基于轮壤作用试验的月球车与月壤相互作用动态仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球车(月面巡视器)是月面探索的主体,是一种高度精密和智能的机器系统,其通过性能的优劣将极大地影响月面探测的稳定性和可靠性。因此必须在月球车登月之前进行通过性能的研究。
     虽然月球上低重力和特殊的月壤环境难以在地面上模拟,但随着虚拟现实技术和仿真技术的发展,利用虚拟样机能够模拟月面车辆与月壤的相互作用,从而为登月工作做准备,在模拟中发现并解决问题。
     考虑到月球车与月壤的直接作用的部件为车轮,因此本研究工作从车轮与月壤相互作用入手,分别制备模拟月壤、一系列的刚性轮以及月壤—车轮测试系统。其中:模拟月壤以辉南县的火山灰为主要原料,辅之少量赤铁矿砂,使其物理性质同美国航天局制备的JSC-1模拟月壤相近,且主要参数范围在真实月壤参数内;制作14个结构参数不一的试验用刚性轮,利用月壤—车轮测试系统,采用正交设计和土槽试验的方法,实现对刚性轮的水平位移、垂直位移、扭矩、转速、滑转率等参数的测量,得到不同刚性轮的牵引性能。
     在获得以驱动轮牵引性能参数后,利用CAITIA三维软件进行土槽测试系统建模,并将模型导入SimDesigner软件中,同时将相关模拟月壤参数导入虚拟样机中。对月球车的刚性轮与月壤相互作用过程进行动态仿真,从车轮接触应力和位移矢量等方面,分析月球车刚性轮的通过性能,并与实际刚性轮试验进行对比。在仿真研究的基础上创建六轮摇臂月球车实体模型。在计算机环境下进行月球车在月面行驶时的牵引通过性能研究。土槽试验和仿真分析研究结果为月球车移动机构的设计和性能分析提供参考。
China cruises on the moon surface is divided into three phases.The first phase:Ring detection on the development and launch "Chang'e I" lunar exploration satellite.used the methods On detection around the moon for one year of global,holistic and integrated exploration,and mapped the lunar surface and environment,geomorphology,topography, geological structure and physical and so on."Chang'e I" satellite was around on October 24, 2007 successfully launched.PhaseⅡ:On face detection and a soft landing on the moon surface to launch a soft landing inspection visits,test the lunar soft-landing techniques; develop and launch vehicle inspection,automatic robots.Detect the rock chemistry and mineral composition of the Landing area,high-resolution photography and rock on-site sampling and analysis or detection.This phase is scheduled for completion in 2012.PhaseⅢ: On surface inspection and sampling inspection to return to the development of small sample return capsule,rock drilling machine on table,table on sampler,such as robot arm to collect samples of the return of critical analysis.Inspection of the landing area for the next manned lunar exploration,the establishment of the lunar outpost site selection data.This phase is scheduled for completion in 2017.On the current stage has been completed around,what car to walk the moon,through the performance of institutions,which is a critical significance to the Trucks for the moon landing of the second phase.
     The average density of lunar material is 3.34g/cm~3,Equivalent to the Earth's density is only 3/5,Moon's gravity at the equator the Earth's gravity for 1/6,Soil layer on the majority of relatively soft soil,density of sandy soil on the earth small.Lunar rover will reduce the efficiency of the road.Therefore,in-depth study of special circumstances in the face to detect vehicles on wheels and on the interaction between soil and the role of the mechanism of the way For the development of high traffic through the institutions,in order to protect and improve the reliability of the work of the moon vehicle of great significance. At present,many universities and research institutes to develop a variety of lunar rover prototype,and the walk to match body,However,face detection on vehicles and on the mechanism of interaction between soil and surface exploration vehicles on the performance of the study has just begun,Rare reports of research results.In other words,Just a lot of research is to study the surface,Or only study lunar rover.It is rare to combine the two studies.So This issue will surface on the wheels of vehicles to detect interaction with the soil on the basis of research conducted through the properties of lunar rover simulation.
     In this paper,the Ministry of Education focused on scientific and technological research projects(Item Number:107035) funded projects,Preparation of the soil used in the trough of the simulation tests on the use of soil,Through on soil-soil trough wheel test system, Trough of the soil test based on,Studied in a simulated rover wheel on the traction characteristics of soil;Analysis of the simulated soil on the pressure,shear,and load-bearing characteristics,and And the establishment of a description of interaction between wheel and soil on the mathematical model, Size of different rounds of the rigid structure of the different parameters through the performance.Finally,the application of CATIA and SimDesinger software test system for simulation of soil,In contrast with the real test,Further build the lunar rover model, Simulation of soil parameters on import into the simulation software to carry out lunar rover simulation analysis through performance.To explore what types of wheels out of the corresponding properties of the moon through a better car.
