高速机车用铝合金传动空心轴的制备工艺、机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机车转向架特别是簧下质量直接决定了轮轨动作用力的大小,随着我国铁路的不断提速和运行速度的不断提高,该作用力的影响越来越明显。因此,减轻车体重量,尤其是降低簧下质量是保证机车实现高速、安全、平稳运行至关重要的因素,也是目前转向架设计及研究过程中的重要内容。由于六连杆传动空心轴是转向架簧下结构的重要组成部分,基于此,本文首次提出采用高强变形Al-Zn-Mg-Cu合金取代传统的钢质材料制备高速机车传动空心轴,旨在通过材料轻量化以减小空心轴的质量,实现降低簧下质量,改善轮轨动作用力,提高机车动力学性能。针对Al-Zn-Mg-Cu合金铸造性能差、铸件易开裂等缺陷,本文采用挤压铸造工艺开展了高速机车用高强铝合金传动空心轴的制备工艺、制备技术、制备机理和力学性能的研究。为了探索Al-Zn-Mg-Cu合金挤压铸造的工艺参数及其对铸件组织与性能的影响规律,首先试制了1:5缩比件(尺寸为:Φ轴端=160mm,Φ轴身=87mm,Φ内孔=48mm,h总=250mm,简称1:5缩比件,下同),在此基础上,研制了AI-Zn-Mg-Cu合金传动空心轴样品,其尺寸为:Φ轴端=780mm,Φ轴身=340mm,Φ内孔=230mm,h总=1280mm,h轴端=57mm(简称为1:1传动空心轴,下同)。具体研究内容有:
     (1)对比研究了1:1传动空心轴与1:5缩比件的微观组织,发现1:1传动空心轴的组织为非枝晶组织,而缩比件的组织为枝晶组织。造成这种组织差异的原因在于:浇注1:1传动空心轴时,铝液在模腔中的落差为1500mm,远大于1:5缩比件300mm的落差,由此而产生的机械冲刷和强烈对流,导致初始结晶组织枝晶破碎或重熔,甚至使得依附模壁的结晶层坍塌、破碎并游离于铝液中,这些游离于铝液中的固相颗粒在与铝液、模腔壁的剧烈碰撞和摩擦过程中进一步破碎成更为细小的球状固相颗粒,成为动态的结晶核心。
     (2)研究了挤压铸造过程中半固态疏松层的形成条件和形成过程,以及半固态疏松层在挤压铸造排气机制中作用。实验结果表明,适当提高铝液浇注温度和模具预热温度延缓了模腔中铝液凝固的时间,导致铝液在较高的模腔环境中,挤压铸造初期在模壁附近形成一种固-液两相状态的、不致密的半固态层,这为模腔中气体的排出创造了条件。基于半固态层不稳定和疏松的特点,本实验采用了压头间隙排气和溢流槽排气两种机制。
     (3)探讨了1:1传动空心轴挤压铸造过程中及时退让芯模、梯温预热模具和提高浇注温度在制备1:1传动空心轴过程中的作用机制,对比分析了梯温预热模具和提高浇注温度对1:1传动空心轴微观组织和力学性能的影响,所制备的1:1传动空心轴的微观组织均匀,初生α-Al晶粒的形状主要以均匀、细小的球状晶为主,没有粗大的树枝晶存在,与未采用梯温预热模具和提高浇注温度的工艺制备的1:1传动空心轴的力学性能相比较,其拉伸强度、屈服强度和延伸率(取平均值)分别提高了40MPa、45MPa和2%。
     (4)研究了加压开始时间(t1)、保压时间(t2)、比压(P)、浇注温度(Tm)和模具预热温度(Td)等工艺参数对挤压铸造Al-Zn-Mg-Cu合金空心轴微观组织和力学性能的影响。研究表明,加压开始时间tI=5s、比压P=160MPa、保压时间(1:5缩比件t2=60s,1:1传动空心轴t2=120s)、浇注温度(1:5缩比件Tmn=700℃,1:1传动空心轴Tm=780℃)、模具预热温度(1:5缩比件Td=250℃、1:1传动空心轴Td=250℃~350℃)时,挤压铸造Al-Zn-Mg-Cu合金空心轴具有致密、均匀和晶粒细小的微观组织和优良的力学性能,室温拉伸强度和延伸率分别达555MPa和9.0%;添加1%AI-5Ti-1B和2.9%A1-10%RE的混合变质剂能进一步细化空心轴的微观组织,试样的平均晶粒尺寸约为18umn,合金的室温拉伸强度和延伸率分别达到575MPa和10.1%,与未经变质处理的合金相比较,分别提高了6%和24%。
     (5)对所制备的Al-Zn-Mg-Cu合金1:1传动空心轴的室温拉伸强度、旋转弯曲疲劳强度和静强度三个主要的力学性能进行测试研究。空心轴高向和径向的室温拉伸强度和延伸率基本一致,不同部位试样的室温拉伸强度和延伸率的最小值为538MPa和7.0%;空心轴光滑试样的旋转弯曲疲劳极限值ο-1(1×107)=140MPa,缺口试样的旋转弯曲疲劳极限值δ-1(1×107)=69MPa;1:1传动空心轴所有测试点的室温拉伸强度和屈服强度最小值(分别为538MPa和478MPa),远大于空心轴在不同的工况条件下各个应力测试点的应力最大值(241.51MPa),表明挤压铸造Al-Zn-Mg-Cu合金传动空心轴的拉伸强度、疲劳强度和静强度均满足高速机车不同工况运行条件下的使用要求(中国南车集团),可以替代传统钢结构传动空心轴实现有效降低高速机车簧下质量的目的。
The wheel-rail dynamic interaction directionally depends on the weight of the locomotive bogie especially the unsprung mass. With the increasing locomotive speed, the weight reduction of the entire body especially the unsprung mass is crucial to improve the safety and the flexibility of the high-speed locomotives, which is also the important content involved in the design and development of the locomotive bogie at present. The6-link hollow drive shaft is one of the main component in the unsprung structure. It is firstly proposed in the thesis that the high-strength wrought Al-Zn-Mg-Cu alloy can be used to fabricate the hollow drive shaft of the high-speed locomotive instead of the traditional steels, which is aimed at improving the wheel-rail dynamic interaction and the dynamic performance of locomotives by the weight reduction of the hollow drive shaft. However, the Al-Zn-Mg-Cu alloy exhibits poor castability and has high crack tendency. Therefore, squeeze casting is adopted to prepare the the hollow drive shaft of high-strength aluminum alloy and the praparation process, the compacting mechanism and mechancial properties of the hollow drive shaft squeeze castings are studied. The1:1trail product of the hollow Al-Zn-Mg-Cu alloy drive shaft (φthe end of shaft=780mm, φthe axle body=340mm,φthe inner-pore=230mm, h=1330mm) is prepared.
