典型机电产品节能降耗设计的能量流建模、优化与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能降耗是当今社会可持续发展的重要内容。虽然在产品设计阶段考虑节能降耗的理念已经得到企业的认可,但已有的一些节能降耗设计方法和单元技术在产品详细设计阶段遇到节能降耗设计目标与产品的性能发生冲突时很难给出有效的指导,使得节能降耗设计技术得不到充分应用。能量是节能降耗设计的关键因素,同时也是机电产品性能实现的重要保证,产品性能实现过程中合理的能量流动和分配可以在充分保证产品性能实现的基础上尽可能的减少能源资源的浪费,实现节能降耗设计目标与性能保证之间的有效平衡。因此,针对典型机电产品开展基于能量流分析的节能降耗设计方法研究具有重要意义和实用价值。
     本文首先提出了面向能量流分析的性能表达及性能约束域分解方法,限定了能流分析方法所适用的性能约束范围并实现性能定性描述向定量设计指标的转化。引入了能量流元(EFE)作为能量流分析的基本对象,并对其建模过程中涉及到的三个关键环节——能量流元划分,接口描述以及能量变化状态确定进行了方法分析。利用能量流元间的接口关系及能量变化状态可定性分析机电产品各零部件的承载能力以及对性能的影响方式,为解决性能实现与节能降耗设计冲突奠定了理论基础。
     在能量流分析模型的基础上提出了性能关重度和性能富余度两个指标用于定量分析性能实现过程中能量变化及分配关系对最终性能实现的影响。结合关注零部件筛选结果提出了基于数值计算和实验数据回归分析的性能关重度计算方法。通过对产品期望能量配比的分析,给出了承载零部件的性能富余度计算模型。综合考虑性能关重度和富余度计算结果,提出了基于能量流分析的冲突消解准则,为实现典型机电产品节能降耗设计与性能保证之间的冲突解决提供方法保证。
     以分体式空调外机风道系统和SUV汽车车架作为研究对象,利用能量流分析模型对各自冲突问题进行了建模表达和求解,给出了优化解决方案,实现了产品在满足性能要求下的风道系统能效提高和车架轻量化设计,并开发了面向能量流分析的节能降耗设计支持系统,在验证方法有效性的同时,为基于能量流分析的节能降耗设计方法在企业实际应用提供了工具支持。
Energy and materials saving has become the important content ofsustainable development in the current society. The concept that using theenergy and material saving method and technology in design stage has beenaccepted by most of the enterprises, but the energy saving method can’t beutilized fully because the conflict often exists between the energy savingmeasure and performance achievement, the current design for energy savingsystem can’t conduct to solve the conflict effectively. As the key factor ofenergy saving design, energy is also an important guarantee for the performanceachievement. Reasonable energy flow and distribution can reduce the energyand resource consumption as much as possible, meanwhile the productperformance achievement can be fully guaranteed, the energy saving measureand performance achievement can be balanced effectively. Therefore,researching on energy and material saving of typical electromechanical productsbased on the energy flow analysis has important significance and practicalvalue.
     At first, the performance expression and constraint decomposition forenergy flow analysis is proposed in this dissertation to limit the applicable scopeof the energy flow analysis method, and also the performance constraint can betransformed from the qualitative performance description to quantitativeindicators. Energy flow element (EFE) is introduced as the basic object ofenergy flow analysis model, and its modeling process involves three key factorswhich are energy flow element partition, interface description, and energychange state analysis. The carrying capacity and performance influence style ofcomponents can be qualitatively achieved by analyzing the interface relationsand energy change states between different energy flow elements, which are thetheoretical foundation to address the conflict between the performanceconstraint and energy saving design measures.
     Based on the energy flow analysis model, two indicators of performancepertinence (PP) and performance margin (PM) are proposed to quantitatively analyze the effect of energy change and distribution for the final performanceachievement. PP of component can be modeled by the numerical calculation andregression analysis of experimental data with the result of concerned partsselection. Calculation model of PM can be achieved by the analysis of expectedenergy distribution ratio. Considering the calculation results of PP and PMsynthetically, the conflict solution guideline based on energy flow analysis ispresented, which provides a method guarantee for the solution of conflict.
