基于简化模型的车身接头耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展,汽车市场的竞争也日益激烈,人们对汽车车身刚度、强度、耐久性和安全性的要求越来越高,这就需要在汽车的概念设计阶段采取快速有效的车身结构设计方法,既保证汽车的性能和质量,又能够缩短设计周期、降低开发成本。在汽车的概念设计阶段,车身整体布置和外型尺寸往往受到车型定位和造型的限制,改动余地较小;而车身关键截面和接头结构的设计余地较大,而且接头往往是车身结构中疲劳寿命的薄弱区域,所以在概念设计阶段尽早对接头区域等车身关键结构进行疲劳耐久性设计,对于提高整个车身结构设计效率有着重要意义。
     本文针对汽车概念设计阶段车身结构参数输入信息较少、难以建立详细完整的整车有限元模型以及无法进行传统耐久性试验等问题,提出了一种适用于概念设计阶段的基于真实接头的车身概念简化模型(简称ZJ);并完成了以ZJ为主体的整车耐久性虚拟试验模型建立、整车耐久性虚拟道路试验仿真分析以及车身关键接头结构的疲劳寿命分析和优化设计等几个方面的工作,主要的研究内容如下:
     (1)介绍了国内外车身结构概念设计、车身接头结构以及车身疲劳耐久性等方面的研究现状,指出在概念设计阶段尽早进行车身关键结构的耐久性设计对于缩短车身开发周期、降低开发成本以及提高产品竞争力有着重要意义。
     (2)提出了一种基于真实接头的车身概念简化模型:在新车型的概念设计阶段,根据车身总布置尺寸要求,从企业的车身关键截面特性数据库和车身真实接头数据库中调用基型车参数,建立具有真实接头并辅以梁单元和大尺寸壳单元组成的车身简化模型——ZJ模型。通过对此概念模型进行模态、扭转刚度和弯曲刚度分析,并与后期的详细有限元模型的特性参数进行对比,验证了ZJ模型建立方法的可行性。ZJ模型的建立和验证过程表明:ZJ模型是一种容易建立、修改灵活且满足车身性能分析要求的有效模型,利用此模型进行车身结构的性能研究可以为后续设计提供重要指导。
     (3)建立了以ZJ为主体且包含车辆悬架和轮胎的整车耐久性虚拟试验模型,基于虚拟试验场的虚拟耐久性试验环境,在考虑系统中各种结构和材料非线性的情况下,以具有真实道路载荷的综合耐久性虚拟路面为输入,对整车系统进行瞬态响应分析,以获得车身结构较为准确的动态应力应变历程。最后以某新车型的C柱上接头为例,应用应变寿命法进行了T型接头结构的疲劳寿命分析和改进设计,并通过后期的道路试验验证了分析的可行性和有效性。
     本文研究表明:ZJ模型的构建方法以及基于虚拟试验场的整车耐久性虚拟试验方法,有效解决了车身结构设计初期由于难以建立详细完整的整车有限元模型以及无法进行传统耐久性试验而带来的设计问题,对概念设计阶段的车身结构设计及疲劳耐久性研究起到了一定的推动作用,具有较强的工程实用性。
With rapid development and fierce competition in the automobile industry, the demand for the stiffness, strength, durability and safety of the auto-body is higher and higher. This trend requires us to adopt the efficient method to design the structure of the auto-body in the conceptual design phase, which could not only ensure the quality and performance of vehicles, but also shorten the designing cycle and reduce producing costs. In the stage of conceputual design, subjected to the types and the shapes of the vechiles, the layout and the size of the auto-body has little room to change, while the key section and joint structure of the auto-body has more room to do design. Besides, the joints are often the fragile areas of the auto-body. Therefore, it is imperative to do the durability design for the key structrues of the auto-body at the early stage, which will contribute to improving the efficiency of the auto-body design.
     According to the problems exisiting in the conceputual designing phase, such as the little information about the auto-body structure parameter, the difficulty to build the detailed and complete vehicle finite element model and the impossibilty to conduct the traditional durability test for vehicles, based on the actual structure of the joints, an auto-body conceptual simplified FEA model (ZJ as an abbreviation) is proposed. While the establishment of vehicle durability test model, the simulated analysis for the vehicle durabilty in the virtual road test, and the analysis for fatigue life of the key joints structure, and the optimization in designing were also be accomplished in the research. The main aspects of the studies are as follows:
     (1) Research status of the conceptual design of auto-body structure, the joint structures and auto-body fatigue durability in the worldwide were introduced. And it put forward the improtance to do the durability design for the key structures of the auto-body.
     (2) Proposed a simplified FEA model for conceptual auto-body which is based on the actual joints. According to the demands of the layout size of automotive body, the ZJ model was set up by using the basic car’s parameter from the data base of key-sections character, which was composed of actual joints, beam elements and large-size shell elements. The feasibility of the modeling method was validated through analysis of mode, torsion stiffness, bending stiffness of the model, and comparison between characteristic parameters of the later detailed FEA model. The modeling and validation process of ZJ model proves that ZJ is easy-to-build, flexible-to-modify and meet the requirements of the auto-body performance analysis. ZJ model could provide important guidance to subsequent design.
