车身覆盖件网格自动生成中的数据预处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车覆盖件冲压成形是一种非常重要的汽车零部件加工方法,而目前我国多数汽车生成厂家在汽车覆盖件成形模具的设计制造中仍然采用传统方法,工艺分析及模具设计主要依靠经验,制造模具需要反复调试,生产效率低,成本高,周期长,而且产品质量难以保证。本文结合吉林大学汽车车身与模具研究所板材冲压成形与模具设计CAD/CAE/CAM一体化系统的开发工作,对车身覆盖件冲压成形工艺仿真商品化软件KMAS的有限元网格生成器KMAS/Auto-Meshing中的若干数据预处理技术进行了深入研究。
    有限元网格生成是有限元分析前处理的核心部分,网格生成器是CAE分析系统中不可缺少的一部分,这方面的研究开发对于整个系统的完整性非常重要。网格生成器的数据入口是CAD设计数据,所以对网格生成器的开发离不开对CAD的研究。网格生成器课题组对CAD中性文件IGES和STEP做了深入的分析,基于边界表示法(B-REP)构建了网格生成器的框架和数据结构。该框架的基础是几何体的拓扑结构,内部明确地界定了曲面、曲面包围盒、曲面边界、曲线、单元、单元边、节点之间的拓扑关系,有机地将CAD几何数据与CAE网格数据衔接起来。在此基础上,根据课题组对IGES和STEP格式进行的研究,本文开发了KMAS网格生成器的数据读入接口。该接口可以有效地将CAD信息读入网格生成器,并首次提出了读入过程中的数据修复模块,能够在读入过程中对文件进行分析,找出语法错误和相关的数据破损信息,并可以在模型转换过程中自动修正。
    由于种种原因,读入的CAD数据常常会出现曲面叠加或者各种缝隙的情况。如不进行必要的数据修复直接进行CAE分析,即使能够分析,也会对结果的准确性有很大影响。工程师们往往会手动修复由CAD数据生成的网格以便获得准确的分析结果,基于网格的数据修复也是非常困难和耗时的过程。本文从CAD角度深入研究了板材网格生成中的数据修复问题,并依据模块化的
    
    
    设计思想,开发了网格生成器数据修复模块。该模块包括初始化、前处理、几何体简化、缝合、几何体修复重构、后处理等子块,对CAD数据的修复做了比较详细的分析和处理。由于不同CAD系统间的数据转换,形成了由公差导致的数据破损。本文对公差问题进行了深入研究,并全面地规定了可变的修复模块的公差,这也是数据修复的基础,而建立在对读入几何体的精确分析基础上的几何体简化、缝合和重构是数据修复的核心。这种全面的模块化数据修复方法并非单一的研究型程序,而是适用于工程应用的研究成果,因此模块也很好地集成到了KMAS系统之中。
    本文还面向车身覆盖件的冲压分析实际,对网格生成中的法线一致性问题、工艺孔消除问题和T形问题进行了深入的研究。首次提出了基于CAD数据的曲面法线快速自动一致性调整算法、自动消除工艺孔算法和T形问题处理算法。以上三个方法可以大幅提高车身冲压件的整体网格质量,并提高了KMAS冲压分析前处理的效率。
    对网格的法线进行一致性调整,虽然算法简单,但是效率和精度低是其致命缺点,因此本文将调整提前到网格划分之前。算法中对相邻曲面的公共点处的法线一致性进行判断,从而决定相邻曲面的法线方向。
    本文自动消除工艺孔方法的基础是拓扑结构中对构成面的内外环的分类定义。由于单独依靠内外环的准则不足以确定特征是否为孔,所以增加了判断准则:判断内环所在面是否在环处与其它面相邻,并共用此环或其一部分。如果不是,在内环为孔。消除孔特征后划分的网格在原孔特征处质量明显提高,符合冲压分析需求。
    T形问题会导致有限元计算结构的精度降低,本文对消除T形不相容边界方法进行了研究。对存在T形问题的曲面边界处,不修改CAD数据,而是重新分配离散节点。这样直接向网格划分程序提供信息,改善了不相容边界处的网格质量。
    查找相邻曲面是本文中频繁涉及的问题,数据修复、法线一致性调整、孔特征的消除和T形问题都与此密切相关。在数据结构中我们定义了实体和曲面的包围盒类,对每一片曲面我们都可以得到给定坐标系下的一个包围它的空间盒,再根据误差范围,和一个可调参数将该空间盒放大。将包围盒相交作为
    
