东风港油田沙四上亚段油气藏储层综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过录井-测井解释、地震资料分析、岩心精细描述、各种地球化学分析测试等手段,对车西洼陷沙四上亚段油气藏储层进行了综合评价,具体包括八个方面的内容:地层精细对比分析、构造特征研究、沉积微相分析、成岩作用与成岩阶段划分、储层温压场恢复、储层物性测井解释、油层定性解释、储层“四性”关系评价等。同时探讨了沉积微相、成岩作用、异常高压等对储层物性与油层分布的控制作用,并通过储层各参数综合分析,确立了本区油气勘探的有利目标区块,这些对于降低油田开发成本、提高开发效率、实现产量稳定具有重要的理论现实意义。
     在地层对比中,全区共选择标准井7口,建立区域骨架网连井剖面16条,沙四上亚段共划分为3个砂层组,其中包括18个小层(包括39个单砂体)。根据地层高差、断层断距、断层生长指数等数据综合分析显示,该区断层对沉积具有一定的控制作用,并在沙四段沉积之后,工区南部构造抬升强烈,断层活动主要集中在北部和东部。地应力以张性-张剪性应力为主,从中生界末期至今,地应力发生左旋,角度大约为15度。
     沉积相类型以三角洲相为主,对储层有利的微相类型主要包括:分流河道、水下分流河道、分流河口坝、远砂坝、席状砂等。古水流方向大体由南至北,砂体纵向(南北向)连续性好于横向(东西向)。整体分析该区为多物源供给,以无棣凸起为主,庆云、义和庄凸起为辅。
     储层岩石碎屑成分主要包括石英、长石、岩屑,粘土矿物成分主要为高岭石、绿泥石、伊利石、伊蒙混层等。储层孔隙类型包括少量的粒间原生孔隙,多数为铸模孔、粒内溶孔等次生孔隙,以及少量的颗粒破裂缝和成岩收缩裂缝等,整体评价该区孔喉半径小,分选程度低,变异系数大,连通性较差。成岩相类型主要有5种,各成岩相按含油量递减排序为:混合胶结相(含油45%),钙质胶结相、溶蚀相、压裂与裂缝相(共含油30%),粘土胶结相(含油25%)。随着地层深度的增加,成岩作用逐渐增强,由浅至深依次为中成岩A1期——中成岩A2期——中成岩B期,其中不同成岩阶段发育不同的次生孔隙类型,且由浅至深呈规律性发育。
     流体包裹体均一温度与试油试采数据显示,该区一直处于常温状态,工区北部为异常高压区,南部为常压区。异常高压的主要成因为不均衡压实所致,其次受矿物成岩作用的影响。油井高产能层段对应的地层压力系数在1.1—1.3之间,异常高压对于地层温度的增加、矿物成岩作用的加深、流体包裹体的形成等都具有一定的抑制作用。
     随着地层深度的增加,储层孔隙度、渗透率整体呈现递减的趋势,但出现了3个异常深度带,经分析认为与成岩作用和异常高压有关。油层孔隙度多为10-20%,渗透率多小于10×10-3um2,储层类型为中-低孔特低渗储层,综合评价属于Ⅳ-Ⅴ级较差储层。
     全区共解释储集层类型六种,包括油层、油干间互、油水同层、含油水层、水层和干层。全区共解释有效油层厚度累计531.2米,其中主力小层为15、25、26、33、37五个小层。
     通过储层综合评价认为:最有利的4个区块占油层总量的70%;次有利的4个区块占油层总量的18%;其余较差的6个区块占油层总量的12%。
By log data and interpretation, seismologic data analysis, core particular description, kinds of geochemical testing and analysis and so on, this paper comprehensively evaluates oil-gas reservoir of the upper ES4 member in Chexi depression, which includes eight parts, as stratigraphic correlation, structure elucidation, sedimentary microfacies analysis, diagenesis and dividing diagenetic stage, recovering paleotemperature and paleopressure, interpreting porosity and permeability by well log, reviewing reservoir characteristic and type, researching the relationship of lithology, physical property, electrical property and oilness, and look for the favorable place for prospecting and payable area. All of these, that are very useful for decreasing cost of exploitation, increasing efficiency of exploitation, maintaining oil-gas output.
     In the process of comparing strata, we choice seven type wells, sixteen well tie sections, and dividing three sands groups, eighteen layers and thirty night single sand bodies. According to difference of height on the surface of formation, fault displacement, fault growth index, we considered that the fault activity could control on the sedimentation, and after sedimentation of ES4 member, tectonic uplift is more stronger in the southern, and fault activity is main in the northern and eastern of Chexi depression. In work area, tensile stress is primary and chief, from late Mesozoic to Present, which had laevogyrated fifteen degrees.