     The air duct system of split air-conditioner’s outdoor unit and vehicleframe of SUV are selected as the research objects, and their own conflictproblems are expressed and modeled by the energy flow analysis method. Basedon the energy flow analysis and calculation results, optimal solutions for the twoproducts are proposed to improve the energy efficiency of duct system andlightweight the vehicle frame with their own performance constraint, which alsoverifies that the method is effective. The software system for energy flowanalysis is developed to provide the tool for practical application of the energyflow method in the enterprise.
引文
[1]林伯强.中国能源发展报告2008.北京:中国财政经济出版社,2008.
    [2]国家统计局.中国统计年鉴.北京:中国统计出版社,2010.
    [3]交通部.中国交通年鉴.北京:中国交通年鉴社出版,2010.
    [4]陈晓川.并行工程中面向成本的设计.长春:吉林人民出版社,2003.
    [5] Ashby M F. Materials Selection in Mechanical Design. Oxford: Pergamon Press,1992.
    [6] Sapuan S M. A knowledge-based system for materials selection in mechanical engineeringdesign. MATERIALS&DESIGN,2001,22(8):687~695
    [7] Amen R, Vomacka P. Case-based reasoning as a tool for materials selection. MATERIALS&DESIGN,2001,22(5):353~358
    [8] Valdevit L, Vermaak N, Zok F W, et al. A Materials Selection Protocol for LightweightActively Cooled Panels. Journal of Applied Mechanics-Transactions of the Asme,2008,75(6)
    [9] Stuart J A, Sommerville R M. Materials selection for life cycle design.1998
    [10] Vaajoensuu E, Dammert T. DFE Materials and Processes. Mechanical life cycle handbook:good environmental design and manufacturing. New York: Marcel Dekker,2002.
    [11] Huang H H, Liu Z F, Zhang L, et al. Materials selection for environmentally conscious designvia a proposed life cycle environmental performance index. INTERNATIONAL JOURNALOF ADVANCED MANUFACTURING TECHNOLOGY,2009,44(11-12):1073~1082
    [12] Huang H H, Zhang L, Liu Z F, et al. Multi-criteria decision making and uncertainty analysisfor materials selection in environmentally conscious design. INTERNATIONAL JOURNALOF ADVANCED MANUFACTURING TECHNOLOGY,2011,52(5-8):421~432
    [13] Fitch P E, Cooper J S. Life cycle energy analysis as a method for material selection.JOURNAL OF MECHANICAL DESIGN,2004,126(5):798~804
    [14]刘志峰.绿色设计.北京:机械工业出版社,1999.
    [15] Zhang H C, Kuo T C. A graph-based approach to disassembly model for end-of-life productrecycling: Electronics Manufacturing Technology Symposium,1996., NineteenthIEEE/CPMT.1996247~254
    [16] Gupta S M, Mclean C R. Disassembly of products. Computers&Industrial EngineeringProceedings of the19th International Conference on Computers and Industrial Engineering,1996,31(1-2):225~228
    [17] Zeid I, Gupta S M, Bardasz T. A case-based reasoning approach to planning for disassembly.JOURNAL OF INTELLIGENT MANUFACTURING,1997,8(2):97~106
    [18] Zussman E, Zhou M C. A methodology for modeling and adaptive planning of disassemblyprocesses. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,1999,15(1):190~194
    [19]张雷,刘光复,刘志峰,等.面向绿色设计的产品优化配置方法.农业机械学报,2008,(09)
    [20]金晓红.基于概率论的汽车产品可拆解性评价方法研究:[博士学位论文].吉林大学,2009
    [21] He D W, Kusiak A. Design of assembly systems for modular products. IEEETRANSACTIONS ON ROBOTICS AND AUTOMATION,1997,13(5):646~655
    [22] Gershenson J K, Prasad G J. Modular Product Design: A Life-Cycle View. Journal ofIntegrated Design and Process Science,1999,3(4):1~9
    [23] F Klocke M F, A Kopner G T. Method and Tools Supporting Modular Process Design.Robotics and Computer Integrated Manufacturing,2000,16:411~423
    [24]张昆.基于绿色设计的产品模块化研究.机械设计,2002,(09)
    [25]唐涛,刘志峰,刘光复,等.绿色模块化设计方法研究.机械工程学报,2003,(11)
    [26] Ericsson A, Erixon G. Controlling design variants: modular product platformsSME,1999.