     Simulation of soil used in the experiments on the use of the area of Changbai Mountain in Jilin Province Huinan ash as main raw material,Des is a red iron ore,In accordance with the different particle size distribution,Processing and preparation of red iron ore content in five samples,And analyze the performance of its shear,compression performance,particle shape and mineral composition of the basic physical and mechanical parameters.And on soil samples with the JSC-1 lunar soil simulation were compared,Selection of 2 from the sample as a simulated lunar soil.Simulation on soil physical and mechanical properties of soil on changes in scope,and JSC-1 analog,on the nature of soil near,Through qualitative and quantitative analysis of the simulation obtained on soil,Its water content to1.9±0.9%,Also close to zero water content on soil morphology true.Accounting for2.9,Internal friction angle is 32.75°,Cohesion is 1.79kPa,The average diameter is 134.703μm,Median size is 97.386μm,Effective diameter d_(10) is 25μm,Control of particle size d_(60) is 129μm, Non-uniform coefficient C_u is 5.16,Curvature coefficient C_c is 0.937.The use of SC-900 using a number of explicit instrument of soil compaction on the simulation of soil on different degrees solid state were measured,the result is With the increase in the number of compaction,Simulation of soil hardness on the increase,Simulation of soil on the surface hardness values than the increase in large deep,This is because the pressure to pass from the top down on the surface soil.
     on the basis of Jilin University soil-soil trough wheel test system,The soil bin test system is mainly composed of three parts,as follows:fixed soil sin,mechanical systems and measurement and control system.Trough the use of soil testing soil trough system fixed by the trial round of movement forms;used VVVF motor to control the test parameters such as wheel speed;DC servo motor and the EDC controller to control the traction resistance;First through the sensors and measuring instruments and related software systems,linked to traction,the settlement amount of forward speed,wheel speed,wheel torque based on the measurement parameters.
     Analysis of the driving wheel movement simulated damage on the form of the failure of soil.Of smooth round and round barbed different failure mechanism.And an analysis of structural parameters on the traction wheel performance.With the increase in slip rateλ, Linked to the increased wheel traction,Slip rate between 10-40%,Growth linked to traction, followed by relatively slow changes.When the slip rate<30%efficiency factor when the small but rapidly,When the slip rate of around 30%,the factor to achieve maximum efficiency,Gradually reduced until the slip rate of 100%.Increasing the wheel width, diameter,linked to the efficiency coefficient of traction and can be a corresponding increase in.Increasing round of barbed height,will be linked to increased traction;Slip rate in less than 20%,the efficiency coefficient with a high degree of thorns round of increases, However,when the slip rate greater than 20%,the efficiency coefficient with a high degree of thorns round of decreased.Round thorn density increased,the linking coefficient of traction and then to increase efficiency at a certain peak and then decreased.
     In this study,use CATIA software modeling on the basis of the use of simulation software to deal with SimDesinger.Use CATIA software construct 14 rigid wheel models, and the soil bin systerm.In the soil bin test systerm,tested the different wheels'traction performance.Changed the different slip rate than compute the traction torque,we find the slip rate have little impaction to traction,this is different with the test have done.The reason is in the test before,the lunar simulant is particle.But in computer simulation,the lunar soil simulant was treated as whole bady,in another way is elastomer.in order to solve this problem,we changed the friction coefficient to assort with the condueiton of reality test.Then finded the friction coefficient between lunar soli simulant and smooth rigid wheels should be 0.6,and the none smooth wheels' friction coefficent should be ablout 0.9.Based on the test the none smooth rigid wheels' traction torque is bigger than the smooth one,on the condition of the same friction coefficent.At last,test the displacement of rigidwheel in the direction of vertical.the conclution is the No.8 wheel has the best traction ability.the result from the simulation has some different with the test have done before,but the results is also can accepeted.
     NO.8 rigid wheel as the driving wheel,then construct the SIX-WHEELED ROCKER LUNAR ROVER.in the environment of SimDesigner,test the traction ability of the lunar wheel.analyse the displacement of in the direction of vertical.Use this method to valuate the ability of lunar rover.
引文
[1]邓宗全.月球车的技术研究及发展[C].2002年黑龙江省机械工程学会年会论文集,2002,1:6-15.
    [2]张永红,郭建,张续贤,宁小刚.月球探测50年[J].测绘通报,2007,(12):24-26.