     (3) We established the vehicle durability virtual testing model, with the ZJ as the dominant position including vehicle suspension and tires. Based on the virtual durability test environment of virtual proving ground, considering structure and material nonlinear characteristic, with comprehensive durability virtual road which has real load as input, the transient response analysis of the vehicle system was carried out to obtain the dynamic stress-strain time history of the auto-body. The C-upper-joint of a new type of vehicle could be taken as an example,the fatigue life analysis and modification design of T-type joint structure are performed by using strain-life method,and the feasibility and validity of the analysis is proved by the road test later .
     Researches of this paper show that the construction method of ZJ model and the method of vehicle durability virtual test which based on virtual proving ground could effectively solve the problem of establishing detailed vehicle FEA model and the impossibility of conducting the traditional durability test. The study will promote the auto-body structure design and durability research in the conceptual designing process, and has stronger engineering practicability.
引文
[1] SFE GmbH Berlin.SFE’s products and services boost product knowledge at an early stage.http://sfe1.extern.tu-berlin.de/.2008
    [2] Zimmer H,Umlauf U,Thompson JE,et al.Use of SFE CONCEPT in Developing FEA Models without CAD.SAE Technical Paper Series,2000,2000-01-2706
    [3] Chang D.C.Effects of Flexible Connections on Body Structural Response.In: SAE World Congress.Detroit, USA, 1974
    [4]黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟.机械工程学报,2000,36(3): 78-81
    [5] Dong-Chan Lee, Chang-Soo Han. CAE (computer aided engineering) driven durability model verification for the automotive structure development.Finite Elements in Analysis and Design, 2009, 45: 324- 332.
    [6] Niemiersiki.S: Einer echnergestuetzte Karossierie-Generierung im PKW-Konzipierungs-peozess.Berechnungenim Automobilbau.V DIB erichte613, 1986:263-286.
    [7] S.Donders, Y.Takahashi, R.Hadjit, et al. A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elements in Analysis and Design,2009,45:439-455
    [8] Maria Anderson,Hanna Kristofferson,Structural optimization of product families with application to vehicle body structures.Master Thesis in Solid Mechanics, Linkoping University,2006
    [9] I.Raasch. Sizing in conceptual design at BMW. In: SAE Noise and Vibration Conference Proc. Traverse City,2004
    [10] Daichi Kunishi, Noboru Kikuchi.Analysis of FEM Results Based upon FOA.SAE TechnicalPaper Series,2004,01-1729
    [11] Cetin O., Saiou k., Nishigaki H., et al.Modular structural component design using the first order analysis and decomposition-based assembly synthesis, ASME IMECE.New York,USA,2001
    [12] Hidekazu Nishigaki. First order analysis for automotive body structure design using excel. R&D Review of Toyota CRDL, 2001, 37(1):1-8
    [13]迟瑞丰.乘用车概念车身参数化设计、仿真、优化一体化关键问题研究[吉林大学博士学位论文] .长春:吉林大学,2010
    [14]乔淑平,李卓森,黄金陵.在概念设计阶段用FEM进行车身设计的研究.汽车技术,2000,4:6-8
    [15]崔岸,王龙山,兰凤崇.结构优化有限元分析在客车概念开发中的应用研究.机械强度,2004 ,26(6) :710-715
    [16]兰凤崇,陈吉清,林建国.轿车参数化分析模型的构造及应用研究.计算机集成制造系统,2005,02:183-187
    [17]戴轶.轿车概念设计CAE关键技术应用研究报告.2006年上汽股份汽车工程研究院企业内部报告
    [18] E Nikolaidis, M Zhu. Design of automotive joints: using neural networks and optimization to translate performance requirements to physical design parameters. Computers & Structures,1996, 60(6):989-1001