    [27] Jeganova J. Product life cycle design-A model of integrating environmental aspects intoproduct design and development process at a Swedish industry: Adaptive feedbackapproach.in: Fourth International Symposium on Environmentally Conscious Design andInverse Manufacturing, Proceedings.2005.368~375
    [28] Ferik S E, Belhadj C A. Predicting AC Power Consumption using a Stochastic Markov ChainSimulating Weather Conditions.2005
    [29] Ferik S E, Belhadj C A. Neural Network Modeling of Temperature and Humidity Effects onResidential Air Conditioner Load.2004
    [30] Zora A, Fahmy M F, Pecen R, et al. A Comprehensive Energy Model Development forOff-Highway Vehicles: Proceedings of the2005American Society for Engineering EducationAnnual Conference&Exposition. Portland, USA: American Society for EngineeringEducation,2005
    [31]黄海鸿,戚赟徽,刘光复,等.面向产品设计的全生命周期能量分析方法.农业机械学报,2007,(11)
    [32]陈鹏,刘志峰,刘光复.产品全生命周期节能设计关键技术分析.农业机械学报,2008,(11)
    [33]戚赟徽.面向能源节约的产品绿色设计理论与方法研究:[博士学位论文].合肥工业大学,2006
    [34] Zhang Y, Zhu P, Chen G L, et al. Study on Structural Lightweight Design of AutomotiveFront Side Rail Based on Response Surface Method. Journal of Mechanical Design,2007,129(5):553~557
    [35] Benedyk J. Light metals in automotive applications. Light Metal Age,2000,58(9-10)
    [36]羊秋林.汽车用轻量化材料.北京:机械工业出版社,1991.
    [37] Marklund P O, Nilsson L. Optimization of a car body component subjected to side impact.Structural and Multidisciplinary Optimization,2001,21(5):383~392
    [38] Sobieszczanski-Sobieski J, Kodiyalam S, Yang R Y. Optimization of car body underconstraints of noise, vibration, and harshness (NVH), and crash. Structural andMultidisciplinary Optimization,2001,22(4):295~306
    [39] Craig K J, Stander N, Dooge D A, et al. Automotive crashworthiness design using responsesurface-based variable screening and optimization. ENGINEERING COMPUTATIONS,2005,22(1-2):38~61
    [40] Avalle M, Chiandussi G. Optimisation of a vehicle energy absorbing steel component withexperimental validation. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING,2007,34(4):843~858
    [41] Jambor A, Beyer M. NEW CARS-NEW MATERIALS. Materials&design,1997,18(4-6):203~209
    [42]鲁春艳.汽车轻量化技术的发展现状及其实施途径.上海汽车,2007,(06)
    [43]敖炳秋.轻量化汽车材料技术的最新动态.汽车工艺与材料,2002, Z1
    [44]周全.汽车超高强度硼钢板热成形工艺研究:[硕士学位论文].同济大学,2007
    [45]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述.汽车工程,2005,(03)
    [46]姜超,张悦.汽车轻量化材料及成形技术.汽车工艺与材料,2008,(12)
    [47]陶湘保,曾立平.激光焊接技术在汽车制造中的应用.专用汽车,2006,(07)