    [3]4Heiken G,Vaniman D,French B M.Lunar Sourcebook.Cambidge University Press,1991
    [4]任露泉,贾阳,李建桥等.月球车行走性能地面模拟试验方案设想[C].中国宇航学会深空探测技术专业委员会第二届学术年会,北京,2005,10:458-466.
    [5]陶建国,王林,吴凤久等.月球车车轮与土壤相互作用的力学特性分析[J].机械设计与制造,2007,17:56-57.
    [6]邹猛,李建桥,李因武等.刚性轮—月壤相互作用预测模型及试验研究[J].农业工程学报,2007,23(12):119-123.
    [7]陶建国,全齐全,邓宗全等.月球车不等径车轮在土壤上滚动的力学分析与实验[J].哈尔滨工程大学学报,2007,28(10):1144-1150.
    [8]张熇,柳忠尧,饶炜.月面软着陆探测器地面力学试验方法研究[J].航天器工程,2007,16(6):33-38.
    [9]孙鹏,高峰,李雯等.深空探测车可变直径车轮牵引通过性分析[J].北京航空航天大学学报,2007,33(12):1404-1407.
    [10]孙刚,高峰,李雯.地面力学及其在行星探测研究中的应用[J].力学进展,2007,37(3):453-465.
    [11]梁维奎,柏合民,孙伟等.月面巡视探移动系统的移动性能指标分析与评估方法[J].深空探测研究,2007,5(30):8-15.
    [12]Dang Zhaolong,Shen Zhenrong,Jia Yang.Development of a single wheel soil bin test bed for studying wheel-terrain interaction[C].Proceedings of the Joint North America,Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics,Alaska,2007.
    [13]邹猛,李建桥,贾阳等.月壤静力学特性的离散元模拟研究[J].吉林大学学报,2006,38(2):383-387.
    [14]Bekker M.G.地面—车辆系统导论[M].北京:机械工业出版社,1978.
    [15]J.Y.Wong.地面车辆原理[M].北京:机械工业出版社,1985.
    [16]庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [17]庄继德.汽车通过性[M].长春:吉林人民出版社,1980.
    [18]J.Y.Wong,Wei Huang."Wheels vs.tracks"-A fundamental evaluation from the traction perspective[J].Journal of Terramechanics,2006,43:27-42.
    [19]A.Falk.Advanced mobility in difficult terrain[J].Journal of Terramechanics,2004,41:101-111.
    [20]Taylor JH,Burt E,Bailey AC.Effect of total load on subsurface soil compaction[J].Trans ASAE,1980,23(3):568-70.
    [21]Alakukku L,Elonen P.Finnish experiments on subsoil compaction by vehicles with high axle load[J].Soil till Res.,1994,29(3):15-25.
    [22]Bernstein R.Problems of the experimental mechanics of motor ploughs.Der motorwagen,1913,16.
    [23]Miklethwait E W E.Soil mechanics in relation fighting vehicles.Military coll.of science,1944.
    [24]Bekker M G.Theory of land locomotion[M].The Univ.of Michigan press,Ann Arbor,Michigan,1956.
    [25]Bekker M G.Off-road locomotion:research and development in terramechanics.The Univ.of Michigan press,Ann Arbor,Michigan,1960.
    [26]J.Y.Wong,Reece A.Prediction of rigid wheel performance of driven rigid wheels,Part Ⅰ[J].Journal of Terramechanics,1967;4(1):81-98.
    [27]Onafko O,Reece R.Soil stresses and deformation beneath rigid wheels[J].Journal of Terramechanics 1967;4(1):59-80.
    [28]Perumpral J V,Lilzedahl J B,Perloff W H.A numerical method for predicting the stress distribution and soil deformation under a tractor wheel[J].Journal of Terramechanics,1971,8(1).
    [29]Ingobert C S.Interaction of vehicle and terrain results from 10 years research at IKK [J].Journal of Terramechanics,1995,32(1):3-26.
    [30]Hashiguchi K,Okayasu T,Ueno M,Shikanai T.Image processing on-line measurement for soil displacement[J].J JSAM 1998;60(6):11-8.
    [31]C.W.Fervers.Improved FEM simulation model for tire-soil interaction[J].Journal of Terramechanics,2004,41:87-100.
    [32]Koichiro Fukami,Masami Ueno,Koichi Hashiguchi,et al.Mathematical models for soil displacement under a rigid wheel[J].Journal of Terramechanics,2006,43:287-301.
