摇杆—转向架式月球车月面通过性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于月球与地球物理环境(温度、温差、重力、大气密度等等)的巨大差异,由于月面与地面状态的差异,我国二期工程将要研制发射的月球探测器一月球车,为了完成科学探测目标,它在月球上首先是保证能生存,第二是保证能按指令行走。因此,月球车在月球不同区域巡游和完成探测任务时面临的首要问题之一是月球车在月面的通过性问题。
     曾经登上月球的前苏联和美国的月球车都曾因月球车的通过性能不足导致车轮下陷无法前进而影响探测计划.月球车的通过性能主要包括月球车的车轮月壤支撑通过性问题、不平月面的几何通过性问题和越障能力。本文从月球车车轮-月壤力学着手研究车轮对月壤的支撑通过性,研究车轮在月壤表面的驱动能力及车轮尺寸参数的选择依据,接着研究月球车在月球不平地形的几何通过性问题和安全通过月球不平地形的车轮驱动力优化设计,最后研究月球车对岩石障碍的越障能力,具体内容如下
     1、摇杆-转向架式月球车结构。目前对月球车移动机构的研究主要集中在底盘式悬挂移动机构、关节式移动机构、主动变形式移动机构和摇杆-转向架移动机构,其中摇杆-转向架移动机构综合性能最好,其结构形式简单、复杂地形适应能力、车轮支撑力波动范围小和越障能力强。接触角对于摇杆-转向架式月球车来说是个很重要的参数,其影响着摇杆-转向架移动机构各车轮的受力分布。本文基于速度投影定理,给出了计算摇杆-转向架式月球车各车轮接触角的计算式,接触角的计算是第四章中优化车轮驱动力的基础。
     2、车轮在松软月面的驱动能力与在平整地面的驱动力有很大不同,车轮在松软的月面将会产生下陷和滑动。基于Bekker轮-地力学理论的车轮驱动力计算公式复杂,不适合直接计算,为实现车轮驱动力预测,为车轮驱动力优化提供计算基础,本文采用基于最小二乘法的数据拟合方法对车轮驱动力进行数值拟合计算,为实时的车轮驱动力预测提供可行的方法,从而实现对车轮驱动力的优化。月球车的通过性能与车轮在月壤上的下陷深度、车轮驱动力以及车轮的驱动效率这三方面因素密切相关。综合考虑三方面的因素,本文经过数值拟合计算提出了车轮尺寸选择依据并获得合理的车轮尺寸参数区域。
     3、车轮驱动力实验。本文设计了车轮驱动力实验系统,尽可能模拟月海状态,做了不同牵引力条件和不同轮面状态下的通过性试验,取得了一组实验数据。车轮驱动力实验中测量的参数包括车轮在沙面前进时的车轮驱动电机速度、车轮前进速度和下陷深度,这些参数通过数值拟合计算可以得出车轮驱动力大小,通过分析并对比数值拟合计算结果,给出了最佳车轮的参数范围。虽然通过增大车轮滑动率可以产生更大的驱动力,但大的滑动率降低了驱动效率,提高车轮的驱动效率对能源有限的月球车很重要的。为了增强车轮驱动力,减小滑动率,在车轮表面均匀地增加轮刺,车轮在前进时会获得由轮刺挤压沙壤而产生的额外驱动力,使车轮驱动力得到增强。轮刺增大驱动力、减小滑动的同时也带来了车轮在垂直沙面方向上周期性的位移波动,这是对月球车前进稳定性不利的一个影响因素,车轮前进速度也山于轮刺的作用产生了周期性的波动。车轮在垂直地面上的周期波动和前进速度的波动对于月球车来说是一个周期性的激励,其频率应与月球车系统的固有频率避开,防止月球车前进时产尘较大的振动。由带有轮刺的车轮产生的波动周期是车轮电机转速、车轮尺寸、轮刺密度和滑动率的函数,本文通过分析给出了车轮波动频率计算公式,为避免产生月球车系统共振提供设计依据。
     4、月球车的不平月面几何通过性。摇杆-转向架式月球车每个车轮都具有独立的驱动系统,在不平月面时各轮接触角各不相同,单独考虑每个车轮的月面通过性是不全面的。如果车轮驱动力输出不协调控制,在松软月面前进时很容易因为某一个车轮受力过大而导致下陷过深失去驱动能力,使整个月球车无法前进,所以车轮驱动力的协同控制是月球车在不平月面几何通过性的重要保证。本文基于序列二次规划算法优化摇杆-转向架式月球车车轮系统驱动力输出,建立保证月球车在月壤平稳安全通过的力学约束方程,以车轮驱动功率和驱动力变化最小为目标函数优化车轮驱动力输出,使月球车平稳前进的同时车轮驱动电机功率消耗最小,这对能源有限的月球车来说是很有意义的。通过建立摇杆-转向架式月球车动力学方程,模拟月球车通过不平月面时车轮驱动力优化输出,通过MATLAB软件编写仿真程序并输出优化仿真结果。
     5、越障能力。摇杆-转向架式月球车必须具有很强的地形适应能力和越障能力。首先研究了摇杆-转向架移动机构尺寸对月球车越障能力的影响,综合通过性能、占有空间,得到了摇杆-转向架移动机构的合理设计参数,并通过ADAMS进行了仿真验证。月球车车体内部科学仪器不同的布置方式会产生不同的重心位置,月球车车体重心布置直接影响着摇杆-转向架月球车的越障能力,不合适的重心位置会使月球车失去越障能力。基于准静力学研究重心位置对于摇杆-转向架式月球车越障能力的影响,并获得满足越过台阶障碍要求的重心位置可行域,为车体内科学仪器的布置提供依据。
There is much big difference between moon and earth,such as temperature,rang of temperature varying,gravity and vacuum.The lunar rover will be lunched in second stage of moon exploration of china.Surviving on the moon is first thing for lunar rover.The second thing is to cruise on the moon.So one of the most important questions is lunar terrain trafficability for lunar rover.
     The lunar rovers of former Soviet Union and America ever sank deeply in lunar soil and exploration plan were changed because lunar terrain trafficability of lunar rover was poor.Yrafficability of lunar rover includes trafficability of wheel supporting, geometric trafficability on tough lunar terrain and capability of climbing obstacle. This paper researches on driving force of wheel on lunar soil,the criterion of selecting wheel dimension,geometric trafficability on tough lunar terrain,the driving force optimization of wheel for moving safely on the moon,capability of climbing obstacle. The details are following:
     1.Analysis on the characteristic of lunar rover of rocker and bogie.Now researchers who make researches on mobile system of lunar rover mostly focus on chassis suspension mechanism,joint mobile mechanism,shape shifting mobile mechanism and rocker and bogie mechanism.All of these,the rocker and bogie mechanism is best. It has simple structure,the ability to adapt tough terrain,narrow range of wheel supporting force varying and good capability of climbing obstacle.Contact angle is an important parameter for lunar rover of rocker.and bogie.It affects the wheel force distributing of lunar rover.The formula of calculating contact angle was gained based on velocity projection theorem in this paper.It will be used in optimization of force driving of wheel.
     2.Driving force of wheel on soft lunar soil is much different with wheel on the ground of the earth.Wheel sinks and slides easily on lunar soil.The driving force formula of wheel based on Bekker formula is much complex,for forecasting driving force,curve fitting based on least squares method was introduced to simplify formula driving force.The driving force can be calculated through measuring wheel sinkage and slide.The diameter and width of wheel decide the trafficability of lunar rover on tough lunar terrain.The criterion of selecting dimension of wheel was developed with a view of wheel sinkage,driving force and driving efficiency.
     3.Experiments of wheel driving force.The experiment system of driving force was established for testing driving force characteristics of wheel moving on soft soil which force characteristics is similar to lunar soil.The parameters which were measured in driving force experiment include velocity of driving motor,velocity of wheel and wheel sinkage.These parameters can be calculated to derivate driving force of wheel. The difference between actual driving force of wheel and driving force of calculation was compared and the range of wheel dimension was recommended.Increasing slide can decrease efficiency of wheel driving though driving force can be increased through increasing slide.In experiments,grousers were added to wheel surface to increase driving force of wheel.Grousers can increase driving force of wheel.Yet grousers also introduce vertical wave of wheel.It is disadvantageous to stability of lunar rover.The frequency of wheel wave is a function of velocity of wheel motor, dimension of wheel,density of grousers and wheel slide.The formula of frequency of wheel wave was derivated in this paper.It is a criterion of avoiding sympathetic vibration of lunar rover.