     The primary type of sedimentary facies is delta, including some microfacies, such as distributary channel, underwater distributary channel, distributary mouth bar, distal bar and sand sheet and so on, all of which are favorable for reservoir to explore. In this area, paleocurrent direction is approximate from south to north, and longitudinal continuity of sand bodies is much better than lateral continuity. The main provenance is Wudi horseback, the secondary are Qingyun and Yihezhuang horsebacks.
     The clastic constituents of reservoir sands are composed of quartz, feldspar and debris, and clay minerals are made up of kaolinite, chlorite, illite and andreattite, and the pores are consisted of three types, as primary pores, secondary pores including moldic pores and intragranular pores, and fractures including disrupted and diagenetic shrinkage fractures, all of which are the smaller half length of pore-throat, the lower degree of sorting and connectivity. There are five kinds of diagenetic facies, which can be sequenced for oil content, as mixed cement facies, calcarinate facies, corrosion facies, compaction and fracture facies, clay cement facies. As deeper, the diagenesis is become to be stronger. From the lower to the deeper, diagenesis is divided into three phases, including middle diagenesis A1 phase, middle diagenesis A2 phase, middle diagenesis B phase.
     This area is always normal temperature system in all ages, where the north is surpressure and the south is normal pressure. The nonequilibrium compression had mainly brought on surpressure and the diagenesis is secondary to form surpressure. The high yield well can be result of the pressure coefficient from 1.1 to 1.3. The surpressure could restrain increasing strata temperature and diagenesis, fluid inclusions from forming.
     As the formation deeper, the porosity and permeability are become decreasing, but it has unconventional values in three abnormal zone, where the diagenesis and surpressure affect on the porosity and permeability. In work area, there are six reservoir types, consisting of oil layer, oil-dry interval layer, oil and water layer, oily water layer, water layer and dry layer. We interpret the effective thickness of oil layers is 531.2 meters, which includes five main layers, as 15layer, 25layer, 26layer, 33layer and 37layer.
     According to comprehensive evaluation, we consider that there are four blocks are the most useful for exploration activity than the others, which are seventy percents in total petroleum resources; there are four secondary blocks in eighteen percents of petroleum resources and six blocks in twelve percents of total resources.
引文
[1]闫家宁. Geolog在大民屯凹陷元古界潜山储层评价中的应用[J].断块油气田, 2007, 14(4): 34-36.
    [2]田金文.基于井壁成像测井图像的溶洞自动检测方法[J].江汉石油学院学报, 1999, 21(2): 20-22.
    [3]罗利,任兴国.测井识别碳酸盐岩储集类型[J].测井技术, 1999, 23(5): 355-360.
    [4]孙玉红,王建功,母学平,等. MAXIS500测井系统在二连盆地储层评价中的应用[J]. 2005, 29(6): 541-545.
    [5] Knipe R J. Faulting process and fault seal[J]. Norwegian Petroleum Society, 1992, 74(1): 325-342.
    [6]徐凤银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J].石油学报, 1996, 17(2): 29-34.
    [7]欧成华,陈景山.砂体分类评价的模糊综合评判[J].西南石油学院学报, 1998, 20(3): 7-10.
    [8]吴海燕,朱留方.成像、核磁共振测井在埕北裂缝性储层评价中的应用[J].石油与天然气地质, 2002, 23(1): 45-48.
    [9]彭仕宓,熊琦华,王才经,等.储层综合评价的主成分分析方法[J].石油学报, 1994, 15(增刊): 187-192.
    [10]齐宝权,甘秀娥.测井新技术在广安地区须家河组储层评价中的应用[J].天然气工业, 2007, 27(6): 15-19.
    [11]张连元.安塞油田坪北区低渗透储层评价[J].江汉石油职工大学学报, 2005, 18(4): 8-11.
    [12]雷茂盛,林静薇.岩层离距图法研究沉积岩断裂发育史—以松辽盆地敖古拉断裂为例[J].海相油气地质, 2004, 9(12): 105-110.
    [13]彭美霞.测井多井储层评价技术在广华油田的应用[J].江汉石油职工大学学报, 2004, 17(6): 41-43.
    [14]宋子齐.沈84块油藏剩余油饱和度及其分布富集研究[J].测井技术, 1998, 22(6): 7-10.
    [15]宋子齐,赵磊,王瑞飞,等.利用常规测井方法识别划分水淹层[J].西安石油大学学报, 2003, 18(6): 50-53.
    [16]陈本才,马俊芳,高亚文.地层微电阻率扫描成像测井沉积学分析及储层评价[J].西部探矿工程, 2004, 103: 93-95.
