基于现代设计方法和提高整车碰撞安全性的车身轻量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内汽车工业迎来了快速发展期,国内汽车保有量逐年稳步增长,然而由此带来的能源消耗及环境保护等问题则日趋紧张,这必将阻碍国内汽车工业的可持续发展。汽车轻量化技术作为汽车降低能耗、减少排放的有效手段已经成为汽车工业发展过程中的一项关键性研究课题,在不久的将来,轻量化将成为国内外各汽车厂商的核心竞争技术之一。车身轻量化作为汽车轻量化技术的有效途径之一,近年来得到广泛应用。国内外很多学者对车身轻量化进行了广泛的研究,取得了诸多成果,如车身结构优化设计,使用低密度材料如铝、镁合金、复合材料等替换以传统钢材制造的零部件以及使用新工艺等。本文在总结前人研究的基础上,使用车身结构优化设计方法对国产某自主研发品牌轿车的轻量化进行了较为系统和深入的研究,在确保汽车综合性能如车身静、动态刚度及车身结构耐撞性能基本不变的前提下,尽可能降低车身重量,达到减重以及节能减排的目的。
     围绕汽车轻量化这一主题,本文主要开展了以下几方面的研究内容:
     1.以国产某自主研发轿车为例,介绍了整车开发流程及前期开发过程中有限元数值模拟所涉及的开发内容,同时详细论述了整车有限元建模方法。整车前期开发过程中,一个既能够准确模拟整车结构各种力学特征,又能够使模型计算规模控制在计算机可接受范围内的整车有限元模型是前期开发过程中必不可少的,它为预测整车结构性能及进行结构优化设计提供了支持。基于此,以白车身及动力总成与变速器系统为例,系统阐述了钣金件、焊点、胶连接、MAG焊、螺栓连接等建模方法,同时建立了整车碰撞有限元模型及白车身刚度模型。
     2.设计并进行了国产某自主研发轿车白车身模态试验。由试验结果分析得到了白车身结构模态频率和振型,获得了白车身的动态特性。引入了Trimmed Body模型概念,详细论述了Trimmed Body有限元建模方法并建立了Trimmed Body模型,并进行了模态及频率响应计算,同时进行了Trimmed Body模态试验,得出了有关整车振动舒适性的频率响应函数,并与有限元计算值进行了模态置信度MAC(Modal Assurance Criterion)分析,分析结果验证了有限元模型的准确性。该方法已成功应用于国产某自主研发轿车的自主研发过程中。
     3.进行了国产某自主研发轿车白车身的灵敏度分析及优化计算。通过灵敏度计算识别出了对刚度及重量影响较大的零件。在进行优化设计时综合考虑了白车身的动静态刚度,并对静态弯曲、扭转刚度的算法进行了详细的论述。通过优化设计实现了白车身第一阶固有频率提高1.2%、车身质量下降5.4%的目标。
     4.通过正面碰撞试验的变形时间历程及整车结构变形验证了整车碰撞有限元模型的有效性后,首次将正面碰撞与侧面碰撞的数值仿真联合应用于车身轻量化设计前后的整车结构抗撞性能研究。通过对比正面碰撞试验与轻量化前后B柱及中通道加速度曲线以及轻量化前后侧面碰撞前后车门侵入量、B柱侵入量及侵入速度曲线,验证了本文所研究的车身轻量化结果的可行性,确保了轻量化后整车结构的抗撞性能。同时,本章所引入的侧面碰撞侵入速度限值曲线可为同级别车型开发提供经验上的借鉴。介绍了两种B柱及门槛的结构设计方案,以作为车辆实际结构设计的经验借鉴。
     5.提出了基于引擎盖刚度与行人头部保护要求的轻量化设计方法。通过综合考虑引擎盖开发过程中刚度及行人保护头部碰撞性能,以前盖内板结构及内板板厚作为设计变量,利用田口试验设计方法进行试验设计,使用Kriging方法建立了引擎盖刚度与行人保护头部碰撞有限元模型的近似数学模型,并基于Kriging模型进行优化。优化后的前盖刚度及行人保护头部碰撞性能得到了显著改善,质量由13.5kg降为12.6kg,减少6.7%,头部HIC值由1373降低至1156,减小15.8%。
In recent years, national automobile industry is meeting rapid growth and autos’holding amount is gradually increasing, which makes the problem of energy consumption and environmental protection much more critical and this will obviously obstruct sustainable development of our national automobile industry. As an effective way to reduce energy consumption and emission, automobile lightweight has already become critical research issue. In the near future, it will be one of the core competitiveness among domestic and international auto companies. Car body’s lightweight is one of the effective way of automobile lightweight, which has been widely used for the past few years. It has been deeply studied by many national and international researchers and many achievements have been made, for example, optimal design of car body’s structure, replacing some traditional steel parts by lower density materials such as aluminum and magnesium alloy, composite materials etc., using of new technics and so on. Based on predecessor’s achievements, this paper does systemic and in-depth study on some homemade independent-brand car by use of optimal design of car body’s structure. By ensuring car’s comprehensive performance such as static and dynamic stiffness and safety, the objective of reducing weight and consumption has been achieved.