     4.Geometric trafficability on tough lunar terrain.Every wheel of lunar rover of rocker and bogie has an own driving system.The contact angles of wheels on tough lunar terrain are different.So considering trafficability of every single wheel isn't circumspect.If driving force of wheels are not concerted,it will happen that some wheel sinks and can't produce driving force since wheel sinks too deeply.So cooperative controlling of driving force of wheel is a key of trafficability on tough lunar terrain.Based on SQP algorithm,driving force of wheel was optimized. Optimization is based on restriction of moving safely and smoothly.The aim of optimization is to minimize power consume of motors and varying range of driving force.It is important for lunar rover which power is limited.Dynamic equation of Lagrange was established.It was simulated that lunar rover moves on tough terrain moon.And optimization results of wheel driving force were derivated through Matlab software.
     5.Analysis on capability of climbing obstacle.The lunar rover of rocker and bogie must has good capability of climbing obstacle and adaptive for tough lunar terrain. The dimension of rocker and bogie mechanism was determined according to lunar terrain and design of climbing obstacle.The body of lunar rover has different position of gravity when arrangement of instrumentation in body is different.The position of gravity affects capability of climbing obstacle;improper position of gravity center depresses climbing obstacle capability.The feasible range of gravity center was found out through quasi-static analysis.
引文
蔡自兴2000.机器人学[M]北京:清华大学出版社
    崔平远,刘冰,居鹤华.2008.月壤力学参数在线估计计算法研究[J]计算机测量与控制Vol 16(2):245-248
    国家国防科技工业局,2008 http://www.clep.org.cn
    利兴锁2001.理论力学[M]西安:西北工业大学出版社
    侯丹 月球探测工程的目的和意义.http://www.space.cetin.net.cn/2007年1月
    胡运康,景荣春.2006.理论力学[M]北京:高等教育出版社
    黄祖永1985.地面车辆原理[M]北京:机械工业出版社
    李建桥,邹猛,贾阳等.2008.用于月面车辆力学试验的模拟月壤研究[J]岩土力学 Vol 29:1157-1161
    李增刚2007.ADAMS入门详解与实例[M]北京:国防工业出版社
    刘卫国2006.MATLAB程序设计与应用[M]北京:高等教育出版社
    刘延柱2001.高等动力学[M]北京:高等教育出版社
    刘又文,彭献.2006理论力学[M]北京:高等教育出版社
    纪峻岭.2005传动轴、差速器、驱动桥及车桥[M]北京:化学工业出版社
    欧阳自远2005月球科学概论[M]北京:国家宇航出版社
    庞振基,黄其圣.2000精密机械设计[M]北京:机械工业出版社
    乔凤斌,杨汝清.2004.六轮移动机器人爬楼梯能力分析[J].机器人第26卷第4期:301-305
    施广燕,董加礼等.1999.最优化方法[M].北京:高等教育出版社,
    宋轶群,杜华生,王德新等.2004.一种全自主移动机器人控制系统研究[J]机械与电子8:48-50
    王国强2002.虚拟样机技术及其在ADAMS上的实践[M]西安:西北工业大学出版社
    王正林,刘明2006.精通MATLAB7[M]北京:电子工业出版社
    王佐伟,梁斌,吴宏鑫.六轮月球探测车运动学建模与分析[J].宇航学报,2003年9月,第24卷第5期:456-462
    徐正飞,杨汝清,翁新华.2003.移动机器人四杆地形感知机构的设计[J]机械工程学报4:44-48
    尹忠旺,丁希仑,郑岳山2008.基于ABAQUS的月壤有限元建模及仿真分析[J]学术论文Vol 11:46-48
    张铁,谢存禧.2001.机器人学[M]广州:华南理工大学出版社
    郑健荣2002.ADAMS--虚拟样机技术入门与提高[M]北京:机械工业出版社
    郑永春,欧阳自远,王世杰,邹永廖.2004.月壤的物理和机械性质[J].矿物岩石 Vol.24:14-19
    中华人民共和国国务院新闻办公室.2006.2006年中国的航天
    A.Kawakami,A.Torii,Hirose.2001.Design of SMC Rover:Development and Basic Experiments of Arm Equipped Single Wheel Rover[C]Proc.IEEE/RSJ IROS
    A.Kawakami,A.Torii,K.Motomura,S.Hirose.2003.SMC Rover:Planetary Rover with Transformable Wheels[C].Springer-Verlag Berlin Heidelberg:498-506
    A.Kemurdjian,V.Gromov,V.Mishkinyuk,et zl.1992.Small marsokhod configuration[C]International conference on robotics and automation:165-168