     (1) The microstructures of the1:1and1:5trail products of the hollow Al-Zn-Mg-Cu alloy drive shafts are comparatively studied. The former is characteristics of the semisolid solidification structure, while the latter is featured with the dendrite structure. It can be acribe to the height difference of the two type trail products. The pouring height of the1:1trail product is1500mm, much higher than that of the1:5trail product (300mm). The violent mechanical erosion and the strong convection of the aluminum melt are involved during the pouring of the1:1trail product, which lead to the breakup of the unsteady crystal bolck at the advancing front solidification and the dendrite or remelting, and even the shatter and collapse of the equiaxial chilled layer. Therefore, plenty of well-distributed, solid-state spherical particles are suspended in the aluminum melt. However, the conditions for the formation of such spherical particles are not existent during the preparation of thel:5trail product.
     (2) The condition and the process of the formation of the semisolid loosen layer during squeeze casting as well as its role in the exhaust mechanism of the die cavity are invesigated. A suitable increase in the pouring temperature of the alloy melt and the raised preheating temperature of the mold are beneficial to the prolong solidification time of the alloy melt in the mold. Therefore, no dense crust layer but the unsteady, semisolid loosen layer is formed during the initial stage of squeeze casting, which is convenient to the exhaust of the die cavity. Three exhaust mechanisms associated with the gap of squeezing head, the overflow groove and porous medium are involved during the preparation of the hollow drive shafts.
     (3) The1:1trail products of the hollow Al-Zn-Mg-Cu alloy drive shaft are prepared. The mechanisms of the timely retrievement of the mandrel, the temperature gradient preheating of the mold and the increase of pouring temperature during the preparation of such hollow shafts are explored. The effects of the temperature gradient preheating of the mold and the increase of pouring temperature on the microstructure and mechanical properties of the as-prepared hollow shaft are comparatively analysed. The as-prepared hollow shaft is characteristics of uniform microstructure, well-distributed fine spheric α-Al grains and lack of coarse dendrites. In comparison with that prepared without the temperature gradient preheating of the mold and the increase of pouring temperature, the average ultimate tensile strength, yield strength and elongation of the shaft increase40MPa,45MPa and2%respectively.
     (4) The effects of the process parameters such as the scheduled pressurizing start time t1, the pressure maintaining time t2, the specific pressure P, the pouring temperature Tm and the mold preheating temperature Td on the microstructure and mechanical properties of the1:5trail product are investigated. The optimised process parameters are as follows:ti=5s, t2-60s, P=160MPa, Tm=700℃. The as-prepared alloy is characteristics of densy, uniform and fine-grained microstructure and excellent mechancial properties, with the ambient tensile strength and elongation up to555MPa and9.0%repectively. The combined addition of Al-5Ti-1B and Al-10%RE exhibits a more obvious grain refinement effect on the Al-Zn-Mg-Cu alloy squeeze casting. The as-cast alloy is characteristics of the average grain size of18μm and enhanced ambient mechancial properties. The tensile strength and elongation are575MPa and10.1%respectively, which are6%and24%higher than those of the unmodified alloy.