     Centering on the issue of lightweight, main researches are showed as follows:
     1. As far as some homemade car is concerned, development flow of complete vehicle and simulation contents have been introduced in this paper. And it also illustrates finite element modelling method of complete vehicle in detail. In concept phase of developing a car, it is indispensable to have one finite element model of complete vehicle which can not only simulate vehicle’s mechanical performance accurately but also its computational time is acceptable. It can provide some supports for predicting vehicle’s structure performances and conducting optimal design. Concerned on body-in-white(BIW) and powretrain and transmission system, this paper systematically discusses modelling method of sheet metal, spotwelds, glue connection, MAG welding, bolt connection and so on. Then the complete vehicle’s crash finite element model is created.
     2. Conducting modal test of BIW of this homemade car. From the test frequencies and modes of vibration and dynamic performance have been extracted. The concept of Trimmed Body has been introduced in this paper, then its the modelling method is discoursed in detail and its finite element model is created. After that it calculates the mode and frequency response function(FRF) of Trimmed Body and then its modal test is conducted in order to get the FRF curve of Trimmed Body which is related to vehicle’s vibration and harshness. It also makes Modal Assurance Criterion(MAC) analysis between simulation and test and the result validates accurateness of Trimmed Body’s model. This way of making simulation and test of Trimmed Body has been applied to some homemade car’s development.
     3. Calculation on sensitivity and optimization of homemade car’s BIW. Through sensitivity analysis Those parts have bigger sensitivity on stiffness and weight are identified through sensitivity analysis. In process of optimization static and dynamic stiffness have been taken into account and algorithm of stiffness has been illustrated specially. After optimization, the objective has been achieved, that is, the first mode of BIW has 1.2 percent increase and mass of BIW has 5.4 percent decrease.
     4. The complete vehicle’s crash finite element model is validated by crash time history and strutures deformation in 100% frontal impact test. Based on this, it is the first time that this paper parallelly applies simulation of frontal and side impact to study the crashworthiness of the whole car before and after car body’s lightweight. The whole car’s safety performance has been guaranteed through comparison between frontal impact test and simulation of B-pillar and tunnel’s acceleration curve, intrusion displacement of front and rear door and B-pillar and intrusion velocity of B-pillar of side impact before and after optimization. At the same time, this paper introduces some limit velocity curves in side impact simulation and this provides some experience for the other same class cars’development. It also introduces two different structures of B-pillar and threshold. One of this struture can decrease intrusion displacement of B-pillar in side impact.
     5. A lightweight method has been proposed which takes stiffness and pedestrian head protection of engine hood into account. By considering those factors, this paper takes struture and thickness of inner part of engine hood as design variables. It uses Taguchi design to do DOE and builds approximate mathematical finite element model for stiffness and head protection of engine hood by use of Kriging method. Based on Kriging model, it does optimization. The optimized results shows that stiffness and head protection performance has been improved. Mass of engine hood has 6.7 percent decrease from 13.5 kg to 12.6 kg and HIC value has 15.8 percent decrease from 1373 to 1156.
引文
[1]徐长明.2011年汽车市场分析与预测[R].北京:国家信息中心,2010.
    [2]李志红.汽车用油:耗竭能源[EB/OL].(2010-09-19). http://www.ha.xinhuanet.com/yincang/2010-09/19/content_20945088.htm
    [3] D. Cornette, A. Galtier. Influence of the forming processing on crashing and fatigue of high strength steels for automotive components[R]. SAE Paper: 2002-01-0642.
    [4] J. C. Benedyk. Light metals in automotive applications[J]. Light Metal Age, 2000, 10(1): 34-35.
    [5]李桂华,熊飞,龙江启.车身材料轻量化及其新技术的应用[J].材料开发与应用,2009(4):87-93.
    [6]姜超,张悦.汽车轻量化材料及成形技术[J].汽车工艺与材料,2008(12):9-14.
    [7]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009(11):11-16.
    [8]黄宜松,陈吉清,龙江启.车身轻量化材料的应用进展[J].中国制造业信息化,2009,38(21):74-78.
    [9]郭千里.汽车轻量化,节能减排之利器[J].现代零部件,2009(10):32-33.
    [10]马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学,2009,11(9):20-27.
    [11]郑松林,王彦生,卢曦,等.基于强度变化特征的汽车结构件轻量化设计方法[J].机械工程学报,2008,44(2):129-133.