    A.L.Kemurdajian,1998.Planet rover as an object of the engineering design work[C].International conference on robotics and auto'nation:140-145
    A.R.Reeee,1965.Principles of soil-vehicle mechanics[C]Proceedings of the institution of mechanical engineers vol.180 part 2A,1965-1966
    Anthony H.Young.2007.Lunar and Planetary Rovers:The Wheels of Apollo and the Quest for Mars[M].Publisher Springer New York
    Atsushi Kawakami,Akinori Torii,Kazuhiro Motomura,et al.2002.SMC Rover:Planetary Rover with Transformable Wheels[C]Proc.of SICE Annual Conference:391-396
    B.H.Foing,D.J.Heather,M.Almei.da,et al.2001.The science goals of ESA's smart-1 mission to the moon[M]Earth,Moon and Planets 85-86:523-531
    B.K.Muirhead.2004.Mars rovers,past and future[C].IEEE Aerospace conference proceedings:128-134
    Brett Kennedy,Hrand Agazarian,Yang Cheng,et al.2001.Lemur:Legged Excursion Mechanical Utility Rover[J]Autonomous Robots 11:201-205
    Brian D.,Harrington,Chris Voorhees.2004.The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover[C]Aerospace Mechanisms Symposium,Johnson Space Center:185-194
    Brian Harvey.2007.Soviet and Russian lunar exploration[M].Published in association with praxis publishing
    Byoung S.Chol,Shin Min song.1998.Fully automated obstacle-crossing gaits for walking machines[J].IEEE Transactions on system,Man and Cybernetics 18(6):955-95
    Charles R.Weisbin.1997.Robots in Space:U.S.Missions and Technology Requirements into the Next Century[J]Autonomous Robots 4:159-173(1997)
    Christopher A.Brooks,Karl D.lagnemma,Steven Dubowsky.2006.Visual wheel sinkage measurement for planetary rover mobility characterization[J]Auton Robot 21:55-64
    Cornelius Lanczos.1986.The Variational principles of mechanics[M]Published by Courier Dover Publications
    D.Shirley,J.Matijevic.1995.Mars Pathfinder Microrover[J]Autonomous Robots 2:283-289
    Davies,Colvin,J.Geophys.2000.Apollo Landing Site Coordinates[M]Res.v.105:227-280
    De Hon R A.1980.Variations in interior morphology of 15-20 km lunar craters implications for a major sub-surface discontinuity[J]
    Denavit.J.,R.S.Hartenberg.1955.A kinematic notation for lower pair mechanisms[J].Journal ofApplied Mechanics:215-221.
    Desheng Lu,Bingrong Hong,Haoxuan Tang.2004.Virtual Prototype Model for Lunar Rover Missions[C].Applications of Digital Image Processing:743-571.
    Dong Hun Shin,Kyung Hoon Park.2001.Velocity kinematic modeling for wheeled mobile robots[C]International Conference on Robotics & Automation:3516-3522
    E.M.Galimov.2005.Luna-Glob project in the context of the past and present lunar exploration in Russia[J].J.Earth Syst.Sci.114,No.6:801-806
    ESA Media Relations Service.2002.Liftoff for Aurora:Europe's first steps to Mars,the Moon and beyond,http://www.esa.int
    Fiorini,2000.Paolo.Ground mobility systems for Planetary exploration[C]International Conference on Robotics and Automation v1:908-913
    Giuseppe D.Racca,Bernard H.Foing.2001.Smart-1:The First Time of Europe to the moon[M]Earth,Moon and Planets 85-86:379-390
    Gromov 1999.Physical and mechanical properties of lunar and planetary soils.Earth,Moon and Planets,80:51-72
    H.Z.Zhuang,S.X.Du,T.J.Wu.2005.Real-Time Path Planning for Mobile Robots[C].International Conference on Machine Learning and Cybernetics.Guangzhou,18-21 August 2005.