    [17]雷启鸿,宋子齐.沈84块沙三下非均质油藏储量计算研究[J].测井技术, 2000, 24(1): 47-51.
    [18]欧阳健,王贵文,吴继余,等.测井地质分析与油气层定量评价[M].北京:地质出版社, 1999.
    [19]杨惠民.包裹体类型和成分特征在油气运移研究和油气储层评价中的应用[J].海相油气地质, 1997, 2(3): 16-22.
    [20]高兴军,冉启全,肖毓祥,等.火成岩双重介质油藏测井参数评价技术[J].特种油气藏, 2006, 13(1): 32-35.
    [21]宋子齐,李亚玲,杨金林,等.非均质砾岩储层有利沉积相带与油气分布及生产动态的关系[J].特种油气藏, 2005, 12(4): 15-17.
    [22]王军,薛晓军,李万里.地化录井储层评价技术[J].西部探矿工程, 2003, 81: 76-80.
    [23]卢颖忠.储层裂缝特征测井解释方法综述[J].地质科技情报, 1998, 17(1): 85-90.
    [24]张一伟,熊琦华,王志章,等.陆相油藏描述[M].北京:石油工业出版社, 1997, 127-132.
    [25]刘克奇,徐俊杰,杨喜峰.“权重法”在东濮凹陷卫城81断块沙四段储层评价中的应用[J].特种油气藏, 2005, 12(1): 47-57.
    [26]裘怿楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社, 1994.
    [27]戴启德,纪友亮.油气储层地质学[M].北京:石油大学出版社, 1996.
    [28]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社, 1998.
    [29]张立强,纪友亮,马文杰,等.博格达山前带砂岩孔隙结构分形几何学特征与储层评价[J].石油大学学报(自然科学版), 1998, 22(5) : 31-34.
    [30]王长城,韩小俊,徐亮,等.分形几何学在桥口地区凝析气藏储层评价中的应用[J].天然气勘探与开发, 2005, 28(4): 9-14.
    [31] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982.
    [32]王域辉,廖淑华.分形与石油[M].北京:石油工业出版社, 1994.
    [33]孙学继,杨晓.合成地震记录制作方法研究[J].石油地球物理勘探, 1997, 32 (2):34-39.
    [34] Krohn C E. Sandstone fractal and Euclidean pore volume distributions[J]. Geophys res, 1988, 93 (B4): 3286-3296.
    [35] KatzA J, Thompson A H. Fractal sandstone pores: implications for conductivity and formation[M]. PhysRev lett, 1985, 54 (3): 1325-1328.
    [36]朱九成,郎兆新,张丽华,等.砂岩孔隙结构分形模型及随机网络仿真[J].石油大学学报, 1995, 19 (6): 46-51.
    [37]王长城,陈布科,叶泰然,等.矩法在确定低渗透储层孔隙结构特征参数中的应用及软件开发[J].成都理工大学学报, 2003, 30 (3): 280-284.
    [38]王尤富,凌建军.低渗透砂岩储层岩石孔隙结构特征参数研究[J].特种油气藏, 1999, 6 (4): 25-28.
    [39]陈一鸣.矿场地球物理测井技术[M].北京:石油工业出版社, 1990, 10-60.
    [40]张鲁惠,刘国民.微电极曲线在特殊油层中的应用[J].测井技术, 2000, 24(2): 125-129.
    [41]姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社, 1996.
    [42]姜在兴,杨伟利,操应长.东营凹陷沙河街组三段~二段下亚段沉积层序及成因[J].石油与天然气地质, 2002, 23(2): 127-130.
    [43]吕希学,胡斌,姜在兴,等.济阳坳陷车镇和沾化凹陷古近系沙河街组遗迹群落及其沉积环境[J].古地理学报, 2003, 5(2): 187-196.
    [44]姜在兴.沉积学[M].北京:石油工业出版社, 2003.
    [45]潘元林,宗国洪,郭玉新,等.济阳断陷湖盆层序地层学及砂砾岩油气藏群[J].石油学报, 2003, 24(3): 16-23.
    [46]王永诗,鲜本忠.车镇断陷湖盆陡坡带构造样式及其对沉积和成藏的控制[J].油气地质与采收率, 2006, 13(6): 5-8.
    [47]鲜本忠,王永诗,周廷全,等.断陷湖盆陡坡带砂砾岩体分布规律及控制因素——以渤海湾盆地济阳坳陷车镇凹陷为例[J].石油勘探与开发, 2007, 34(4): 429-43.
    [48]王秉海,钱凯.胜利油区地质研究与勘探实践[M].东营:石油大学出版社, 1992.