    [12]朱平,张宇,葛龙等.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211.
    [13]张彦,来新民,朱平,等.基于抗凹性的轿车零件的轻量化设计及耐撞性分析[J].机械设计与研究,2004,20(5):74-76.
    [14] A. Jambor, M. Beyer. New cars-new materials[J]. Materials & Design, 1997, 18(3-4): 203-209.
    [15]李军,陈云霞,李中兵.汽车轻量化应用技术探讨[J].汽车工艺与材料,2010(2):12-17.
    [16]羊军,叶永亮,汪侃磊.车身轻量化系数的决定因素及其优化[J].汽车技术,2010(2):28-32.
    [17]朱宏敏.汽车轻量化关键技术的应用及发展[J].应用能源技术,2009(2):10-12,34.
    [18]叶爱凤,徐彪.东风商用车轻量化开发[J].汽车工艺与材料,2010(2):7-11.
    [19] J. B. Jia, A. Ulfvarson. A parametric study for the structural behaviour of a lightweight deck. Engineering tructures, 2004(26):963-977.
    [20] Y. X. Li, Z. Q. Lin, A. Q. Jiang, et al. Use of high strength steelsheet for lightweight and crashworthy car body[J].Materials and Design, 2003(24):177-182.
    [21] M. Kleiner, S. Chatti, A. Klaus. Metal forming techniques for lightweight construction[J]. Journal of Materials Processing Technology, 2006(177):2-7.
    [22]刘伟燕,王书伟.轻量化技术在汽车车身上的应用[J].技术应用,2011(2):50-54.
    [23]鞠晓锋,陈昌明,吴宪.现代汽车轻量化技术[J].设计研究,2006(9):31-33.
    [24]孟岩,潘建亮.汽车轻量化材料的应用[J].技术与应用,2010,18(5):24-27.
    [25]应善强.一汽集团公司轻量化技术应用情况[J].现代零部件,2009(10):36-38.
    [26] C. Taylor. PNGV materials accomplishments[J]. Automotive Engineering (Warrendale, Pennsylvania), 1996,104(12):39-40.
    [27] G. K. Ng, J. C. Miller, M. B. Tessieri. Aluminum usage in the PNGV and ist impact on the recycling infrastructure[J]. SAE Transactions,Journal of Materials & Manufacturing(USA), 1999(108):616-637.
    [28]黄宜松,陈吉清,李宇彤,等.车身轻量化材料的应用及其成形性能研究进展[C].海口:2009海峡两岸机械科技论坛论文集,2009:769-779.
    [29]敖炳秋.轻量化汽车材料技术的最新动态[J].汽车工艺与材料,2002(8-9):1-21.
    [30]王镝.现代车身设计的轻量化技术[J].上海汽车,2008(1):15-19.
    [31]齐从谦.变截面薄板在汽车中的应用[J].汽车与配件,2006,47(20):38-39.
    [32]施志刚,王宏雁.变截面薄板技术在车身轻量化上的应用[J].上海汽车,2008(8):36-39,45.
    [33]杜继涛,齐从谦.变截面薄板在车身制造中的应用研究[C].锻压技术,2005(增刊):39-43.
    [34] Y. L. Shi, P. Zhu, L. B. Shen, et al. Lightweight design of automotive front side rails with TWB concept[J]. Thin-Walled Structures, 2007(45):8-14.
    [35] S. H. Huang, A. G. Cheng, Z. H. Hu, et al. A research on the lightweighting of TWB door based on six sigma robustness[J].Automotive Engineering, 2011,33(3):262-266.
    [36]杨洪刚,张庆才.激光拼焊板在汽车车门上的应用[J].上海电机学院学报,2011,14(3):178-181.
    [37] S. Kumar Panda, D. Ravi Kumar. Study of formability of tailor-welded blanks in plane-strain stretch forming[J]. International Journal of Advanced Manufacturing Technology, 2009(44):675-685.
    [38] Y. F. Jiang, L. Fang, et al. Study on the formability of square box deep drawing of tailor rolling blanks[J]. Key Engineering Materials, 2011(464): 469-473.
    [39] P. Beiter, P. Groche. On the Development of Novel Light Weight Profiles for Automotive Industries by Roll Forming of Tailor Rolled Blanks[J]. Key Engineering Materials, 2011(473):45-52.
    [40]赵淮北,蔡成征,舒洁,等.车身制造中的激光拼焊技术[J].现代零部件,2010(3):56-58.
    [41]钟阳.SUV侧面碰撞仿真分析及B柱优化设计研究[D].广州:华南理工大学机械与汽车工程学院,2010.
    [42] C. H. Chuang, R. J. Yang, G. Li, et al. Multidisciplinary design optimization on vehicle tailor rolled blank design[J]. Struct Multidisc Optim, 2008(35):551-560.