    [48] Mathieu A, Shabadi R, Deschamps A, et al. Dissimilar material joining using laser (aluminumto steel using zinc-based filler wire). Optics&Laser Technology,2007,39(3):652~661
    [49]李春芳.太阳能电动车关键技术研究:[博士学位论文].吉林大学,2011
    [50]冯逸,陈礼璠,杜爱民.太阳能汽车发展现状及其实用化对策研究.上海汽车,2006,(12):2~5
    [51] Khaligh A, Zhihao L. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systemsfor Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art.Vehicular Technology, IEEE Transactions on,2010,59(6):2806~2814
    [52]车威,杨勇.混合动力汽车关键技术探讨.公路与汽运,2011,(4):8~11
    [53] Chan C C. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of theIEEE,2007,95(4):704~718
    [54]刘东,陈沛霖,刘传聚.变频技术与空调节能.节能技术,2001,(06)
    [55] Daxing H, Ren H, Kai L. Automobile intelligent control system based on effective idling stop:Intelligent Control and Automation (WCICA),20108th World Congress on.20104188~4192
    [56]何仁,刘凯,黄大星,等.发动机智能怠速停止起动系统控制策略的研究.汽车工程,2010,(6):466~469
    [57]彭天好,杨华勇,傅新.工程机械中的泵与发动机匹配.工程机械,2001,(8):37~40
    [58]沈建.流场仿真技术在空调器离心风机优化中的应用.流体机械,2001,29(7):46~49
    [59] Jiang Cai-Ling C J C Z. Experimental and numerical study on aeroacoustic sound of axialflow fan in room air conditioner. Applied Acoustics,2007,68(2007):458~472
    [60]胡俊伟.空调器风道系统气动与声学特性的研究:[博士学位论文].上海:上海交通大学,2006
    [61]李剑波.空调风扇及其导风罩匹配的数值模拟与实验研究:[硕士学位论文].武汉:华中科技大学,2005
    [62] Kalay Y E. Performance-based design. Automation in Construction,1999,8:395~409
    [63] Ullman D G. The mechanical design process. New York: McGraw-Hill,2010.
    [64]谢友柏.产品的性能特征与现代设计.中国机械工程,2000,(Z1)
    [65]赵艾萍,凌卫青,谢友柏.支持性能驱动设计的产品性能表达.计算机辅助设计与图形学学报,2002,(11)
    [66]凌卫青,耿海鹏,谢友柏.产品性能因素描述构架的建立.计算机辅助设计与图形学学报,2003,(02)
    [67]闻邦椿.产品全功能与全性能的综合设计.北京:机械工业出版社,2007.
    [68] Maier J, Fadel G M. Affordance based design: a relational theory for design. RESEARCH INENGINEERING DESIGN,2009,20(1):13~27
    [69] Schaefer F H. Design and Globalization: Proceedings of the2nd International Conference onAdvanced Design and Manufacture.2009
    [70]魏喆,谭建荣,冯毅雄.广义性能驱动的机械产品方案设计方法.机械工程学报,2008,(05):1~10
    [71] Zeng Y. Axiomatic Approach to the Modeling of Product Conceptual Design Processes UsingSet Theory:[Doctor]. CALGARY, ALBERTA: THE UNIVERSITY OF CALGARY,2001
    [72] Pahl G, Beitz W. Engineering design: a systematic approach. London: Springer,1996.
    [73] Stone R B, Wood K L. Development of a functional basis for design. Journal of MechanicalDesign,2000,122(4):359~370
    [74]高常青,黄克正,张勇.基于能量转换的机械产品概念设计自动化研究与实现.中国机械工程,2007,18(6):731~738
    [75] Altshuller G S.40principles: TRIZ keys to innovation. Worcester, MA: TechnicalInnovation Center,1997.
    [76]檀润华. TRIZ:发明问题解决理论.北京:机械工业出版社,2002.
