of high speed train using neural network [J]. JSME international journal, Series C,2003, 46(2):727-735.
    [106]Biglarbegian M, Melek W, Golnaraghi F. A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems [J]. Vehicle system dynamics,2008, 46(8):697-711.
    [107]Graves K E. Electromagnetic regenerative damping in vehicle suspension systems [J]. Vehicle design,2000, (24):2-3.
    [108]杨建伟,黄强,等.基于加速度阻尼控制的半主动悬挂研究[J].铁道学报,2006,28(5):21-27.
    [109]杨建伟.高速车辆横向振动半主动控制系统研究[学位论文].北京:铁道科学研究院, 2006.
    [110]吴学杰,王月明,等.高速列车横向悬挂主动、半主动控制技术的研究[J].铁道学报,2006,28(1):50-54.
    [111]王昊,胡海岩.整车悬架的最优模糊半主动控制[J].振动工程学报,2005,18(4):438-442.
    [112]戴小文,张济民.神经网络预测控制在摆式列车倾摆系统中的应用[J].机车电传动,2005,(6):15-17.
    [113]丁问司,曹诗军.基于模糊控制的高速列车半主动减振器研究[J].液压与气动,2008(12):14-16.
    [114]Diekmann O, et al. Delay equations, functional, complex-, and nonlinear analysis [J]. New York:Springer-Verlag,1995.
    [115]Stepan G. Retarded's dynamics system:stability and characteristic functions [J]. Essex: Longman scientific and technical,1989.
    [116]Kuang Y. Delay differential equations with applications to population dynamics [M]. New York:Academic Press,1993.
    [117]秦元勋.带有时滞的动力系统的稳定性(第二版)[M].北京:科学出版社,1989.
    [118]Ferreti G. et al. Recursivee stimation of time delay in sampled systems [J]. Automatica,1991, 27(4):653-661.
    [119]Liang D F, Christensen G S. New estimation algorithms for discrete non-linear systems and observations with multiple time delays [J]. International jounral of control,1976,23 (5):6 13-625.
    [120]Priemer R. Vacroux A G. On smoothing in linear discrete systems with time delays [J]. Intenrational jounral of control,1971,13 (2):299-303.
    [121]Elnaggar A, et al. Recursive estimation for system of unknown delay [C]. Proceedings of the 28th conference on decision and control,1989,2:1809-1810.
    [122]胡海岩,张伟,等.非线性动力学理论与应用的新进展[M].北京:科学出版社,2009.
    [123]徐鉴,陈予恕.非线性van del Pol-Duffing-Mathieu系统的全局分叉和混沌:三井势能振子[C].第六届现代数学和力学学术会议论文集,1995,582-587.
    [124]Olgac N. Sipahi R. An exact method for the stability analysis of time-delayed linear time-invariant (LTI) system [J]. IEEE Transactions on automatic control,2002,47(5): 793-797.
    [125]Belair J, Campell S A. Stability and bifurcations of equilibria in a multi-delayed differential equation [J]. SIAM J Appl Math,1994.54(4):1402-1424.
    [126]Compell S A, et al. Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback [J]. Chaos,1995,5(4):640-645.
    [127]Luzyanina T, Roose D. Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations [J]. Comput Appl Math,1996,72:379-392.
    [128]徐鉴.非线性时滞、时变系统分岔和非线性模态研究[学位论文].北京:北京航空航天大学,1996.
    [129]Hu H Y, Wu Z Q. Stability and Hopf bifurcation of a four-wheel-steering vehicle model with driver's delay [C]. Proceedings of IUTAM symposium on nonlinear oscillations of mechanical systems, Kluwer Academic Publishers,1999.
    [130]王在华,胡海岩.高维时滞动力系统的稳定性[J].南京理工大学学报,2000,24(增刊):31-34.
    [131]Jalili N, Esmailzadeh E. Optimum active vehicle suspensions with actuator time delay [J]. Transactions of the ASME,2001, (123):54-61.
    [132]Evesque S, Annaswamy A M, Niculescu S, et al. Adaptive control of a class of time-delay systems [J]. Journal of dynamics, systems, measurement, and control,2003,125(2):186-193.
    [133]Triantafyllou M S, Grosenbaugh M A. Robust control for underwater vehicle systems with time delay [J]. Journal of oceanic engineering,1991,16(1):146-151.
    [134]曾京,戴焕云,邬平波.基于开关阻尼控制的铁道客车系统的动力学性能研究[J].中国铁道科学,2004,25(6):27-31.