    Hans J.Weber,George B.Arfken.2005.Mathematical Methods For Physicists[M]Publisher:Academic Press;6 edition
    Heiken G H,Vaniman D T,Frend B M.1991.Lunar sourcebook-a user's Guide to the moon[M].Cambridge University Press
    J.C.Alexander,J.H.Maddocks.1989.On the kinematic of wheeled mobile robots[J].International J Robotics Research(5):15-26
    James G.Williams,Jean O.Dickey.2002.Lunar Geophysics,Geodesy,and Dynamics[C]13th International Workshop on Laser Ranging
    Jitendranath Goswami.1997.Pathfinder on Mars:A new era of planetary exp!oration[J] Resonance vol 2
    K.Schilling,C.Jungius.1996.Mobile robots for planetary exploration[J].Control Engineering Practice,v4,n4:513—524
    Karl Iagnemma,Christopher Brooks,Steven Dubowsky.2004.Visual,Tactile,and Vibration-Based Terrain Analysis for Planetary Roversl-2[C]Aerospace Conference Proceedings:841-848
    Karl Iagnemma,Dubowsky,S.2000.Mobile Robot Rough-Terrain Control(RTC)for Planetary Exploration[C]ASME Biennial Mechanisms and Robotics Conference:1-8
    Karl lagnemma,Rzepniewski Adam,Dubowsky Steven,et al.2000.Mobile robot kinematic reconfigurability for rough terrain[C]The International Society for OPtical Engineering,v4196:413-420
    Karl Iagnemma,Rzepniewski Adam,Dubowsky Steven,et al.2003.Control ofrobotic vehicles with actively articulated suspensions in rough terrain[J].Autonomous Robots v14,nl:5-16
    Karl Iagnemma,Shinwoo Kang,Christopher Brooks,et al.2003.Multi-Sensor Terrain Estimation for Planetary Rovers[C]International Symposium on Artificial Intelligence Robotics and Automation in Space
    Karl Iagnemma,Shinwoo Kang,Hassan Shibly,et al.2004.Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers[J]Transactions on robotics vol 20 no 5:921-927
    Karl Iagnemma,Shinwoo Kang,Christopher Brooks,Steven Dubowsky.Multi-Sensor Terrain Estimation for Planetary Rovers
    Kazuya Yoshida,Hiroshi Hamano,Toshinobu Watanabel.2003.Slip-based Traction Control of a Planetary Rover[J]Experimental Robotics Ⅷ,STAR 5:644-653
    Kazuhiro Motomura,Atsushi Kawakami,Shigeo Hirose.2003.Development of arm equipped single wheel rover:effective arm-posture-based steering method[C]International Conference on Robotics & Automation:63-68
    Krotkov,J.Bares,L.Katragadda,et al.1994a.Lunar Rover Technology Demonstrations with Dante and Ratler[C]International Symposium on Artificial Intelligence,Robotics,and Automation for Space
    Krotkov,R.Simmons Krotkov,Simmons.1995a.Perception,Planning,and Control for Autonomous Walking with the Ambler Planetary Rover[J],International Journal on Robotics Research
    Lamboley,C.Proy,et al.1995.Marsokhod:autonomous navigation tests on a Mars-like terrain[J].Autonomous Robots v2 n4:345—351
    Leonard D.Jaffe.1972.Shear strength of lunar soil from oceanus procellarum[J].The Moon 8:58-72
    M.G.Bekker.1956.Theory of land locomotion[M]University of Michigan Press
    M.G.Bekker.1960.Off-the-road locomotion[M]University of Michigan Press
    M.G.Bekker.1969.Introduction to terrain-vehicle systems[M]University of Michigan Press
    M.Tarokh,G.McDermott,S.Hayati,Hung..1999.Kinematic modeling of a high mobility mars rover[C]International Conference on Robotics &Automation:992-998
    M.Thianwiboon,V.Sangveraphunsiri,R.Chancharoen.2001.Rocker-Bogie Suspension Performance[C].IPC2001D079
    Mark Williamson.2002.Man on the moon:the technology of lunar exploration[J]Engineering science and education journal:217-226
    Moshe P.Mann,Zvi Shiler.2005.Dynamic stability of a rocker bogie vehicle:longitudinal motion[C]International Conference on Robotics and Automation:861-866
    N.A.cabrol,E.A.Bettis,B.Glenister,et al.2001.Nomad rover field experiment,Atacama desert,chile2.Edentification of paleolife evidence using a robotic vehicle:lessons and recommendations for a mars sample return mission[J]Journal of geophysical research,vol.106,no,E4:7807-7815