    [33]陈秉聪.土壤车辆系统力学[M].北京:农业机械出版社,1981.
    [34]张克键.车辆地面力学[M].北京:国防工业出版社,2002.
    [35]邓卓荣,由书城.水田拖拉机行走机构与土壤相互关系的研究报告[C].中国地面机械系统研究会第四届年会论文集,1987.
    [36]李杰,庄继德,魏东等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J].吉林大学学报,2006,36(6):510-514.
    [37]李杰,庄继德,季学武.车辆行驶的沙漠沙承压特性的研究.兵工学报,1999,20(1):62-64.
    [38]李杰,庄继德,赵旗等.汽车地面力学中土的弹性本构模型研究[J].汽车技术,1997(1):31-35.
    [39]冯启山.刚性轮与松软地面相互作用研究及仿真软件开发[D].吉林大学硕士学位论文,吉林大学,2001.
    [40]刘大维,陈吉清,王国林.轮脚与土壤相互作用的有限元分析[J].农业机械学报,1996(3);12-17.
    [41]季学武,樊慧文,杨延辰.轮胎—沙土相互作用的预测模型及试验研究[J].农业机械学报,2000,31(3):8-10.
    [42]樊慧文,赵六奇.轮胎与土壤相互作用的数学模型和实验研究[J].清华大学学报,1997,37(11):110-114.
    [43]李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法[J].农业机械学报,2000,31(3):5-7.
    [44]李杰,叶楠,庄继德.车辆行驶的沙漠沙剪切特性的研究[J].兵工学报,1999,20(3):193-198.
    [45]李杰,庄继德,魏东.塔克拉玛干沙漠沙的剪切特性[J].吉林工业大学学报,1998,28(2):167-172.
    [46]庄继德.现代汽车轮胎技术[M]..北京:北京理工大学出版社,2002.
    [47]赵旗,徐颖,李杰等.车辆行驶工况下的沙漠沙本构特性模型的建立[J].吉林大学学报,2003,33(1):42-46.
    [48]Berkeman Peter,ChenMei.Design of a day/night lu2nar rover[D].Pittsburghers:The Robotics Institute,CamegieMellon University,1995.
    [49]李雯,高峰,孙鹏;复合材料深空探测车车轮的设计;吉林大学学报(工学版)第36卷,第4期,2006年7月;
    [50]Kojiro Iizuka,Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain[C].Advanced Motion Control,2006.9th IEEE International Workshop:266-271
    [51].L.Richter,A.Ellery,Y.Gao,S.Michaud.A Predictive Wheel-Soil Interaction Model for Planetary Rovers Validated in Testbeds and Against MER Mars Rover Performance Data[C].10th European Conference of the International Society for Terrain-Vehicle Systems Budapest,Hungary October 3-6,2006
    [52]Baller R,Leung W,Barfoot T.Experiment and simulation results of wheel soil interaction for planetary rovers.In:Proceeding IROS,Edmonton,2005:586-591
    [53]John.J.Caruso,Phillip B.Abel,James J.Zakrajsek,Michael J.Krasowski.and Lawrence C.Greet.Gravity Effects on Lunar Mobility and the Human-Robotic Systems Program[C].45th AIAA Aerospace Sciences Meeting and Exhibit 8-11January 2007,Reno,Nevada
    [54]Kimberly S.Tyree.Robotic Assistance for Human Planetary and Lunar Exploration [C].Space 2004 Conference and Exhibit 28-30 September 2004,San Diego,California.
    [55]David S.McKay,James L.Carter,Walter W.Boles,Carlton C.Allen,and Judith H.Allton,JSC-1:A NEW LUNAR SOIL SIMULANT[C].Engineering,Construction,and Operations in Space Ⅳ American Society of Civil Engineers,pp.857-866,1994
    [56]Willman B M,Boles W W.Soil-tool interaction theories as they apply to lunar soil simulant[J].J.Aeros.Eng.,1995,8(2):88-99
    [57]郑永春,王世杰,冯俊明等.CAS-1模拟月壤[J].矿物学报,2007,27(3):571-577
    [58]Yongquan Li,Jianzhong Liu,Zongyu Yue.NAO-1:Lunar Highland Soil Simulant Developed in China[J].Aerosp.Engrg.Volume 22,Issue 1,pp.53-57(January 2009)
    [59]胡明,邓宗全,王少纯,高海波月球探测车移动系统的关键技术分析[J].哈尔滨工业大学学报,2003,35(7):795-798.