     (5) The ambient tensile strength, the rotation bending fatigue strength and the static strength of the he1:1trail product are examined. No obvious difference in the tensile strength and elongation are detected along the altitude and the radial direction. The lowest measured value of the tensile strength is538MPa, while that of the elongation is7.0%. The σ-1(1x107) value of the smooth specimen is140MPa, while that of the notched specimen is69MPa. The highest measured stress value at all the testing positions is not beyond250MPa under the different testing conditions, which is much less than the lowest measured values of the ambient tensile strength (538MPa)and the yield strength (478MPa). The feasability in the preparation of the hollow Al-Zn-Mg-Cu alloy drive shaft by squeeze casting is demonstrated. The as-prepared Al-Zn-Mg-Cu hollow shaft can meet the operation requirements for the tensile strength, fatigue strength and the static strength of the hollow drive shaft under the different conditions, indicating the Al-Zn-Mg-Cu squeeze casting has the basic prerequisite for the replacement of the traditional steel shaft and thus the goal for the reduction of the unsprung mass can be effectively achieved.
引文
[1]赵建伟.浅议高速机车的几个技术问题.内燃机车,2000,5:7-13
    [2]方昌烈,王伯福.国外高速列车译文集.铁道部科学研究院机辆所,1996,11:4-55
    [3]葛来薰.我国200 km/h速度等级机车转向架主要技术特征的探讨.机车电传动,2007,4:10-14
    [4]葛来薰.机车转向架盘形制动技术的应用与分析.电力机车技术,2002,6:34-38
    [5]葛来薰.自主创新开发我国第二代轮对空心轴式电机架悬驱动装置.电力机车与城轨车辆,2006,2:25-27
    [6]沈志云.高速客车转向架的动态环境和设计原理.铁道学报,1994,16:1-7
    [7]景维钟.几种体悬式高速动力车转向架驱动装置述评.内燃机车,1995,12:31-35
    [8]孙翔.世界各国的高速铁路.成都:西南交通大学出版社,1992,13-34
    [9]孙翔,罗世辉.德国ICE高速列车的驱动转向架.西南交通大学机辆所,1993,10-32
    [10]封全保.高速转向架六连杆空心轴驱动装置的设计.机车电传动,1 994,13-18
    [11]葛来薰.准高速机车架悬式转向架设计制造和试验(上).内燃机车,1998,3:2-11
    [12]Grzonka. Weitere auswertung schnellfahrversuche mituman(PSD). DB-Vers Minden,1985,2:25-27
    [13]曾苏民.轻量化的首选金属材料是铝.铝加工,2002,25(6):1-3
    [14]王元良,王一戎,屈金山.高速列车轻量化车体材料的选择研究.铝加工1994,17(5):16-20
    [15]卢耀辉,曾京,邬平波.铁路客车车体轻量化问题的研究.机械强度,2005,27(1):99-103
    [16]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.北京:化学工业出版社,2006,23-45
    [17]S. W. Kim, D. Y. Kim, W. G. Kim, et al. The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy. Materials Science and Engineering A,2001,304-306
    [18]M. Arhami, F. Sarioglu, A. Kalkanli, et al. Microstructural characterization of squeeze-cast Al-8Fe-1.4V-8Si. Materials Science and Engineering A,2008, 485:218-223
    [19]QI Pi-xiang. Survey of squeezing casting technology development home and abroad. Special Casting and Nonferrous Alloys,2002,22(2):20-23
    [20]T. M. Yue. Squeeze casting of high-strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology,1997,66:179-185
    [21]K. Sukumaran, K. K. Ravikumar, S. G. K. Pillai, et al. Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Materials Science and Engineering A,2008,490:235-241
    [22]D.J.Britnell, K. Neailey. Macrosegregation in thin walled castings produced via the direct squeeze casting process. Materials Processing Technology,2003,138: 306-310
    [23]郭国文.高强韧铸造铝合金材料及其挤压铸造技术的研究:[华南理工大学博士学位论文].广州:华南理工大学,2002,11-13
    [24]Himadri Chattopadhyay. Simulation of transport processes in squeeze casting. Journal of Materials Processing Technology,2007,186(1-3):174-178
    [25]Gao Deming, Zhang Yuhui. Study on mechanical properties of Mg-Al-Zn-Mn alloys cast by two different methods. Materials Science and Engineering A, 2009,507 (1-2):1-5