    [43]王洪印.汽车轻量化设计理念[C].海口:海南省机械工程学会、海南省机械工业质量管理协会“年会”暨机械工程科技学术报告会论文集,2010.
    [44]蒋妙范,吴蔚伟,高强.汽车板料的液压成形技术[J].制造技术与材料,2009,35(4):28-30.
    [45] A. Alaswad, K. Y. Benyounisa, A. G.olabi. Employment of finite element analysis and Response Surface Methodology to investigate the geometrical factors in T-type bi-layered tube hydroforming[J]. Advances in Engineering Software, 2011,42(11): 917-926.
    [46] M. Elyasi, H. Khanlari, M. Bakhshi-Jooybari. Numerical and experimental study of the effect pressure path in tube hydroforming process[J]. Key Engineering Materials, 2011(473): 579-586.
    [47]陈根余,梅丽芳,张明军,等.激光焊接、切割在汽车制造中的应用[J].激光与光电子学进展,2009(9):17-23.
    [48]姚远.激光焊接技术在汽车工业中应用现状及发展趋势[J].汽车工艺与材料,2007(6):13-16.
    [49]燕来荣.汽车工业中的激光焊接技术[J].世界制造技术与装备市场,2010(4):64-68.
    [50]陈根余,顾春影,梅丽芳,等.激光焊接技术在汽车制造中的应用与激光组焊单元设计[J].电焊机,2010,40(5):32-38.
    [51] L. F. Mei, G. Y. Chen, X. Z. Jin, et al. Research on laser welding of high-strength galvanized automobile steel sheets[J].Optics and Lasers in Engineering, 2009, 47(11): 1117-1124.
    [52]韩立军.激光焊接技术在一汽大众迈腾车身制造中的应用[J].金属加工(热加工),2008(8):32-40.
    [53]艾桃桃.半固态铸造技术的研究状况及应用[J].机械设计与制造,2010(2):64-66.
    [54] H. H. Kim, C. G. Kang. Simulation and fabrication of automobile parts in semi-solid process[J]. Advanced Materials Research, 2011(264-265):36-41.
    [55] Y. P. Hu, Y. Hu. Numerical simulation of semi-solid die casting process of magnesium alloy[J]. Key Engineering Materials, 2011(474-476): 255-259.
    [56] Q. Zhu, S. P. MIDSON. Semi-solid moulding Competition to cast and machine from forging in making automotive complex components[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2010(20), Supplement 3:1042-1047.
    [57] S. V. S. Vakili, M. N. Ahmadabadi. Physical modeling study of A356 semi-solid die-casting process[C].Seattle, WA, United states: TMS 2010 - 139th Annual Meeting and Exhibition, 2010.
    [58]滑有录,王海龙.喷射成形技术的发展与应用[J].热加工工艺,2010,39(21):192-196.
    [59]李荣德,刘敬福.喷射成形技术国内外发展与应用概况[J].铸造,2009,58(8):797-803.
    [60]刘丘林,刘允中.喷射成形技术在铝合金制备中的应用[J].材料导报,2011,24(16):213-216,224.
    [61] A. Rafael. Spray forming high speed steel-properties and processing[J]. Materials Science and Engineering, 2004(383):87-95.
    [62] C. S. Kiminami, W. J. Botta, C. Bolfarini. Processing of glass former alloys by spray forming[J].Materialwissenschaft und Werkstofftechnik, 2010,41(7):513-523.
    [63] M. M.凯默尔,J. A.沃尔夫,陈砺志译.现代汽车结构分析[M].北京:人民交通出版社,1987.
    [64]谷安澜.有限元法在汽车设计中的应用[J].国外汽车,1976(4):1-12.
    [65] R. Winter, M. Mantus, A. B. Pifko. Finite Element Crash Analysis of a Rear Engine Automobile[C]. SAE Paper, 1981,811306.
    [66]钟志华.汽车耐撞性分析的有限元法[J].汽车工程,1994,16(1):1-6,11.
    [67]解跃青,雷雨成.动态显式有限元方法在车架耐撞性能分析中的应用[J].机械科学与技术,2003,22(4):573-574,597.
    [68]武和全.汽车车架碰撞安全性分析及其优化设计[D].南昌:南昌大学机电学院,2009.
    [69] B. Deshpande, T. J. Gunasekar, R. Morris, et al. Methodology development forsimulating full frontal and offset frontal impacts using full vehicle MADYMO models[J]. ASME Applied Mechanics Division Publications AMD 237, 1999:19-38.
    [70] G. G. Lim, A. Paluszny. Side impact research[C]. SAE Technical Paper, 1989,885055.
    [71] N. K. Saha, S. M. Calso, P. Prasad. Simulation of frontal barrier offset impacts and comparison of intrusions and decelerations[C]. SAE Technical Paper, 1995,950647.