    Oberbeck V R,Quaide W L,Gault D E,et al.1974.Smooth plains and continuous deposits of craters and basins[J]pi 11-136
    P.N.Sheth,J.J.Uicker Jr.1971.A Generalized.Symbolic Notation for Mechanisms[J]Journal of.Engineering for Industry,Series B,Vol.93,No.70-.Mech-19:102-112
    Pedersen L.,Whgner M.,APostolopoulos D.,et al.2001.Autonomous robotic meteorite identification in Antarctica[C].International Conference on Robotic sand Automation.v4:4158-4165
    Pierre Lamon,Krebs A.,Lauria M.,et al.2004.Wheel torque control for a rough terrain rove[C]International Conference on Robotics and Automation Vol 5:4682-4687
    Pierre Lamon,Thomas Th(u|¨)er,Rolf Jordi,et al.2004.Modeling and optimization of wheeled rovers[C]ESA Workshop on advanced space technologies for robotics and automation
    Pierre Lamon,Roland Siegwart.2005.Wheel Torque Control in Rough Terrain-Modeling and Simulation[C]International Conference on Robotics and Automation:867-872
    Pike R.J.1974.Deepth/diameter relations of fresh lunar craters-Revision from spacecraft data[J]Geophysical Research Letters(S0094-8276),1:291-294
    R.Damoto,A.Kawakami,S.Hirose.2001.Study of Super-Mechano Colony:concept and basic experimental set-up[J]Advanced Robotics:391-408
    S.Hirose.1999.Super-Mechano-Colony and SMC Rover with Detachable Wheel Units[C]Proc.COE workshop:67-72
    S.Hirose,A.Kawakami,K.Kato,et al.1999.Super-Mechano-Colony and SMC Rover with Detachable Wheel Units[C],Proc.COE workshop '99:67-72
    Seraji,Homayoun.2000.Fuzzy Traversability Index:A new concept for terrain-based navigation[J].Journal of Robotic systemsv17,n2:75-91
    Shamah Ben,Apostolopoulos Dimi,et al.Field validation of Nomad's robotic locomotion[C].The International Society for Optical Engineering,v3525:214-222
    Shigeo Hirose,Hiroyuki Kuwahara,Yasufumi Wakabayashi,et al.1997.Mobility and Remote Control Schemes of an Offset-Wheel Rover Vehicle[C]Int.Conf.On Mobile Planetary Robots & Rover Roundup
    Shigeo Hirose,Hiroyuki Kuwahara,Yasufumi Wakabayashi,et al.1997.The Mobility Design Concepts/Characteristics & Ground Testing of an Offset-Wheel Rover Vehicle[C]Conf.On Mobile Planetary Robots & Rover Roundup:1-14
    Shigeo Hirose,Naritoshi Ootsukasa,Takaya Shirasu,et al.1995.Fundamental Considerations for the Design of a Planetary Rover[C]Proc.ICRA:1939-1944
    Shigeo Hirose,Riichiro Damoto,Atsushi Kawakami,et al.2000.Study of Super-Mechano-Colony(Design of Experimental Model and Its Fundamental Experiments)[C]Proc.COE workshop:83-89
    Stoker,C.R.,Cabrol N.A.,Roush T.R.,et al.1999.The 1999 Marsokhod rover mission simulation at silver lake,California:mission overview,data sets,and summary of results[J]Journal of geophysical research.vol.106:7639-7663
    Suksun Hutangkabodee,Yahya H Zweiri,Lakmal D Seneviratne,et al.2006.Performance Prediction of a Wheeled Vehicle on Unknown Terrain Using Identified Soil Parameters[C]International Conference on Robotics and Automation:3356-3361
    W.T.HUNTRESS.2003.Lunar and planetary robotic exploration missions in the 20~(th)century[J]Space Science Reviews 107:541-649
    W.Sohne 1958.Fundamtionals of pressure distribution and soil compaction under tractor tires[J]Agricultural Engineering
    Weidong Pan,Yiannis Papelis,Yefei He.2004.A Vehicle-Terrain System Modeling and Simulation Approach to Mobility Analysis of Vehicles on Soft Terrain[C]Proceedings of SPIE Vol.5422:520-531
    Xinyi Yu,Zongquan Deng,Haitao Fang,et al.2006.Research on Locomotion Control of Lunar Rover with Six Cylinder-conical Wheels[C]International Conference on Robotics and Biomimetics:919-923
    Yoji kuroda,Teppei Teshima,Yoshinori Sato,et al.2004.Mobility performance evaluation of planetary rover with similarity model experiment[C]International conference on robotics & automation:2098-2103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700