    [26]Zhang Ming, Zhang Weiwen. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting. Trans. Nonferrous Met SOC China,2007,17(3):496-501
    [27]闫汝辉,张屹林,王亚南,等.铝活塞的挤压铸造.内燃机,2006,102(4):3-4
    [28]席鹏翀,王强,张治民.LC4超高强度铝合金轮毂的成形工艺研究.锻造,2007,(5):66-68
    [29]迟彩芬,王文生.大型风机叶片的金属型铸造工艺分析.科技论坛,2009,(28):22-23
    [30]赖华清,范宏训.汽车铝缸盖铸造工艺方法.材料工艺,2003,(5):29-31
    [31]齐丕骧.挤压铸造.北京:国防工业出版社,1984,152-156
    [32]R.Aahiri, B. Niroumand, F. Karimzadeh, M. Hamani, et al. Effects of casting process on microstucture and tribolohical behavior of LM13 alloy. Journal of Alloys and Compounds,2008,7:1-7
    [33]G. R. Li, Y. T. Zhao,H. M.Wang,et al. Fabrication and properties of in situ(A13Zr+A12O3)p/A356 composites cast by permanent mould and squeeze casting. Journal of Alloys and Compounds,2009,471:530-535
    [34]E. Hajjari, M. Divandari. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy. Materials and Design,2008,29:1685-1689
    [35]赵恒义,周天西,袁燕.液态模锻工艺及发展应用现状.热加工工艺,2000,16(15):45-47
    [36]Masashiu. Feature of UBE squeeze process and unrc process(semi-solid casting).第三届中国国际压铸会议论文集.沈阳:东北大学出版社,2002,85-89
    [37]夏云.挤压铸造及其过程和质量控制技术.第四届中国国际压铸会议论文集.北京:机械工业出版,2004,156-159
    [38]Chadwick G A, Yue T M. Priciples and applications of squeeze casting. Met Mater,1989,5(1):6-12
    [39]Los Mark. Squeeze Casting Equipment and Components:What you need to make the castings of the new millennium. Die Casting Engineer,1999,10(3): 46-50
    [40]霍文灿,罗守靖.液态模锻工艺及其应用.模具制造及工艺,2003,12:34-39
    [41]洪慎章,曾振鹏.铝合金车轮挤压铸造工艺.特种铸造及有色合金,1999,6:22-24
    [42]Kang C G, Choi J S, D E Kang. A filling analysis of the forging process of semi-solid aluminum materials considering solidification phenomena. Journal of Materials Processing Technology,1998,73(1-3),289-302
    [43]M Robert, Jr Aikin. Gautham Ramachandran. Properties of A356 Squeeze and A357 Semi-Solid Castings. Die Casting Engineer,1999,6(1-2):44-55
    [44]Peter Dr, Chen H, Neff Herrera. Solidification modeling and simulation for connecting rods to overcome porosity problems in the squeeze casting process. Die Casting Engineer,1999,6(1-2):58-60
    [45]Ashutosh Sharma, Sanjeev Das. Study of age hardening behavior of Al-4.5wtCu/zirconsand composite in different quenching media-A comparative study. Materials Design,2009,202(30):3900-3903
    [46]罗继相.我国挤压铸造技术的回顾及展望.铸造,2003,52(1):1-7
    [47]Ghomashchi M R, Vikhrov A. Squeeze casting-an overview. Jorunal of Materials processing technology,2000,36(9):1-9
    [48]陈红松.高强韧Al—Cu合金熔配及热处理工艺的研究:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2002,42-50
    [49]Himadri Chattopadhyay. Simulation of transport processes in squeeze casting. Journal of Materials Processing Technology,2007,186(1-3),174-178
    [50]Starink M J. The origins of room temperature hardening of Al-Cu-Mg alloys. Materials Science and Engineering A,2004,387(1-2):222-226
    [51]耿浩然.铸造铝镁合金.北京:化学工业出版社,2006,359-365
    [52]Chen Daqin. Mechanism of stress aging in Al-Cu-Mg-Ag alloys. Trans Nonferous Met Soc China,2004,14(1):780-784
    [53]Gethin D T, Lewis R W, Tadayon M R. Finite element approach for modelling metel flow and pressured solidification in the squeeze casting process. Int. J. Numer. Meth. Eng.,1992,35(4):46-53
    [54]Gokhale A M, Patel G R, Quantitative fractographic analysis of variability in tensile ductility of a squeeze cast Al-Si-Mg base alloy. Materials Characterization,2005,54:13-20
    [55]李彦霞.压力下挤压铸造Al-Cu合金的性能研究.机电工程技术,2008,37(8):67-69
    [56]齐丕骧.变形铝合金挤压铸造.特种铸造及有色合金,2008,9:9-13
    [57]李荣德,于惠舒,李晨希,等.比压对大高径比挤压铸造ZA27合金杯形铸件的组织与性能的影响.特种铸造及有色合金,2006,3:245-248