    [72] J. Doong, J. C. Cheng. Computer simulations for frontal impact[C]. Computers in Engineering, Proceedings of the International Conference and Exhibit, 1994(2):597-605.
    [73] T. A. Omar, A. Eskandarian, N. E. Bedewi. Crash analysis of two vehicles in frontal impact using adaptive artificial neural networks[J]. American Society of Mechanical Engineers, Applied Mechanics Division,AMD, 1998 (230):115-129.
    [74] A. D. Kelkar, M. H. Schulz, P. Chaphalkar, et al. Simulation of a car frontal offset impact into a fixed deformable barrier[C]. SAE Technical Paper, 1996,962485.
    [75]朱西产.应用计算机模拟技术研究汽车碰撞安全性[J].世界汽车,1997: 15-35.
    [76]贾宏波.汽车车身结构碰撞性能的计算机模拟[J].评价与改进,吉林工业大学学报,1998,28(2):6-11.
    [77] J. Han, K. Yamazaki. A Study on Maximization of Dynamic Crushing Energy Absorption of Square Tubes with and without Stiffener[J]. JSME International Journal Series A, 2000,43(2):138-145.
    [78] H. W. Song, Z. J. Fan, G. Yu, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections[J].International Journal of Solids and Structures, 2005(42):2575-2600.
    [79] G. M. Nagel, D. R. Thalllbiratnam. A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J]. International Journal of Mechanical Sciences, 2004,46(2):201-216.
    [80] G. H. Daneshi, S. J. Hosseinipour. Experimental study on thin-walled grooved tubes as an energy absorption device[J].Structures and Materials, 2002(11):289-298.
    [81] Z. Ahmad, D. P. Thambiratnam, A. C. C Tan. Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading[J]. International Journal of Impact Engineering, 2010,37(5): 475-488.
    [82]张维刚,黄栋.汽车薄壁梁斜向碰撞性能仿真研究[J].汽车工程,2010,32(6):515-518,529.
    [83]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2000,22(2):85-89.
    [84]王宏雁,陈君毅.汽车车身轻量化结构与轻质材料[M].北京:北京大学出版社,2009.
    [85]杨英,赵广耀,孟凡亮.某轿车白车身结构灵敏度分析及优化设计[J].东北大学学报(自然科学版),2008,29(8):1159-1163.
    [86] X. W. Zhang, T. Zhen. A study on shape optimization of bus body structure based on stiffness sensitivity analysis[C]. Wenzhou:Proceeding 2009 IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design, 2009.
    [87] Y. Z. Xu, X. H. Gao, L. Gu, et al. Study on body lightweight design for safe and economic car[J]. Journal of Hunan University Natural Sciences, 2006(33), SUPPL:108-113.
    [88] L. S. Wang, R. K Basu, J. P. Leiva. Automobile body reinforcement by finite element optimizaition[J].Finite Elements in Analysis and Design, 2004,40(8):879-893.
    [89]兰凤崇,陈吉清.承载式车身覆盖件板厚优化及灵敏度分析[J].航空制造技术,2005(3):61-65.
    [90] D. A. Stanef, C. H. Hansen, R. C. Morgans.Active control analysis of mining vehicle cabin noise using finite elment modeling[J]. Journal of Sound and Vibration, 2004(277):277-297.
    [91]杨搏,朱平,余海东,等.基于模态分析法的车身NVH结构灵敏度分析[J].中国机械工程,2008,19(3):361-364.
    [92] A. H. Adl, M. S. Panahi. Multi-objective optimal design of a passenger car's body[C]. Istanbul: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, 2010.
    [93] F. Duddeck, E. R. Mile. Multidisciplinary optimization of car bodies[J]. Structural and Multidisciplinary Optimization, 2008,35(4): 375-389.
    [94] B. Passek. Light weight design in body-in-white development considering passive safety requirements[J]. American Society of Mechanical Engineers, 2001(251):21-31.
    [95] M. Rais-Rohani,K. Solanki,C. Eamon. Reliability-based optimization of lightweight automotive structures for crashworthiness[C]. Portsmouth: Collection of Technical Papers - 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006.
    [96] M. Azadi, F. Zahedi, S. Azadi, et al. Multidisciplinary optimization of a car component under NVH and weight constraints using RSM[C]. Lake Buena Vista,FL,United states: ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2009.
    [97] M. Koeql, F. R. Klimetzek, B. Pletschen, et al. Multidisciplinary optimization of body-in-white[J]. VDI Bericht, 2008(2031):721-744.
    [98] J. Sobieszczanski-Sobieski, S. Kodiyalam, R. Y. Yang. Structural and Multidisciplinary Optimization, 2001,22(4):295-306.