    [60]Hayati S,Volpe R,Backes P,Balaram J,Welch R,Ivlev R,Tharp G,Peters S,Ohm T,Petras R,L aubach S.The Rocky 7 rover:a Mars science craftprototype[C].Proceedings of IEEEInternational Conference on Robotics andAutomation,1997,2485-2464.
    [61]邱雪松,邓宗全,胡明.月球探测车可展开式悬架的设计分析[A].中国空间技术研究院总体部.中国宇航学会深空探测技术专业委员会第二届学术会议论文集[C].北京:中国空间技术研究院总体部,2005:436-439.
    [62]Yasuharu Kuniia,Yoji Kurodab,Takashi Kubotac.Developmentofmicro-Manipulator for tele-Science by lunar rover:Micro5[J].Acta Astronautical.52(2003)433-439.
    [63]Alex Ellery.Environment-robot interaction—the basis for mobility inPlanetarymicro-rovers[J].Robotics and Autonomous Systems,2004,27:1-10.
    [64]A L Kemurdjian.Planet rover as an object of the engineering design work[C].Leuven Belgium:P roceedings of the 1998 IEEE International Conference onRobotics&A utomation,1998,140-145.
    [65]刘吉成,邓宗全,高海波.行星探测车车轮构型研究综述与思考[J].机械设计与制造.2007,11:209-211
    [66]NASA JPL Uses woking model 2D and 3D for asteroid mission with Japanese space institute,www.workingmodel.com.
    [67]Masahiro Nohmi,Akira Miyahara(?).Modeling for Lunar Lander by Mechanical Dynamics Software[C].AIAA Modeling and Simulation Technologies Conference and Exhibit 2005,California:AIAA 2005-6416.
    [68]Hiroshi Nakashima and Akira Oida.Simulation of soil-tire interaction by a coupled distinct element-finite element method[C].Proceedings of the 6th Asia-Pacific Conference of the International Society for Terrain-Vehicle Systems,Bangkok,Thailand,December 3-5,2001:59-63.
    [69]Nildeep Patel,Alex Ellery,Elie Allouis,et al.Rover mobility performance evaluation tool(RMPET):a systematic tool for rover chassis evaluation via application of Bekker theory[C].Proceedings of the 8th ESA workshop on advanced Space technologies for robotics and automation,The Nether lands,Noverber,2004.
    [70]Wong Hong.Modeling,estimation,and control of robot-soil interactions.
    [71]Katragadda L K.Synergy:A language and framework for robot design:[dissertation].Pittsburgh:Carnegie Mellon University.1998.
    [72]Apostolopoulos D S.analytical configuration of wheeled robotic locomotion:[dissertation].Pitts burgh:Carnegie Mellon university.2001.
    [73]冯启山.刚性轮与松软地面相互作用研究及仿真软件开发[D].吉林大学硕士学位论文,吉林大学,2001.
    [74]陈百超.月球车悬架研究及动力学仿真[D].吉林大学硕士学位论文,吉林大学,2006.
    [75]仝光.基于ADAMS月球车仿真平台研究[D].吉林大学硕士学位论文,吉林大学,2007.
    [76]邹猛.月面探测车辆驱动轮牵引性能研究[D].吉林大学博士学位论文,吉林大学,2007.
    [77]Morris R V,et al.Handbook of Lunar Soils.NASA Johnson Space Center,1983,914
    [78]Bazilevskiy A T,Grebennik N N,Gromov V V,et al.Physical and mechanical properties of lunar soil as function of specifics of relief and processes in vicinity of operation of Lunokhod-2[C].USSR Report Space2,1984,65-66
    [79]Carrier W D,Olhoeft G R,Mendell W.Physical properties of the lunar surface.In:Heiken G H,Vaniman D T,French B M.,French B.M.,Lunar Source book,a User's Guide to the Moon[J].Cambridge Univ.Press,New York.1991,475-594
    [80]Robert J.Gustafson.Simulants for Testing and Verifying Exploration Surface Activity[C]AIAA 2006-7513 Space 2006.19-21 September 2006,San Jose,California.
    [81]邹猛,李建桥,贾阳,任露泉,李因武.月壤静力学特性的离散元模拟[J]吉林大学学报(工学版).第38卷,第2期,2008,3.383-387
    [82]高海波,张鹏,邓宗全,胡明,陶建国.新型八轮月球车悬架的研制[J]机械工程学报.第44卷第7期,2008,7.85-92
    [83]邓宗全,方海涛,董玉红,陶建国.六圆柱.圆锥轮式月球车多轮协调运动控制研究[J]哈尔滨工程大学学报,第29卷第1期,2008-1.73-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700