    [135]翁建生,张文丰,胡海岩,等.时滞“天棚”阻尼控制的车辆悬架系统特性研究[J].南京建筑工程学院学报,1993(3):1-6.
    [136]倪建华,张智谦,等.一种新型的磁流变阻尼器及其在半主动控制车辆悬架中的应用研究[J].机械科学与技术,2004,23(1):4-6.
    [137]董小闵,余淼,等.汽车磁流变半主动控制系统中的时滞与补偿[J].计算机仿真,2006,23(4):229-232.
    [138]汪若尘,陈龙,江浩斌.基于多项式判别理论时滞半主动悬架稳定性研究[J].中国机械工程,2006,17(24):2628-2631.
    [139]陈健,王开文,等.控制时滞对半主动悬挂车辆动力学性能的影响[J].铁道机车车辆,2006,26(4):9-11.
    [140]刘鹏.非线性时滞系统最优控制器的近似设计研究[学位论文].中国海洋大学,2005.
    [141]刘永强.基于磁流变阻尼器的高速动车组半主动控制与时滞分析[学位论文].北京:北京交通大学,2011.
    [142]Wereley N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers [J]. Journal of intelligent material systems and structures,1998, 9(8):642-649.
    [143]Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smert materials and structures,1996,5(5):565-575.
    [144]Choi S B, Lee B K, Park Y P. A hysteresis model for field-dependent damping force of a magnetorheological damper [J]. Journal of sound and vibration,2001,245(2):375-383.
    [145]Xia P Q. An inverse model of MRdamper using optimal neural network and system identification [J]. Journal of sound and vibration.2003,266(5):1009-1023.
    [146]Wang E R. Syntheses and analyses of semi-active control algorithms for a magneto-rheological damper for vehicle suspensions [D]. Montreal:Concordia University, 2005.
    [147]Wang E R, Ma X Q, Rakhela S, et al. Modeling the hysteretic characteristics of a magnetorheological fluid damper [J]. Journal of automobile engineering,2003, 217(D7):537-550.
    [148]李锦华,陈水生,刘喜辉.磁流变阻尼器半主动控制研究综述[J].铁道工程学报,2006,8:88-92.
    [149]张进秋,张建,等.磁流变液及其应用研究综述[J].装甲兵工程学院学报,2010,24(2):1-6.
    [150]薛晓敏,孙清,张陵,伍晓红.利用遗传算法的磁流变阻尼器结构含时滞半主动控制[J].西安交通大学学报,2010,22(9):122-127.
    [151]方子帆,邓兆祥.磁流变阻尼器简化力学模型研究[J].工程力学,2007,24(11):32-35.
    [152]邓志党,高峰,高献栋.汽车磁流变非线性悬架模糊控制[J].汽车技术,2006,(12):27-30.
    [153]王皖君,应亮,王恩荣.可控磁流变阻尼器滞环模型比较[J].机械工程学报,2009,45(9):100-108.
    [154]刘朝晖,李德建.磁流变阻尼器的bingham模型及其simulink仿真分析[J]. Science & technology information,2008,17:27-29.
    [155]胡津亚,曾三元.现代随机振动[M].北京:中国铁道出版社,1987.
    [156]张定贤.机车车辆轨道系统动力学[M].北京:中国铁道出版社,1996.
    [157]任尊松.车辆动力学基础[M].北京:中国铁道出版社,2009.
    [158]张卫华.机车车辆运行动态模拟研究[M].成都:西安交通大学出版社,2006.
    [159]鲍维千,机车总体及转向架[M].北京:中国铁道出版社,2010.
    [160]封全保.低动力作用机车转向架理论分析及应用研究[学位论文].北京:北京交通大学,2007.
    [161]Ma Xinna, Yang Shaopu, et al. Self-adapt fuzzy control of a semi-active suspension of high-speed locomotive with MR dampers[C].2008 International conference machine learning and cybernetics,2008,4:2120-2124.
    [162]马新娜,杨绍普.基于磁流变阻尼器的高速机车横向半主动振动控制研究[J].振动与冲击,2009,28(7):126-130.
    [163]Ma Xinna, Yang Shaopu, et al. Application of self-adapt fuzzy control system in high-speed locomotive[C].3rd international conference on intelligence computation an application,2008, 253-257.
    [164]杨吉忠.考虑空气动力效应时高速列车运行安全稳定性研究[学位论文].成都:西南交通大学,2009.
    [165]刘寅华,李沛,黄运华.轨道不平顺数值模拟方法[J].交通运输工程学报.2006,6(1):29-33.