    [58]Skolianos S M, Kiourtsidis G, Xatzifotiou T. Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy. Materials Science and Engineering A,1997,23 (1):17-24
    [59]Zhang Haiying, Xing Shuming, Zhang Qinghua. Evaluation of the mold-filling ability of alloy melt in squeeze casting. Journal of University of Science and technology Bering,2006,13:60-66
    [60]M. T. Abou El-khair. Microstruture characterization and tensile projperties of squeeze-cast AlSiMg alloys. Materials Letters,2005,59:894-900
    [61]Lee J H, Kim H S, Won C W, et al. Effect of the gap distance on the cooling behaviour and the microstructure of indirect squeeze cast and gravity die cast 5083 wrought Al alloy. Materials Science and Engineering A,2002, 338:182-190
    [62]Boschetto A, Costanza G, Quadrini F, et al. Cooling rate inference in aluminum alloy squeeze casting. Materials Letters,2007,61:2969-2972
    [63]于海朋,王利波,于宝义,等.浇注温度对间接挤压铸造Al-5Cu合金的影响.特种铸造及有色合金,2006,26(1):43-45
    [64]李晨希,曹亮,伞品超,等.挤压铸造ZA27合金大高径比铸件.特种铸造及有色合金,2005,10:610-612
    [65]李晨希,王宏,李革,等.挤压铸造大高径比铸件的凝固特性和组织.特种铸造及有色合金,2006,11:713-715
    [66]Milan Zhang, Shuming Xing, Liming Xiao, et al. Design of process parameters for direct squeeze casting.2008,15(3):339-343
    [67]杨艳玲,彭立明,丁文江.浅谈挤压铸造中的工艺参数.铸造工程,2009,5:29-32
    [68]李素梅,侯立群,齐志群,等.挤压铸造大型铝合金结构件.挤压铸造,2005,172-173
    [69]李荣德,于海朋,向青春,等.ZA合金挤压铸造过程中保压时间的确定.上海:第三届中国国际压铸会议论文集,2005,138-141
    [70]Flemings M C, Mehrabian R. Casting semi-solid metals. AFS Trans,1973,81: 81-88
    [71]Young K P, Riek R G, Flemings M C. Structure and properties of thixocast steels. Metals Technology,1979,6(4):130-137
    [72]Brook G B. Improving the quality of aluminum diecasting by nevel techniques. Mater. In Eng.,1982,3:558-565
    [73]Bruke K J, Atkinson H V, Mclelland A R. Thixoforming of aluminum 7075. Semi-Solid Processing of Alloys and Composites,1998,23:549-556
    [74]Dobatkin V I, Eskin G I. Ingots of aluminum alloys with nondendritic structure produced by ultuasonic treatment for deformation in the semi-solid state. Department Engineering Materials, University of Sheffield,1996,19:193-196
    [75]Liu C, Pan Y, Aoyama S. Microsturcture evolution of semi-solid Al-7Si-0.4Mg alloy by short time supersonic vibrations. Semi-Solid Processing of Alloys and Composites,1998,23:439-447
    [76]毛卫民.非枝晶A17SiMg合金半固态坯料组织形成规律及成形研究:[博士论文].北京:北京科技大学,1999
    [77]Brusethaug S, Vole J. Manufacturing of feedstock for semi-solid processing by chemical grain refinement. Materials Science and Chemical Engineering Department,2000,27:451-456
    [78]赵爱民,甄子胜,毛卫民,等.喷射沉积高硅铝合金的半固态触变成形.中国有色金属学报,2000,10(1):126-131
    [79]Young R M, Clyne T W. A powder-based approach to semisolid processing of metals for fabrication of die-castings and composites. J. Mater. Sci.,1986,21: 1057-1069
    [80]Pan Y, Aoyama S, Liu C. Spherical structure and formation conditions of semi-solid Al-Si-Mg alloy. Proc. Of the 5th Asian Foundry Congress,1997,23: 443-451
    [81]毛卫民,杨继莲,赵爱民,等.浇注温度对AlSi7Mg合金半固态组织的影响.北京科技大学学报,2001,23(1):38-41
    [82]刘丹,崔建忠.无搅拌制浆新技术-液相线铸造.铸造技术,1998,6:44-46
    [83]Flemings M C, Riek R G, Young K P. Rheocasting. Mater. Sci. Eng.,1976,25: 103-117
    [84]Shibata R, Kaneuchi T, Soda T, et al. New semi-liquid metal casting process. Department of Engineering Materials,1996,2:296-300
    [85]Wang N, Peng H, Wang K K. Assessment of porosity level in rheomolded parts. Department of Engineering Materials,1996,2:342-346
    [86]Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomolding process. Mater. Sci. Eng.,2001,299A:210-217