    [99]谢然.多目标优化方法在车身结构轻量化设计中的应用研究[D].广州:华南理工大学机械与汽车工程学院,2010.
    [100] S. Natori, Q. Yu. An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety[C]. SAE paper, 2007-01-0882.
    [101]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011,47(2):102-108.
    [102] S. Salehghaffari, M. Rais-Rohani, A. Najafi. Analysis and optimization of externally stiffened crush tubes[J]. Thin-Walled Structures, 2011(49):397-408.
    [103] J. Forsberg, L. Nilsson. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering, 2006(32):759-777.
    [104] S. J. Hou, Q. Li, S. Y. Long, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials and Design, 2009(30):2024-2032.
    [105] S. Polavarapu. Topology and free-size optimization with multiple loading conditions for light weight design of die cast automotive backrest frame[D]. Clemson: Clemson University,Mechanical Engineering, 2008.
    [106] L. S. Wang, P. K. Basua, J. P. Leivab. Automobile body reinforcement by finite element optimization[J]. Finite Elements in Analysis and Design, 2004(40):879-893.
    [107] M. Alimardani. Computational Optimum Lightweight Design of An Instrument Panel Support Structure[D]. Toronto: University of Toronto (Canada), 2004.
    [108] H. R. Zarei, M. Kroeger. Multiobjective crashworthiness optimization of circular aluminum tubes[J]. Thin-Walled Structures, 2006(44): 301-308.
    [109] Q. Hao, Y. Sun. Car Door Optimization Based on Kriging Model[C]. Taiyuan: 201O International Conference on Computer Application and System Modeling, 2010.
    [110] Y. J. Zhou, F. C. Lan, J. Q. Chen. Crashworthiness research on S-shaped front rails made of steel–aluminum hybrid materials[J]. Thin-Walled Structures, 2011(49):291-297.
    [111] N. Asnafi, G. Langstedt, C.-H. Andersson, et al. A new lightweight metal- composite-metal panel for applications in the automotive and other industries[J]. Thin-Walled Structures, 2000(36):289-310.
    [112] X. T. Cui, S. X. Wan, S. J. Hu. A method for optimal design of automotive body assembly using multi-material construction[J]. Materials and Design, 2008(29):381-387.
    [113] Y. X. Li, Z. Q. Lin, A. Q. Jiang, et al. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis[J]. Materials and Design, 2004(25):579-585.
    [114] M. Shiomia, S. Imagamab, K. Osakadab, et al. Fabrication of aluminium foams from powder by hot extrusion and foaming[J]. Journal of Materials Processing Technology, 2010(210):1203-1208.
    [115] B. W. Williams, M. J. Worswick, G. D’Amours, et al. Influence of forming effects on the axial crush response of hydroformed aluminum alloy tubes[J]. International Journal of Impact Engineering, 2010(37):1008-1020.
    [116] Y. Zhang, P. Zhu, G. L. Chen. Lightweight Design of Automotive Front Side Rail Based on Robust Optimisation[J]. Thin-Walled Structures, 2007(45):670-676.
    [117] N. Cristello. Multidisciplinary design optimization of a zero emission vehicle chassis considering crashworthiness and manufacturability[D]. Kingston,Ontario: Queen's University (Canada), 2006.
    [118] H. Kamel Ibrahim. Design optimization of vehicle structures for crashworthiness improvement[D]. Montreal, Quebec:Concordia University (Canada), 2009.
    [119] A. Londhe, D. Kalani, A. Ali. A systematic approach for weight reduction of BIW panels through optimization[C]. SAE Paper: 2010-01-0389.
    [120] G. F. Chen. Optimized design solutions for roof strength using advanced high strength steels[C]. SAE Paper: 2010-01-0214.
    [121]冯慧敏,潘锋.车身结构耐撞性设计参数的全局灵敏度分析[J].上海汽车,2010(6):47-50.
    [122]潘锋,朱平.面向约束优化的改进响应面法在车身轻量化设计中的应用[J].机械工程学报,2011,47(10):82-87.
    [123]张勇,李光耀,孙光永.汽车车身耐撞性与NVH多学科设计优化研究[J].中国机械工程,2008,19(14):1760-1763.
    [124]杨济匡,唐超群.轿车高速追尾碰撞中结构耐撞性优化设计[J].中国机械工程,2011,22(5):616-620.
    [125]谭耀武,杨济匡,王四文.轿车B柱耐撞性与轻量化优化设计研究[J].中国机械工程,2010,21(23):2887-2892.
    [126]杨进,向东,姜立峰,等.基于响应面法的汽车车架耐撞性优化[J].机械强度,2010, 32(5):754-759.
    [127]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,43(8):142-147.
    [128]张勇,陆勇.基于近似模型技术的圆管耐撞性优化设计[J].华中科技大学学报(自然科学版),2010,38(9):129-132.