    
    曲面相邻的充分条件,这对于提高计算效率有很大贡献。
    文中另一个频繁使用的方法是计算点到曲线的距离。曲线间距离、曲线与曲面间距离的计算最终都落实到点到曲线的距离。本文采用了Newton-Raphson方法,用NURBS表示曲线,将距离问题转化为求一个最优问题的极值。
    本文立足于汽车覆盖件冲压分析软件KMAS自主开发的基础上,对于有限元网格生成中的若干数据预处理技术进行了研究,为整个软件的完整性打下了一定的基础。
Automobile panel stamping is an extremely important process for manufacture of automobile parts. Nowadays, traditional methods are still in used in panel die designing and manufacturing in domestic automobile industry. Process planning and die designing depend mainly on the experience of designers and a trial-and-error procedure is often adopted to get qualified dies. This method is inefficient, costly, time consuming, and the quality of dies can not be ensured. In this thesis, some preprocessing techniques of finite element mesh generation in automobile panel are investigated and then the independently developed CAE commercial code KMAS/Auto-meshing for sheet metal forming is moreover perfected. The researches belong to the development of CAD/CAE/CAM integration system for sheet metal stamping and die design at Institute of Automobile Body and Die Engineering, Jilin University.
    Finite element mesh generation is the kernel of pre-process. Mesh generator is the necessary part of CAE, it is very important for the integrality of whole system to do work in this area. The development of mesh generator can not do well without the research of CAD, because the CAD design is the input of mesh generator. According to the deep analysis of IGES and STEP, mesh generator team designed framework and data structure of mesh generator based on B-Rep. The foundation of this framework is the topology relation of geometry, including surface, surface surround box, surface border, curve, element, element edge and node. As a result, this framework can link CAD data and CAE mesh data into an organic whole. Basing on the research of IGES and STEP, the data reading interface of mesh generator in KMAS has
    
    
    been developed. This interface can read CAD data credibly into the mesh generator, and including data repair module in reading process. By using this module, mesh generator can analyze CAD file, find semantic error and failure information, and repair them while transform the CAD model.
    Some bad complexions will come out in read CAD data, for instance, furl in border, edge repeat, and different aperture and so on. The veracity of result will be blocked deeply by CAD data, even if the direct CAE analysis can be performed without necessary data repair. It is necessary for engineers to repair the mesh of CAD design in order to get the correct result sometimes. Mesh repair is a very difficult and time-consume process. In this paper, CAD design repair in sheet metal mesh generation is researched from CAD point of view. The CAD data repair module of mesh generator is developed according to modularization idea, including initialization, pre-process, geometry simplification, stitching, geometry building, and post-process. The data disrepair led by tolerance will occur when the data is transformed between different CAD systems. In this paper, tolerance problem is investigated in-depth, alterable tolerance of data repair module is defined in the round. The tolerance regulation is the foundation of data repair, and geometry simplification, stitching and building which base on the geometry analysis are the kernel. The modularized data repair method is the research for engineering application, not simple program; as a result, it is integrated in the KMAS system well.
    In this thesis, three important problems are investigated aiming at automobile panel stamping analysis: consistency of surface normal direction, erasion of processing hole and T-connectivity. Three kinds of CAD-based automatic treatment arithmetic are put forward for the first time. By using these three methods, the whole quality of automobile panel mesh is enhanced greatly; the efficiency of KMAS pre-process is improved.
    Because the adjustment of mesh normal direction has a low efficiency and
    