    [87]Kaufmann H, Wabusseg H, Uggowitzer P J. Metallurgical and processing aspects of the NRC semi-solid casting technology. Aluminium,2000,76:70-75
    [88]吴宗闻,毛卫民,陈正周.短时均热工艺对蛇行通道浇注的半固态铝合金浆料温度和组织的影响.特种铸造及有色合金,2010,30(10):909-912
    [89]毛卫民,白月龙,高松福,等.半固态AlSi7Mg铝合金的新型流变成形.材料研究学报,2006,20(5):469-473
    [90]Atkinson H V, Liu D. Development of high performance aluminum alloys for thixoforming. Semi-Solid Processing of Alloys and Composites,2002,25: 51-56
    [91]Rau S, Telle R. Ceramic tool materials for the thixoforming of aluminum, copper and steel. Semi-Solid Processing of Alloys and Composites,1998, 23:661-667
    [92]Ramati S D, Abbaschian G J, Bachaman D G, et al. Forging of liquid and solid Sn-Pb and aluminum alloys. Metall. Trans.,1978,9B(6):279-286
    [93]Chen Z W, Peck S R, Davidson C J. Semi-solid casting of Al-7Si-0.3Mg alloy using a vertical injection squeeze casting machine. Semi-Solid Processing of Alloys and Composites,1996,6:19-21
    [94]Flemings M C. Behaviour of metal alloys in the semi-solid state. Metall Trans A, 1991,22A(5):957-981
    [95]Apaydin N, Prabhakar K V, Doherty R D. Special grain boundaries in rheocast Al-Mg. Mater Sci and Eng,1980,46:145-150
    [96]Van Dam J C, Mischgofsky F H. Stircasting of transparent organic alloys: Thixotropy and rosette formation. Journal of Mater Sci,1982,17:989-993
    [97]Pluchon C, Loue W R, Menet P Y, et al. Development of semi-solid metal forming feed stock and finishied parts. Light Metals,1995,11:1233-1239
    [98]Ji S, Fan Z. Solidification behavior of Sn-15wt%Pb alloys under a high shear rate and high intensity of turbulence during semisolid processing. Metall Mater Trans,2002,33A:3511-3520
    [99]邹文辉,王德新,孙永鹏.铝合金传动空心轴的可行性探讨.电力机车与城轨车辆,2007,30(3):8-10
    [100]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004,74-100
    [101]周鸿章,李念奎.超高强铝合金强韧化的发展过程及方向.铝-21世纪基础研究与技术发展研讨会论文集,2001,33(12):1-9
    [102]Lengfeld P. Microstructure and mechanical behavior of spray deposited Zn modified 7××× series Al alloys. International Journal of Rapid Solidfication, 1995,8(4):237-265
    [103]Imamura T. Current status and trend of applicable material technology for aerospace structure. Journal of Japan of Light Metals,1999,49(7):302-309
    [104]马场义雄.超硬铝(EDS)及飞机铝合金发展动向.铝加工技术,1990,(4):21-31
    [105]Pickem J R. Aluminum powder metallurgy technology for high-strength applications. J Mat Sci,1981,16(6):1437-1457
    [106]Srivasan T S. The tensile response and fracture behavior of an Al-Zn-Mg-Cu alloy:influence of temperature. Journal of Materials Engineering and Performance,1997,6(3):349-358
    [107]陈昌麒.超高强度铝合金的发展.中国有色金属学报,2002,1(2):22-27
    [108]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向.轻合金加工技术,2005,33(12):1-9
    [109]Srivasan T S. Mirostructure tensile deformation and fracture behavior of aluminum alloy 7055. Journal of Materials Science,1997,32(11):2883-2894
    [110]Jeffery B P. Structure and properties of spray formed 7150 containing Fe and Si. Inter J P M,1998,30(3):335-340
    [111]陈振华.多层喷射沉积技术及应用.长沙:湖南大学出版社,2003,10-13
    [112]鲁春艳.汽车轻量化技术的发展现状及其实施途径.轻型汽车技术,2007,6:22-25
    [113]潘复生,张丁非.铝合金及应用.北京:化学工业出版社,2006,347-348
    [114]李双寿,朱跃峰,曾大本,等.原料组织遗传性及其在铸造铝合金中的应用.铸造,1999,10(8):53-58
    [115]Kori S A, Murty B S, Chakraborty M. Development of an efficient grain refiner for Al-7Si alloy. Mater. Sci. Tech.,2000, A280(1):58-61
    [116]陈炳光.连铸连锻技术.北京:机械工业出版社,2004,211-231
    [117]赵建康.铸造合金及其熔炼.北京:机械工业出版社,1985
    [118]高映法.压铸生产的过程管理和质量提升.特种铸造及有色合金,2005,(专刊):340-342
    [119]高映法.压铸生产的过程管理和质量提升.特种铸造及有色合金,2005,(专刊):340-342