    [19] Moon Y.M., Jee T.H., Park Y.P.Development of an automotive joint model using ananalytically based formulation.Journal of Sound and Vibration, 1999, 220(4):625-640
    [20] Nikolaidis E, Lee K.A 3-D joint model for automotive structures.SAE paper 921088.1992
    [21] Lee Y W, Kwon Y W, Kwon S Y, et al. A study on the improvement of the structural joint stiffness for aluminum BIW.SAE 970583
    [22] Kellar S G, Patil S P, Zhou J H. Systematic design of automotive body structure joints using CAE and DOE.Automotive Body Design & Engineering,1993,87-95
    [23]刘文泉.车身薄板骨架接头的刚度.国外汽车,1989,5: 22-26
    [24]蒋光福. EQ 140车身接头刚度分析.二汽科技.1992,(5) : 4-14
    [25]沈小原,许海明.车架接头刚度的实验确定.试验技术与试验机.1996, 36(3): 126-12
    [26]黄金陵,娄永强,龚礼洲.轿车车身结构概念模型中接头的模拟.机械工程学报,2000,36(3):78-81
    [27]迟瑞丰,侯文彬,胡平.接头在车身结构概念设计阶段对刚度的影响.机械设计与制造,2009,11:180-181
    [28]王永利.概念车身模态预测与评价[吉林大学博士学位论文] .长春:吉林大学,2009
    [29] Sridhar Srikantan,Shekar Yerra Palli,Hamid Keshtkar.Durability design Process for Truck body structures.International Journal of Vehicle Design,2000
    [30] Sang Beom Lee,Woo Sub Han and Hong Jae Yim.Fatigue Analysis of automotive suspension system considering dynamic effect.SAE2003-01-2814/JSAE20037092
    [31] ThomasWang,Xianming Wang and Maolin Tsai . Automation ofStructural Fatigue/Reliability Assessment Using iSIGHT,MSC/Nastran and nCode.SAE 2005-01-823
    [32] Bijan Shahidi, Ulrich Stuhec, Behrooz Shahidi. System Level Durability Engineering in CAE.SAE2006-01-1981
    [33]林明芳,杨志刚.大客车车身典型零构件疲劳寿命预测.汽车工程,1996(18)
    [34]龙梁,胡爱华,张风鸣,范子杰.特种越野车关键部件疲劳分析方法的探索.汽车工程.2006.10:906-909
    [35]孙宏祝,丛楠,尚建忠,鲁建平.基于模态应力恢复的汽车零部件虚拟疲劳试验方法.汽车工程.2007.4.274-278
    [36]张成成,姚卫星.基于响应面的结构抗疲劳优化设计方法.南京航空航天大学学报.2007:37-39
    [37]林育正,毛庆平.建立整车疲劳寿命分析技术之程序方法.车辆研测资讯,2005
    [38]郦明等.汽车结构抗疲劳设计.中国科学技术大学出版社,1995
    [39]周传月,郑红霞,罗慧强.MSC.Fatigue疲劳分析应用与实例.北京:科学出版社,2005
    [40]周祖勇.钢桥纵梁与横梁交叉节点疲劳寿命研究[重庆交通大学硕士学位论文].重庆:重庆交通大学,2008
    [41]于莉.基于虚拟试验场的耐久性分析[同济大学硕士学位论文].上海:同济大学, 2007
    [42]李超.某商用车减振器支撑轴的疲劳寿命预测[同济大学硕士学位论文].上海:同济大学,2009
    [43]铺维达.汽车疲劳理论.机械工业出版社,1998
    [44]王勖成,邵敏.有限单元法基本理论和数值方法.清华大学出版社.2003
    [45]章蕾,某特种半挂车车桥疲劳可靠性分析[南京理工大学硕士学位论文].南京:南京理工大学,2007
    [46]赵少汴,王忠保.抗疲劳设计方法与数据.北京:机械工业出版社,1997.1
    [47]任建英.概念设计阶段轿车白车身结构定性仿真模型的建立研究[上海交通大学硕士学位论文].上海:上海交通大学,2009
    [48]汪卫东.国外汽车车身开发的特点分析.上海汽车,2004,1:25-32
    [49]黄天泽,黄金陵.汽车车身结构与设计.北京:机械工业出版社,2004-7
    [50] A.Augustitus M.Kamal,J.Howell.Design through Analysis of an Experimental AutomobileStructuce.SAE paper,1977-2
    [51]唐任松.概念设计阶段轿车白车身刚度仿真[上海交通大学硕士学位论文].上海:上海交通大学,2009
    [52]宋凯.汽车车身结构概念设计关键技术研究[湖南大学博士学位论文].长沙:湖南大学,2010
    [53]黄克智.板壳理论.北京:清华大学出版社,1987
    [54]羊军,叶永亮.车身设计关键技术.上海汽车,2008,(5):15-19
    [55]高云凯.汽车车身结构分析.北京:北京理工大学出版社,2006,130
    [56] D Mundo, R Hadjit, S Donders, et al. Simplified modeling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elements in Analysis and Design,2009,45:456-462
    [57]肖生发,郭一鸣.汽车可靠性.北京:人民交通出版社,2008:76-85
    [58]喻凡,林逸.汽车系统动力学,机械工业出版社2005.9
    [59]周镜.汽车试验学.上海:同济大学出版社,2002
    [60] LMS International.LMS耐久性新技术及其应用.2005
    [61]陈栋华.轿车底盘零部件耐久性虚拟试验理论与方法研究[同济大学博士学位论文].上海:同济大学,2007
    [62]杨国治.虚拟试验场技术的研究与开发[同济大学硕士学位论文].上海:同济大学,2005
    [63]徐延海,程东升,贾丽萍等.轮胎/路面接触问题分析.上海:上海交通大学学报,2003
    [64]《汽车工程手册》编辑委员会.汽车工程手册·实验篇.北京:人民交通出版社,2001:368-369
    [65]黄金陵.汽车车身设计.北京:机械工业出版社,2007:242-244
    [66]全国汽车标准化技术委员会.GB/T 12679—1990汽车耐久性行驶试验方法.北京:中国标准出版社,1991
    [67] Chen David, Behrooz Shahidi, Ulrich Stuhec, et al. Correlation of explicit finite element road load calculations for vehicle durability simulations.SAE Paper 2006-01-1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700