    [166]王福天,周劲松,等.用于高速车辆动态仿真的轨道谱分析[J].铁道学报,2002,24(5):21-27,
    [167]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [168]王元丰,王颖,王东军.铁路轨道不平顺模拟的一种新方法[J].铁道学报,1997,19(6):110-115.
    [169]练松良,陆慧明,杨文忠,宗德明.轨道不平顺分析程序[J].中国铁道科学,2006,27(1):68-71.
    [170]陈春俊,李华超.频域采样三角级数法模拟轨道不平顺信号[J].铁道学报,2006,28(3):38-42.
    [171]钱雪军.轨道不平顺的时域模拟法[J].铁道学报,2000,22(4):94-98.
    [172]夏禾.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005.
    [173]严隽耄.车辆工程(第三版)[M].北京:中国铁道出版社,2009.
    [174]Wang Hao, Hu Haiyan. Optimal fuzzy control of a semi-active suspension of a full-vehicle model using MR dampers [J]. International joural of modern physics B,2005,(19): 1513-1519.
    [175]陈修祥,马履中.六轴振动半主动控制装置设计与仿真[J].农业机械学报,2008,39(4):137-141.
    [176]Yang Jianwei, Huang Qiang. A bench study on lateral semi-active control system for high-speed railway vehicle [C]. Proceeding of the 2006 IEEE international conference on mechatronics and automation, Luoyang,2006,1335-1339.
    [177]王恩荣,汪自虎,等.磁流变阻尼器驱动的智能车辆悬挂控制及实验[J].南京师范大学学报,2007,7(1):1-7.
    [178]贾启芬,许恒波,等.基于磁流变阻尼器的汽车悬架半主动控制[J].天津大学学报,2006,39(7):768-772.
    [179]万乐坤,嵇春艳,尹群.海洋平台磁流变模糊半主动振动控制研究[J].船舶工程,2007,29(4):28-31.
    [180]董孝卿,王跃明,文彬.铁道车辆横向半主动悬挂系统仿真[J].中国铁道科学,2005,26(2):84-88.
    [181]Zadeh L A. Fuzzy sets [J]. Information control,1965,8:338-353.
    [182]Zadeh L A. Fuzzy algorithm [J]. Information control,1968,12:94-102.
    [183]Zadeh L A. A rationale for fuzzy control [J]. Trans. ASME J. dynamic system measure control, 1972,94:3-4.
    [184]Chang S S, Zadeh L A. Fuzzy mapping and control [J]. IEEE Trans. On SMC,1972, 2(1):30-34.
    [185]张孝祖,乐巍,陈龙.阻尼模糊控制在车辆半主动悬架中的应用[J].农业机械学报,2004,35(2):5-8.
    [186]Chou C H, Lu H C. A heuristic self-tuning fuzzy controller [J]. Fuzzy sets and systems,1994, 61:249-264.
    [187]余淼,李锐,等.基于磁流变减振器的汽车前悬架半主动控制研究[J].中国机械工程,2005,16(6):545-549.
    [188]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [189]范振平,杨建伟.重载机车横向振动自适应模糊控制技术[J].中国铁道科学,2007,28(3):68-73.
    [190]杨建伟,黄强.基于模糊控制的高速车辆横向半主动悬挂仿真[J].系统仿真学报,2006,18(12):3542-3546.
    [191]董小阂,余淼,等.汽车磁流变半主动悬架自适应模糊控制研究[J].中国公路学报,2006,19(2):111-115.
    [192]ISO2631-1,2. Evaluation of human exposure to whole—body bibration[S].1997,65-112.
    [193]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [194]Lee S Y, Cheng Y C. Nonlinear analysis on hunting stability for high-speed railway vehicle trucks on curved tracks [J]. Transaction of the ASME,2005,127:324-332.
    [195]Anant M. Nonlinear investigatin of the use of controllable primary suspensions to improve hunting in railway vehicles [D]. Virginia polytechnic institute and state university,2003:1-78.
    [196]马卫华,罗世辉,王自力.基于多刚体动力学的机车横向稳定性分析方法研究[J].机车 电传动,2005(5):33-36.
    [197]曹登庆.含不确定参数的车辆动力学模型横向稳定性分析[J].西南交通大学学报,1999,34(3):253-257.
    [198]曹登庆.车辆动力学系统横向稳定性的鲁棒性分析.铁道学报.1996.vo1.18(5):25-29.
    [199]苏本才.机车蛇形运动的分叉特性[J].振动与冲击,1992(1-2):69-76.