    [120]冯俊.压铸铝合金金属液的精炼处理.特种铸造及有色合金,2001,(专刊):26-27
    [121]宋谋胜,刘忠侠,李继文,等.加钛方式与钛含量对A356组织和性能的影响.中国有色金属学报,2004,14(10):1729-1735
    [122]Liu Z Y, Wang M X, Wang Y G, et al. Grain refinement effect and mechanism of Al based alloy containing low-content Ti produced by electrolysos. The Chinese Journal of Nonferrous Metals,2002,12(6):1122-1126
    [123]唐多光.铸造铝合金精炼变质的好材料一稀土合金.特种铸造及有色合金,1995,15(5):42-44
    [124]仲志国,左秀荣.细晶铝锭熔炼的A356铝合金组织与性能的研究.铸造,2006,55(8):828-831
    [125]D. Y. Maeng, J. H. Lee, C. W. Won, et al. The effects of processing parameters on the microstructure and mechanical properties of modified B390 alloy in direct squeeze casting. Materials Processing Technology,2000,101:596-203
    [126]王肇经.铸造铝合金中的气孔和非金属夹杂物.北京:兵器工业出版社1989
    [127]丛红日,边秀房.铝合金熔体中夹杂物与含氢量的关系.特种铸及有色金属,2000,3:21-22
    [128]傅高升,康积行.铝熔体中熔剂的净化作用特性分析.铸造技术,1995,6:23-26
    [129]叶荣茂.热加工技术简明手册.哈尔滨:哈尔滨工业大学出版社,1997,145
    [130]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.北京:化学工业出版社,2007,247-249
    [131]罗守靖,何绍元,王尔德.钢质液态模锻.哈尔滨:哈尔滨工业大学出版社,1990.326-336
    [132]ZHANG Ming, ZHANG Wei-wen, ZHAO Hai-dong, et al. Effect of pressure on microstrutures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting. Transactions of Nonferrous Metals Society of China,2007, 17:496-501
    [133]A. Maleki, A. Shafyei, B. Niroumand. Effects of squeeze casting parameters on the microstructure of LM13 alloy. Jounal of Materials Processing Technology, 2008,8:1-8
    [134]L. J. Yang. The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys. Materials Processing Technology,2003,140:391-396
    [135]G. A. Chadwick, T. M. Yue. Principles and applications of squeeze casting, Met. Mater.,1989,5(1):6-12
    [136]俞汉清,陈金德.金属塑性成形原理.北京:机械工业出版社,2001,8:101-123
    [137]陈康华.强化固溶对7055合金力学性能和断裂行为的影响.金属学报,2001,31(6):528-531
    [138]陈康华.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响.中南工业大学学报,2000,31(4):339—341
    [139]刘刚,陈康华.含有不同尺度量级第二相的高强铝合金断裂韧性型.中国有色金属学报,2002,12(4):706-713
    [140]曾渝.超高强Al-Zn-Mg-Cu合金组织与性能的研究:[中南大学博士学位论文].长沙:中南大学,2004,65-99
    [141]M U Islam, W Wallace. Retrogression and reaging response of 7475 aluminum alloy. Metals Technology,1983,2(10):386
    [142]Ahmet A. Optimization of the strength and intergranular corrosion properties of the 7075 Al Alloy by retrogression and rcaging. Z. Metallkde,1989,7(3):170
    [143]J J Thompson, E S Tankins. A heat treatment for reducing corrsion and stress corrosion cracking susceptibilities in 7xxx aluminum alloys. Materials performance,1987,3(6):45
    [144]李春梅.Al-Zn-Mg-Cu系超高强铝合金热处理工艺的研究:[西南师范大学硕士学位论文].重庆:西南师范大学,2005,27
    [145]费豪文.物理冶金学基础.卢光熙译.上海:上海科学技术出版社,1974
    [146]邓至谦,周善初.金属材料及热处理.长沙:中南工业大学出版社,1994,15-21
    [147]Mohnanty P S, Gruzlesk J E. Mechanism of grain refinement in aluminum. Acta Metall.,1995,43(5):2001-2012
    [148]宋禹田.正视铝加工存在的问题.有色金属工业,2005,6:16-17
    [149]戚正.风固态金属中的扩散与相变.北京:机械工业出版社,1997:387-389
    [150]Avalle M, Belingardi G, Cavatorta M P, et al. Casting defects and fatigue strength of a die cast aluminium alloy:a comparison between standard specimens and production components. International Journal of Fatigue,2002, 24(1):1-9
    [151]Buffiere J Y. Experimental study of porosity and its relation to fatigue mechanisms of model Al-7Si-0.3Mg cast alloys. Mater. Sci. Eng. A,2001, A316(1-2):115-126
    [152]FAN Jing-hong, Mcdowell D L, Mark F, et al. Cyclic plasticity at porosities and inclusions in cast Al-Si alloys. Engineering Fracture Mechanics,2003,70(10): 1281-1302