    
    precision, the treatment is put in front of mesh generation in this paper. The normal directions of adjacent surfaces are decided by the adjustment of normal directions in the common points of adjacent surfaces.
    The basic of automatic removing holes is the classified definition of
引文
Karsten Weihe, Thomas Willhalm, Why CAD Data Repair Requires Discrete Algorithmic Techniques, University Konstanz, 1998.6
    John P. Steinbrenner, Nicholas J. Wyman, John R. Chawner, Fast Surface Meshing on Imperfect CAD Models, Pointwise, Inc., Fort Worth, Tx, USA
    Rainald Lohner, Paresh Parikh and Clyde Gumbert, Interactive Generation of Unstructured Grid for Three Dimensional Problems, Numerical Grid Generation in Computational Fluid Mechanics ‘88, Pineridge Press, 1988, 687-697
    Advanced Data Exchange User’s Guide – IGES FORMAT, OPENCASCADE, Version4.0/October 2001
    O Volpinf, A Sheffert, M Bercovier, L Joskowiczt, Mesh simplification with smooth surface reconstruction, Computer-Aided Design, vol 30, No.11, pp.875-882, 1998
    R. Lohner, Progress in Grid Generation via the Advancing Front Technique, Engineering with Computers, Dec 1996, 186-210
    Hao Chen and Jonathan Bishop, Delaunay Triangulation for Curved Surfaces, Proceedings, 6th International Meshing Roundtable, 1997, 115-127
    罗亚军,杨建华,何丹农,张永清,程惊雷,蒋径煜,车身覆盖件冲压仿真的有限元建模技术,计算机辅助工程,No.1 Mar.2001
    C. L. Lawson, Software for C1 Surface Interpolation, Mathematical Software III, 1997, 161-194
    黄鲜萍,卢炎鳞,黄旭松,基于STEP中性文件的有限元自动建模,机械设计与研究,Vol.18 No.2 Apr.2002
    何大钧,王安利,王孝培,板材冲压弹塑性有限元模拟在汽车车身成形工
    
    
    艺中的应用,锻压机械,No.1 1995
    Lau, T.S, S. H. Lo, C. K. Lee, Generation of Quadrilateral Mesh over Analytical Curved surfaces, Finite Elements in Analysis and Design, 1997, 27, 251-272
    J. C. Cuilliere, An adaptive method for the automatic triangulation of 3D parametric surfaces, Computer-Aided Design, 1998, 30(2) 139-149
    郑志镇,李尚健,李志刚,复杂曲面上四边形网格生成方法,计算机辅助设计与图形学学报,Vol.11 No.6 Nov 1999
    关振群,隋晓峰,顾元宪,李云鹏,复杂三维组合曲面的有限元网格生成方法,计算力学学报,Vol.20 No.4 Aug 2003
    包向军,何丹农,李从心,阮雪榆,程惊雷,蒋镜煜,复杂型面板料件冲压仿真有限元建模技术研究,机械科学与技术,Vol.20 No.1 Jan 2001
    Joseph R. Tristano, Steven J. Owen and Scott A. Canann, Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition, Proceedings, 7th International Meshing Roundtable, 1998
    S. H. Lo, Volume Discretization into Tetrahedra-I. Verification and Orientation of Boundary Surfaces, Computers and Structures, 1991, 39(5), 493-500
    S. H. Lo, Volume Discretization into Tetrahedra-II. 3D Triangulation by Advancing Front Approach, Computers and Structures , 1991, 39(5), 501-511
    Ted D.Blacker, and Michael B. Stephenson, Paving: A New Approach to Automated Quadrilateral Mesh Generation, International Journal for Numerical Methods in Engineering, 1991, 32, 811-847
    施法中,计算机辅助几何设计与非均匀有理B样条,北京航空航天大学出版社,1994
    Barry Joe, Quadrilateral Mesh Generation in Polygonal Regions, Computer Aided Design, 1995, 27, 209-222
    Antonio E. Uva1, Giuseppe Monno1, Bernd Humann2, A New Method for the Repair of CAD Data with Discontinuities, 1Politecnico di Bari, 2CIPIC in University of California
    