    [200]曾京.车辆系统的蛇行运动分叉及极限环的数值计算[J].铁道学报.1996,18(3):13-18.
    [201]Ma Xinna, Yang Shaopu. Dynamic analysis and control on hunting stability for high-speed railway vehicle [C]. International conference on mechanical engineering and mechanics,2009, 1737-1742.
    [202]Huang C R, Zhan F S. The numerical bifurcation method of nonlinear lateral stability analysis of a locomotive[C]. Proceeding of the 13th IAVSD symposium,1993,234-245.
    [203]罗冠伟.客车转向架蛇行运动的Hopf分叉[J].工程力学,2000,(增刊):340-343.
    [204]杨绍普,陈恩利.具有滞后非线性悬挂转向架Hop盼叉[J].铁道学报,1993,15(4):11-18.
    [205]Ma Xinna, Yang Shaopu. A study of semi-active fuzzy control of nonlinear vehicle system [C]. 2009 International Conference Machine Learning and Cybernetics,2009,557-560.
    [206]郭树起,杨绍普,郭京波.1/4车辆磁流变悬架非线性振动分析[J].北京交通大学学报,2006,30(1):83-86.
    [207]Chos S B, Lee H S, Park Y P. H∞ control performance of a full-vehicle suspension featuring magnetorheological dampers [J]. Vehicle system dyanmics,2002,38(5):341-360.
    [208]马新娜,杨绍普.磁流变阻尼器半主动控制系统的特性分析[J].微计算机信息,2010,(8-1):23-24.
    [209]申永军,杨绍普.一类半主动控制非线性系统的动力学分析[J].振动工程学报,2005,18(2):219-222.
    [210]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [211]马新娜,杨绍普.磁流变阻尼器系统的非线性动力学分析[J].振动与冲击,2011:30(6):31-35.
    [212]陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学出版社,1992:5-15.
    [213]唐云.对称性分岔理论基础[M].北京:科学出版社,1998:25-30.
    [214]李韶华,杨绍普.一种非线性汽车悬架的亚谐共振及奇异性[J].振动工程学报,2007,20(2):168-173.
    [215]高国生,杨绍普,等.一类非线性磁流变系统局部分岔特性研究[J].力学学报,2004,39(5):564-568.
    [216]翟婉明.车辆—轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [217]翟婉明.高速铁路轮轨系统的最优动力设计原则[J].中国铁道科学,1994,15(2):16-21.
    [218]翟婉明,孙翔.低动力作用轮轨系统垂向动力参数研究与设计[J].铁道学报,1993,15(3)1-9.
    [219]谢世波,罗雁云.提速列车轮轨附加动荷载分析[J].上海铁道大学学报(自然科学版),1997,18(1):42-47.
    [220]孙翔.高速动力车转向架的技术路线[J].铁道机车车辆,1995,(1):3-9.
    [221]Chudzikiewicz A. Simulation of rail vehicle dynamics in MATLAB environment [J]. Vehicle system dynamic,2000,33(2):107-119.
    [222]Tanabe M, Wakui H, et al. Computational model of a Shinkansen train running on the railway structure and the industrial applications [J]. Journal of materials processing technology,2003, 140(1-3):705-710.
    [223]Kik W, Menssen R, Moelle D, Bergander. Comparison of results of calculations and measurements of DYSAF-tests, a research project to investigate safety limits of derailment at high speeds [J]. Vehicle system dynamics,2003,37(suppl.):543-553.
    [224]钱涛.高速机车半主动悬挂系统横向动力学分析[学位论文].石家庄:石家庄铁道大学,2010.
    [225]刘德华.铁道车辆横向半主动悬挂振动控制研究[学位论文].石家庄:石家庄铁道大学,2010.
    [226]Johanning E, Landsbergis P, et al. Whole-body vibration and ergonomic study of US railroad locomotives [J]. Journal of sound and vibration,2006,298(3):594-600.
    [227]Martikka H. Optimum design of locomotive frames using fuzzy goals and FE methods [J]. Advances in engineering software,2000,31(6):411-415.
    [228]Barwell F T. Railway mechanical engineering:Car and locomotive design:A century of progress [J]. Tribology international,1980,13(6).
    [229]封全保,孙守光,等.减轻列车轮轨横向动力作用的技术措施[J].铁道学报,2007,29(3):40-44.
    [230]95J01-L.高速试验列车动力车强度及动力学性能规范[S].北京:铁道科学研究院,1995.
    [231]TB/T2360-93.铁道机车动力学性能试验鉴定方法及评定标准[S].北京:中国铁道出版社,1993.