    [153]Han S W, Katsumata K, Kumai S, et al. Effects of solidification structure and aging condition on cyclic stress-strain response in Al-7Si-0.4Mg cast alloys. Mater. Sci. Eng. A,2002, A337(1-2):170-178
    [154]Couper M J, Neeson A E, Griffiths J R. Casting defects and the fatigue behaviour of an aluminum casting alloy. Fatigue Fract. Eng. Mater. Struct. 1990(3):213-227
    [155]Avalle M, Belingardi G, Cavatorta M P, et al. Static and fatigue strength of a die-cast alumininum alloy unals:Design and Applications,2002,216:25-302
    [156]Chao P Z, Tsuchida T. Effcet of fabrication conditions and Cr, Zr contents on the grain structure of 7075 and 6061 aluminum alloys. Mater. Sci. Eng. A,2009, 499:78-82
    [157]Liu D, Atkinson H V, Kapranos P. Microstrural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys. Mater. Sci. Eng. A,2003,361:213-224
    [158]Yue T M. Comparison of the fatigue behaviour of an Al-Zn-Mg-Cu alloy (7010) in the form of squeeze and chill castings and rolled plate. J. Mater. Sci.,1990, 25:175-182
    [159]Yue T M. Squeeze casting of high-strength aluminium wrought alloy AA7071. J. Mater. Pro. Tech.,1997,66:179-185
    [160]Kim S W, Kim D Y, Woo K D. et al. The study on characteristics of heat treatment of the direct squeeze cast 7075 wrought Al alloy. Mater. Sci. Eng., A, 2001,304:721-726
    [161]Ghomashchi M R. Cleanliness of capped steel. BHP/USA Report,1991,75-101
    [162]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,2002,487-511
    [163]Ghomashchi M R, Vikhrov A. Squeeze casting:an overview. Mater. Pro. Tech., 2000,101:1-9
    [164]Chen W P, Li Y Y. Squeeze casting of Al-Cu alloy. Journal of Central South University of Technology,2002,9(3):159-164
    [165]Zhang M, Zhang W W, Zhao H D, et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting. Trans Nonferrous Met SOC China,2007,17(1):496-501
    [166]赵祖德,罗守靖.轻合金半固态成形技术.北京:化学工业出版社,2007,25-27
    [167]Anacleto D F. Science and technology of semi-solid metal processing. MA: Worcester Polytechnic Institute Worcester,2004,79-85
    [168]Mohnanty P S, Gruzlesk J E. Grain refinement mechanisms of hypoeutectic Al-Si alloys. Acta Mater.,1996,44(9):3749-3760
    [169]Rao A A, Murty B. Chakraborty M. Role of zirconium and impurities in grain refinement of aluminum with Al-Ti-B. Mater. Sci. Tech.,1997,13(9):769-777
    [170]高泽生.LSM采用全面质量管理提高AlTiB丝质量.轻合金加工技术,1997,11:16
    [171]傅高升,孙锋山,康积行,等.中间合金对铝合金细化处理的现状分析与初探.特种铸造及有色合金,2001,2:50
    [172]Banerji I A, Reif W. Development of Al-Ti-C grain refiners containing TiC. Metal. Trans.1986, A17(12):2127
    [173]陈业军,许庆彦,黄天后.铝合金晶粒细化剂研究进展.材料导报,2006,20(12):57-61
    [174]Tronche A, Voelonssctfi M, Graecr. A L. Lastality of TiC particales in Al melts Inoculated with an Al-Ti-C grain refiner. Material Science and Technology, 2002,18:1072-1078
    [175]郭明.新型中间合金Al-Ti-B-RE的制备及细化性:[兰州理工大学硕士学位论文].兰州:兰州理工大学,2005,5-15
    [176]陈鸿玲,傅高升,颜文煅.Al-5Ti-1B-0.5RE对A356铝合金的细化效果.特种铸造及有色金属,2008,28(10):795-797
    [177]水丽,孙伟成.AlTiB和AlTiBRE对铝合金晶粒细化的影响.新技术新工艺,2003,5:42-43
    [178]林光磊.探讨稀土在Al-Ti-B-RE中间合金中的作用.铝加工,2002,25(2): 24-32
    [179]Fu G S, Chen W Z, Qian K W. Refining effect of a new A13Ti1B1RE master alloy on aluminum sheet used for can and behavior of rare earths in the master alloy. Journal of Rare Earths,2003,21 (5):572-577
    [180]兰晔峰.稀土对AlTiBRE中间合金细化性能的影响.铸造技术,2005,(9)774-778
    [181]Kubschewski O, Alcock C B.Metallurgical Thermochemistry. UK:Pergamor press,1979
    [182]韩奎,毛协民,欧阳志英,等.稀土元素在铸铝熔体除气净化过程中的行为.特种铸造及有色合金,2004,2:61-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700