    [129]施颐,朱平,张宇,等.基于刚度与耐撞性要求的车身结构轻量化研究[J].汽车工程,2010,32(9):757-762.
    [130]张宏波,顾镭,徐有忠.基于博弈论的汽车耐撞性多目标优化设计[J].汽车工程,2008,30(7):553-556.
    [131]王国春,成艾国,胡朝辉,等.基于Kriging模型的汽车前部结构的耐撞性优化[J].汽车工程,2011,33(3):208-212.
    [132]雷刚,王希杰,张攀.基于DOE的汽车碰撞优化分析[J].重庆理工大学学报(自然科学),2011,25(2):8-12.
    [133]孙宏图,申国哲,胡平,等.考虑碰撞安全性的汽车车身轻量化设计[J].机械科学与技术,2010,29(3):379-382,386.
    [134]叶辉,胡平,申国哲,等.基于灵敏度和碰撞仿真的汽车车身轻量化优化设计[J].农业机械学报,2010,41(10):18-22,27.
    [135]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津:天津大学机械工程学院,2007.
    [136]王广勇,王刚.高强度钢在汽车轻量化中的应用[J].汽车工艺与材料,2011(1):1-5.
    [137]肖寿仁,周永胜,郑小秋.先进高强度钢在汽车轻量化中的应用分析[J].井冈山大学学报(自然科学版),2010,31(6):96-100.
    [138] J. Adamczyk, A. Grajcar. Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing[J]. Journal of Materials Processing Technology, 2005(162-163): 267-274.
    [139] E. Ahmed, U. Reisqen, M. Schleser, et al. On formability of tailor laser welded blanks of DP/TRIP steel sheet[J]. Materials Science and Technology, 2010,26(8):337-342.
    [140] A. Andersson. Numerical and experimental evaluation of springback in a front side member[J]. Journal of Materials Processing Technology, 2005,169(3):352-356.
    [141] A. Andersson. Numerical and experimental evaluation of springback in advanced high strength steel[J]. Journal of Materials Engineering and Performance, 2007,16(3):301-307.
    [142]马鸣图.先进的高强度钢及其在汽车工业中的应用[J].钢铁,2004,39(7):68-72.
    [143] Porsche Engineering Services,Inc. Ultrlight steel auto body final report[R]. Bietigheim-Bissingen: Porsche Engineering Services, 1998.
    [144] Porsche Engineering Services,Inc. ULSAC validation program engineering report[R]. Bietigheim-Bissingen: Porsche Engineering Services, 2000.
    [145] American Iron and Steel Institute. ULSAB-AVC advanced vehicle concepts: overview report[R]. 2002.
    [146] M. D. Thorpe, H. Adam. ULSAB-Advanced vehicle concepts-overview and design[C]. SAE Technical Paper, 2002-01-0036,2002.
    [147] J. Shaw, R. Roth. Achieving and affordable low emission steel vehicle and economic assessment of the ULSAB-AVC program design[C]. SAE Technical Paer, 2002-01-0361,2002.
    [148]苗景国.铝合金材料在现代汽车制造业的应用[J].黑龙江冶金,2009,29(2):26-28.
    [149]冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程,2006,28(3):214-220.
    [150]金泉林.铝合金车身板件超塑成形技术探讨[J].现代零部件,2011(3):38-43.
    [151]马鸣图,游江海,路洪洲,等.铝合金汽车板性能及其应用[J].中国工程科学,2010,12(9):4-20,33.
    [152]张凇,殷晨波,张在梅.铝合金汽车覆盖件冲压成形回弹的仿真研究[J].机械设计与制造,2011(2):109-111.
    [153] W. H. Overhagh. Use of aluminum in automotive space frame[C]. SAE Technical Paper, No.950721, 1995.
    [154] H. Schretzenmayr. Technical report: the aluminum body of the Audi A8[J]. International Journal of Vehicle Design, 1999,21(2-3):303-312.
    [155] W. S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering, 2000,A280:37-49.
    [156] R. Koganti, J. Weishaar. Aluminum Vehicle Body Construction and Enabling Manufacturing Technologies[C]. SAE Technical Paper, 2008-01-1089,2008.
    [157]钱人一.Audi A2车身铝合金空间框架[J].世界汽车,2001(4):8-15.
    [158] O. L. Cetin. Decomposition-based assembly synthesis of family of structures[D]. Mcihigan: The University of Michigan,2003.
    [159]日经BP社.美洲豹公开“XJ”的铝合金车身材料[EB/OL].(2003-06-10)http://www.chetx.com/news/2003-06-10/10006214.htm.
    [160]晓慧.集捷豹大成之作_全铝车身XJ[J].汽车实用技术,2004(9):58-61.