    [49]宗国洪,肖焕钦,李常宝,等.济阳坳陷构造演化及其大地构造意义[J].高校地质学报, 1999, 5(3): 275-282.
    [50]漆家福,张一伟,陆克政,等.渤海湾盆地新生代构造演化[J].石油大学学报, 1995, 19(增刊) :1-6.
    [51] Chen Zhonghong, Zha Ming, Qu Xiangxiu. Conditions and mechanism of hydrocarbon accumulation in overpressured systems in sedimentary basins[J]. Natural Gas Geoscience, 2003, 14(2): 97-102.
    [52]郑浚茂.碎屑储集岩的成岩作用研究[M].北京:地质出版社, 1989, 61-98.
    [53]刘孟慧,赵澄林.碎屑储集岩的成岩模式[M].北京:石油大学出版社, 1993, 25-51.
    [54] Ding Wenlong, Zhang Bowen, Li Taiming. Formation of non-tectonic fractures in mudstones in Gulong Depression[J]. Oil and Gas Geology, 2003, 24(1):50-54.
    [55]舒克栋,陈振林,宋超.台北凹陷异常高压形成机理探讨[J].资源环境与工程,2007,21(5):512-514.
    [56]郭泽清,钟建华,刘卫红,等.柴达木盆地西部新生界异常高压:分布、成因及对油气运移的控制作用[J].地质科学, 2005, 40(3): 376-389.
    [57]郑和荣,黄永玲,冯有良.东营凹陷下第三系地层异常高压体系及其石油地质意义[J].石油勘探与开发, 2000, 27(4):672-701.
    [58]黄海平,马刊创,王国庆.异常流体高压研究现状与展望[J].石油学报,2000,22(3):45-48.
    [59]雍世和,洪有密.测井资料数字处理及综合解释[M].北京:石油工业出版社,1992:20-30.
    [60]王亚东.如何利用测井声波时差曲线计算地层压力[J].录井工程,2005,16(4):59-61.
    [61]游俊,郑浚茂,周建生.深部地层异常压力与异常孔隙度及油气藏的关系[J].中国海上油气(地质), 1997, 11(4):249-253.
    [62]欧阳健等著.石油测井解释与储层描述[M].石油工业出版社, 1999.
    [63]雍世和,张超漠.测井数据处理与综合解释[M].东营:石油大学出版社, 1996.
    [64] Yang Tongyou, Fan Shangjiong, Chen Yuanqian, et a1. The calculation method of oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 1998: 302-303.
    [65] Zhang Linye, Liu Qing, Zhang Chunrong, et a1. Study on the genetic relationships between hydrocarbon occurrence and pools formation in Dongying Depression[M].Beijing: Geological Publishing House, 2005.
    [66]陈纯芳,赵澄林,李会军.板桥和歧北凹陷沙河街组深层碎屑岩储层物性特征及其影响因素.石油大学学报(自然科学版), 2002, 26(1): 4-7.
    [67]张琴,朱筱敏,钟大康,等.山东东营凹陷古近系碎屑岩储层特征及控制因素[J].古地理学报, 2004, 6(4): 493-502.
    [68]陈孟晋,刘锐娥,孙粉锦,等.鄂尔多斯盆地北部伊盟地区山西组碎屑岩储层特征分析[J].沉积学报, 1999, 17(增刊): 723-727.
    [69]鞠俊成,张凤莲,喻国凡,等.辽河盆地西部凹陷南部沙三段储层沉积特征及含油气性分析[J].古地理学报, 2001, 3(1): 63-70.
    [70]王秉海,钱凯.胜利油区地质研究与勘探实践[M].东营:石油大学出版社, 1992.
    [71]许建华,张世奇,纪友亮.藏北羌塘盆地中上侏罗统碎屑岩储层成岩演化特征[J].石油大学学报(自然科学版), 2001, 25(1): 4-8.
    [72] Wan Ling, Sun Yan, Wei Guoqi. A new m ethod used to determine the lower limit of the petrophysical parameters for reservoir and its application: a case study on Zhongbu Gas Field in Ordos Basin[J]. Acta Sedimentologica Sinica, 1999, 17(3): 454-457.
    [73] Gervais, F. Ecology of cryptophytes coexisting near a freshwater chemocline[J]. Freshwater Biol, 1998, 39:61–78.
    [74] Parent, C A, Devreotes, P N. A cell’s sense of direction[J]. Science, 1999, 284: 765–70.
    [75] Weissing, F J, Huisman, J. Growth and competition in a light gradient[J]. J. Theor. Biol, 1994, 168 (3):23–36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700