    [77]檀润华,苑彩云,张瑞红,等.基于技术进化的产品设计过程研究.机械工程学报,2002,(12)
    [78]仇成.创新问题解决理论(TRIZ)在产品设计领域的应用研究:[博士学位论文].南京理工大学,2008
    [79] John T. Su-Field Analysis. TRIZ Journal,2000,2:1~12
    [80] Zeng Y. Axiomatic Approach to the Modeling of Product Conceptual Design Processes UsingSet Theory:[Doctor]. CALGARY, ALBERTA: THE UNIVERSITY OF CALGARY,2001
    [81]葛如海,刘星荣.汽车车身对壁正面碰撞安全性评价指标的研究.江苏理工大学学报(自然科学版),2001,(4):29~31
    [82]中华人民共和国国家质量监督检验检疫总局.乘用车正面碰撞的成员保护(GB11551-2003).
    [83] Steward D V. The design structure system: a method for managing the design of complexsystems. IEEE Trans Eng Manage,1981,28(3):71~74
    [84] Sharman D M, Yassine A A. Characterizing complex product architectures. SystemsEngineering,2004,7(1):35~60
    [85]潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究.机械工程学报,2003,(07):1~6
    [86]徐扬.模糊模式识别及其应用.成都:西南交通大学出版社,1999.
    [87]王中双.键合图理论及其在系统动力学中的应用.哈尔滨:哈尔滨工程大学出版社,2000.
    [88]荣见华,郑建龙,徐飞鸿.结构动力修改及优化设计.北京:人民交通出版社,2002.
    [89] Haug E J, Choi K K, Komkov V. Design sensitivity analysis of structural systems.1986:448
    [90] Pandey P C, Bakshi P. Analytical response sensitivity computation using hybrid finiteelements. Computers&Structures,1999,71(5):525~534
    [91] Olhoff N, Rasmussen J. Study of inaccuracy in semi-analytical sensitivity analysis-a modelproblem. Structural and Multidisciplinary Optimization,1991,3(4):203
    [92] Jin W, Dennis B, Wang B. Improved sensitivity analysis using a complex variablesemi-analytical method. Structural and Multidisciplinary Optimization,2010,41(3):433
    [93]邱志平,王晓军.结构灵敏度分析的区间方法.兵工学报,2005,(6)
    [94] Oh B H. Sensitivity Analysis of Time-dependent Behavior in PSC Box Girder Bridges.Journal of Structural Engineering,2000,126(2):171~179
    [95]杨英,赵广耀,孟凡亮.某轿车白车身结构灵敏度分析及优化设计.东北大学学报(自然科学版),2008,(08)
    [96]张代胜,张林涛,谭继锦,等.基于刚度灵敏度分析的客车车身轻量化研究.汽车工程,2008,(08)
    [97]王国林,林波,安登峰,等.基于灵敏度分析的子午线轮胎疲劳性能优化.汽车工程,2008,(04)
    [98]赵海军,邓兆祥,胡玉梅.基于灵敏度分析的微型货车车身结构动力修改.汽车工程,2008,(06)
    [99] Simpson T, Lin D, Chen W. Sampling strategies for computer experiments: design andanalysis. International Journal of Reliability and Safety (IJRS),2001,2(3):209~240
    [100]方开泰.正交与均匀试验设计.北京:科学出版社,2001.
    [101] Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting valuesof input variables in the analysis of output from a computer code. Technometrics,1979,21(2):239~245
    [102] Giunta A A, Jr. Wojtkiewicz S F, Eldred M S. Overview of modern design of experimentsmethods for computational simulations: The41st Aerospace Sciences Meeting and Exhibit.Reno, Nevada:2003
    [103]斯图尔特罗伯特B.价值工程方法基础.北京:机械工业出版社,2007.
    [104]叶永亮,羊军,傅强.车身正面碰撞传力路径设计探讨.上海汽车,2009,(4):11~15
    [105]王洪磊,向东,段广洪,等.分体式空调室外机风道系统的流场分析.流体机械,2009,(6):65~69
    [106]马大猷.噪声与振动控制工程手册.北京:机械工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700