    [232]翟婉明,王开云,等.车辆-轨道耦合动力学理论在现代机车车辆设计中的应用实践[J].2004,26(4):24-30.
    [233]王开云,孟宏,翟婉明.“天梭”号电力机车参数优化及动力学性能仿真分析[J].机车2003, (6):5-8.
    [234]Knothe K. Vehicle track interaction [J]. Journal for railway and transport,1998,122(5).
    [235]Grassie S L. Model of railway and vehicle/track interactin at high frequencies:Result of enchmark test [J]. Vehicle system dynamics,1996,25(suppl.).
    [236]Lamonde F. Safety improvement in railways:Which criteria for coordination at a distance design? [J]. International journal of industrial ergonomics,1996,17(6):481-497.
    [237]Palhan R K. Design considerations for minimizing wear in railway operation [J]. Wear,1982, 80(2):133-148.
    [238]Botwright K. Interaction of vehicle and track. Railway engineer international [J].1979, 4(1):34-35.
    [239]陈敏.动力系统的时滞输出反馈控制及其应用[学位论文].哈尔滨工业大学,2007.
    [240]王怀磊.时滞状态反馈下Duffing系统全局动力学分析[学位论文].南京航空航天大学,2003.
    [241]Symans M D, Constantinou M C. Semi-active control earthquake induced vibration [C]. Eleventh world conference on earthquake engineering, acapulca, Mexico, June,1996.
    [242]Spelta C, Savaresi S M, Fabbri L. Experimental analysis of a motorcycle semi-active rear suspension [J]. Control engineering practice,2010,18(11):1239-1250.
    [243]Kitching K J, Cole D J, Cebon D. Performance of a semi-active damper for heavy vehicles [J]. Journal of dynamic systems, measurement, and control,2000,122(3):498-560.
    [244]Neill H R O, Wale G D. Semi-active suspension improves rail vehicle ride [J]. Computing & control engineering journal,1994,5(4):183-188.
    [245]Carrion J E, Spencer B F. Real-time hybrid testing using model-based delay compensation [C].4th international conference on earthquake engineering, October 12-13,2006, Taipei, China.
    [246]Loh C H, Lu K C. Discussion on the application of wireless active sensing unit for structural control [C].4th world congerence on structural control and monitoring, San Diego, USA, July 11-13,2006.
    [247]Niemz T, Winner H. Improving braking performance by control of semi-active suspension [R]. VDI-Verlag, Dusseldorf,2007.
    [248]Saranu S. Development and evaluation of a semi-active suspension system for full suspension tractors [Dissertation]. University of Berlin,2009.
    [249]曹登庆,曾京,等.装有MR阻尼器的转向架动力系统的时滞输出反馈控制[J].振动与冲击,2009,29(6):135-138.
    [250]Carson J D, Weiss K D. A growing attractin to magnetic fluids [J]. Machine design, 1994(14):61-64.
    [251]Paolacci F. Serino G. Experimental characterization of a semi-active MR damper [J]. Proceedings of the 3rd world conference on structural control,7-12 April,2002, Como, Italy.
    [252]Spizzuoco M, Occhiuzzi A, Serino G. Performance of a semi-active MR control system for earthquake protection [C]. The 13th world congerence on earthquake engineering, August 1-6, 2004, Vancouver, B.C., Canada.
    [253]Eslaminasab N, Golnaraghi M F. The effect of time delay of the semi-active dampers on the performance of on-off control schemes [C].2007, Seattle, Washington, USA.
    [254]Eslaminasab N, Development of a semi-active intelligent suspension system for heavy vehicle [Dissertation]. University of Waterloo, Waterloo, Canada,2008.
    [255]Dyke S J. Acceleratin feeback control strategies for active and semi-active control systems: modeling, algorithm development, and experimental verification [Dissertatin]. University of Notre Dame, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana, 1996.
    [256]胡海岩.振动主动控制中的时滞动力学问题[J].振动工程学报,1997,10(3):273-279.
    [257]蔡国平,黄金枝.时滞线性系统振动主动控制的最优化方法[J].上海交通大学学报,2002,36(11):1596-1599.
    [258]张文丰,翁建生,胡海岩.时滞对车辆悬架“天棚”阻尼控制的影响[J].振动工程学报,1999,12(4):486-491.
    [259]单红艳,石锦芸.基于模糊控制磁流变车辆半主动悬架的时滞研究[J].机械设计与制造,2008,(8):59-61.
    [260]姚利敏.基于半主动悬挂的机车控制系统时滞研究[学位论文].石家庄:石家庄铁道大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700