    S.H. Lo, Generating Quadrilateral Elements on Plane and Over Curved Surfaces, Computers and Structures, 1989, 31(3), 421-426
    Philipp Slusallek, Reinhard Klein, Andreas Kolb, Gunther Greiner, An Object-Oriented Approach to Curves and Surfaces
    David R. White and Paul Kinney, Redesign of the Paving Algorithm: Robustness Enhancements through Element by Element Meshing, Proceedings, 6th International Meshing Roundtable, 1997, 323-335
    M. Filipiak, Mesh Generation, Technical report, University of Edinburg
    Bruce P Johnston, John M. Sullivan Jr. and Andrew Kwasnik, Automatic Conversion of Triangular Finite Element Meshes to Quadrilateral Elements, International Journal for Numerical Methods in Engineering, 1991, 31, 67-84
    Bernd Hamann1, Brian A. Jean2, Anshuman Razdan3, Computer-Aided Geometric Design Techniques for Surface Grid Generation, 1University of California, 2Mississippi State university, 3Arizona State university
    M. R. Jones, M. A. Price, G. Butlin, Geometry Management Support for Auto-meshing, FEGS Ltd., Cambridge, England, CB4 5AF
    David F. Watson, Computing the Delaunay Tesselation with Application to Voronoi Polytopes, The Computer Journal, 1981, 24(2) , 167-172
    R. B Simpson, C++ Classes for 2-D Unstructured Mesh Programming, Department of Computer Science, University of Waterloo, Apr 29, 1999
    Steven J. Owen, Non-Simplical Unstructured Mesh Generation, Department of Civil and Environmental Engineering, Carnegie Mellon University, Apr 1999
    T. K. H. Tam and C. G. Armstrong, 2D Finite Element Mesh Generation by Medial Axis Subdivision, Advances in Engineering Software, 1991, 13, 313-324
    C.K Lee, and S.H. Lo, A New Scheme for the Generation of a Graded Quadrilateral Mesh, Computers and Structures, 1994, 52, 847-857
    J.Z. Zhu, O.C. Zienkiewicz, E. Hinton and J. Wu, A New Approach to the Development of Automatic Quadrilateral Mesh Generation, International
    
    
    Journal for Numerical Methods in Engineering, 1991, 32, 849-866
    Lau, T.S. and S.H. Lo, Finite Element Mesh Generation Over Analytical Surfaces, Computers and Structures, 59(2), 1996, 301-309
    Timothy J. Baker, Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation, Engineering with Computers, May 1989, 161-175
    E. Dimas, D. Briassoulis, 3D geometric modeling based on NURBS: a review, Advances in Engineering Software 30 (1999) 741-751
    Peggy L. Baehmann, Scott L. Wittchen, Mark S. Shephard, Kurt R. Grice and Mark A. Yerry, Robust Geometrically-based, Automatic Two-Dimensional Mesh Generation, International Journal for Numerical Methods in Engineering, 1987, 24, 1043-1078
    J.A. Talbert, and A.R. Parkinson, Development of an Automatic Two Dimensional Finite Element Mesh Generator using Quadrilateral Elements and Bezier Curve Boundary Definitions, International Journal for Numerical Methods in Engineering, 1991, 29, 1551-1567
    William D. Henshaw, An Algorithm for Projecting Points onto A patched CAD Model, Centre for Applied Scientific computing, Lawrence Livermore National Laboratory
    Soo-Won Chae, and Jung-Hwan Jeong, Unstructured Surface Meshing Using Operators, Proceedings, 6th International Meshing Roundtable, 1997, 281-291
    Geoffrey Butlin, Clive Stops, CAD Data Repair, FEGS Ltd, 1996
    Mihailo Ristic, Djordje Brujic, Surya Handayani, CAD-based triangulation of unordered data using trimmed NURBS models, Journal of Materials Processing Technology, 107 (2000) 60-70
    N. P. Weatherill and O. Hassan, Efficient Three-dimensional Delaunay Triangulation with Automatic Point Creation and Imposed Boundary Constraints, International Journal for Numerical Methods in Engineering, 1994, 37, 2005-203
    
    N. Anders Pebersson, kyle K. Chand, DETECTING TRANSLATION ERRORS IN CAD SURFACES AND PREPARING GEOMETRIES FOR MESH GENERATION, Lawrence Livermore National Lab Livermore, Aug 27, 2001
    Andrey A. Mezentsev1, Thomas Woehler2, METHODS AND ALGORITHMS OF AUTOMATED CAD REPAIR FOR INCREMENTAL SURFACE MESHING, 1Swiss Center for Scientific, 2FhG-IPK
    Dietrich, Nowottny, Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition, Proceedings, 6th International Meshing Roundtable, 1997, 309-320
    Gill Barequet, Subodh Kumar, Repairing CAD Models, Johns Hopkins University
    R. Ribo, G. Bugeda, E. Onate, Some algorithms to correct a geometry in order to create a finite element mesh, Computers and Structures, 80 (2002) 1399-1408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700