    [161]陈虎.镁合金的研究及其在汽车轻量化中的应用[J].企业技术开发,2009(28):17-19.
    [162] B. L. Mordike, T. Ebert. Magnesium properties applications potential[J]. Materials Science and Engineering, 2001, 30(2):37-45.
    [163]敖炳秋,袁序弟.镁合金材料在汽车上应用及展望[C].北京:2002年材料科学与工程新进展,2002.
    [164]陈军.镁合金在汽车工业中的应用分析[J].材料研究与应用,2010,4(2):81-84.
    [165]龙思远,徐绍勇,曹韩学,等.长安汽车轻量化与镁合金应用[J].现代零部件,2010(11):32-36.
    [166] H. T. Sun, G. Z. Shen, P. Hu. Study on magnesium alloy auto body based on front impact[C]. Wuhan: 2010 International Conference on Electrical and Electronics Engineering, ICEEE 2010:533-541.
    [167]严伯昌.塑料在汽车上的应用现状与趋势[J].橡塑资源利用,2007(1):32-36.
    [168]王斌,戴芳,张振英.汽车用塑料的研究进展[J].工程塑料应用,2006,34(4):76-80.
    [169]马翠英,黄晖.塑料在汽车上的应用[J].客车技术与研究,2005(6):40-43.
    [170]朱俊.车用复合材料新技术及在汽车上的应用[J].汽车工程师,2009(3):49-52.
    [171]魏莉霞,马鸣图.塑料及其复合材料在汽车轻量化中的应用发展[C].兰州:2008年中国机械工程学会年会暨甘肃省学术年会文集,2008.
    [172]刘波.现代汽车与复合材料[J].高科技纤维与应用,2007,32(4):27-43.
    [173] A. G. Mamalis, P. M. Robinson, D. E. Manolakos, et al. Crashworthy capability of composite material structures[J]. Composite Strutures, 1997(37):109-134.
    [174] H. A. Al-Qureshi. Automobile leaf springs from composite materials[J]. Journal of Materials Processing Technology, 2001(118):58-61.
    [175]孙凌玉.汽车车身动态设计的理论与应用研究[D].南京:东南大学机械系,2000.
    [176]杨莉.客车车身结构动力学、声学CAE关键技术研究[D].南京:东南大学机械学院,2005.
    [177]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [178] W.T. Thomson, M.D. Dahleh. Theory of vibration with applications(Fifth Edition)[M]. Beijing: Tsinghua universtiy press, 2005.
    [179] R.克拉夫,J.彭津,王光远等译.结构动力学[M].北京:高等教育出版社,2006.
    [180] W. Heylen, S. Lammens, P. Sas. Modal analysis theory and testing[M]. New Jersey: Prentice Hall Inc., 1997.
    [181]靳晓雄,张立军.汽车噪声的预测与控制[M].上海:同济大学出版社,2004.
    [182]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [183]刘惟信.机械最优化设计(第二版)[M].北京:清华大学出版社,1994.
    [184]张灶法,朱壮瑞,孙凌玉,等.白车身动态灵敏度应力分析的等效子结构法[J].东南大学学报(自然科学版),2001,31(2):39-41.
    [185] MSC.Software Corporation. Nastran theoretical manual[M]. 2005.
    [186]高玉华.硬件在环的轿车白车身结构分析与优化设计[D].合肥:合肥工业大学,2009.
    [187]冯元桢.连续介质力学导论[M].重庆:重庆大学出版社,1997.
    [188]孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985.
    [189] O.C.监凯维奇,尹泽南,江伯南译.有限元法(上册)[M].北京:科学出版社,1985.
    [190]张金换,杜汇良,马春生.汽车碰撞安全性设计[M].北京:清华大学出版社,2010.
    [191] D. C. Montgomery. Design and Analysis of Experiment[M]. New York: NYWiley, 1997.
    [192] Noesis Solutions. OPTIMUS Theoretical Background[M]. 2011.
    [193] J. Forsberg, L. Nilsson. On polynomial response surfaces andKriging for use in structural optimization of crashworthiness[J]. Struct Multidisc Optim, 2005(29): 232-243.
    [194]张勇.基于近似模型的汽车轻量化优化设计方法[D].长沙:湖南大学机械与运载工程学院,2008.
    [195]郭建成,谷正气,容江磊,等.基于Kriging模型的某轿车前轮阻风板优化[J].郑州大学学报(工学版),2011,32(3):124-128.
    [196]高云凯,孙芳,余海燕.基于Kriging模型的车身耐撞性优化设计[J].汽车工程,2010,32(1):17-21.
    [197]李铁柱,李光耀,陈涛,等.基于Kriging近似模型的汽车乘员约束系统稳健性设计[J].机械工程学报,2010,46(22):123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700