月球车轮壤作用力学特性的测试与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用月球车在月球表面进行科学考察是月球探测的关键技术之一。为了完成探测任务,希望月球车运动很远的距离,越过复杂的地形;月球表面有杂乱的岩石以及覆盖一层厚厚的月壤,月球车在上面行走会出现打滑沉陷、翻滚,影响运动性能。月球车车轮与月壤直接接触,不仅起到承载月球车的作用,而且对月球车的运动能力、适应地形的能力也有很重要的作用。因此,研究车轮与地面的相互作用力学性能,对于开发具有较高通过性的月球车起到很重要的作用,其对月球车的整体构型设计、运动学分析、参数的辨识和路径规划等都起到很重要的作用。本文主要进行单轮实验装置控制和数据采集系统设计,月球车车轮在模拟月壤中的驱动性能理论、仿真与实验,以及车轮驱动性能的研究。
     基于地面力学理论和研究方法,设计月球车单轮实验装置控制和数据采集系统,建立驱动电机控制模型,控制和数据采集系统主要由硬件和软件两部分组成,能够实现对各电机的运动控制和传感器的数据采集,并进行相关驱动性能实验;进行车轮构型参数、土壤参数、载荷、滑转率和车轮牵引性能间的相互关系分析,建立轮地作用数学模型,通过实验验证理论模型在预测月球车驱动车轮牵引性能方面的正确性。
     在实验与仿真的基础上对车轮的驱动性能进行研究,运用驱动性能评价指标分析车轮构型参数对驱动性能的影响;基于实验数据详细阐述土壤承压特性参数、剪切特性参数以及垂直载荷对车轮驱动性能的影响;利用轮地作用原理分析月球车的爬坡能力,并给出改善方法。
Surface mobility by using wheeled mobile robots (Rovers) is one of the important technologies for lunar/planetary exploration missions. These planetary exploration rovers are expected to travel long distances and perform complex tasks in order to fulfill challenging mission goals. Surface terrain of the Moon is covered with fine-grained soil called regolith, or boulders, rocks, or stones spread over the terrain. Because of the challenging terrain, the rover should be aware of mobility hazards, such as wheel slip/stuck, vehicle tip-over, and collision with obstacles. In particular, the wheel will easily slip on loose soil, and then, wheels might get stuck. Subsequently, Research on the mechanical character of wheel-soil interaction and actuating the character of wheel has important significance for developing wheel. It is also important for the dynamic analysis, parameter distinguishing, simulation, road planning, and relative technology of the whole lunar rover. This dissertation researches the designing the data acquisition and control system of the experimental facility. Use theory and experiment of the lunar rover on the homologous soil. Evaluation way by actuating character of the wheel is a part in it.
     Based on the theory of terrain mechanics and studying method, the model of the driving electromotor is build up and designed the data acquisition and control system of the experimental facility which is constituted by the hardware and software. The electromotor and sensor could be drived and acquired by the system. the mathematical models between wheel and terrain are built up by analyzing the relation of construction, soil parameters, interacting load, slip ratio, traction of the wheel, furthermore validated the model through the wheel-soil interactions experiment.
     Finally, the research on traction performance evaluation methods is made to base on the theoretical research, simulation and experiments of wheel. The slope traversability analysis for slope climbing limit is described. The improvement of the trafficability limit is also suggested.
引文
1 D. J. Lawrence, W. C. Feldman, B. L. Barraclough, et al. Global Elemental maps of the Moon: The Lunar Prospector Gammaray Spectormater. Science. 1998, 281(4): 1984~1988
    2 Grant Heiken, David Vaniman, M. Bevan French. Lunar Source Book—A User’s Guide to the Moon. Cambridge University Press. 1991:121~474
    3 Ouyang Zjyuan, Zou Yongliao, Li Chunlai, et al. Prospect of Exploration and Utilization of Some Lunar Resources. Earth Science—Journal of China University of Geosciences. 2002, 27(5):498~503
    4欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展. 2004, (3):351~358
    5 R. Bernstein. Problems of the Experimental Mechanics of Motor Ploughs. Der Motorwagen. 1913, (16):9~10
    6 E. W. E. Micklethwait. Soil Mechanics in Relation Fighting Vehicles. Military Coll.of Science. 1944:123~450
    7 Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proc. 1st Int. Conf. of ISTVS, Torino. 1961:707~736
    8 A. R. Reece. Problems of Soil-Vehicle Mechanics.U.S.Army L.L.L, ATAC, No.8479 Warren, Mich. 1966:211~234
    9 A. Scholfield, P. Wroth. Critical State Soil Mechanics, Mc Graw-Hill. 1968:12~31
    10 J. V. Perumpral, J. B. Lilzedahl and W. H. Perloff. A Numerical Method for Predicting the Stress Distribution and Soil Deformation under a Tractor Wheel. Journal of Terramechanics. 1971, 8(1):9~22
    11 S. WANJII, T. HIROMA. Prediction of Wheel Performance by Analysis of Normal and Tangential Stress Distributions under the Wheel Soil Interface. Journal of Terr amechanics. 1998, 34(3):165~186
    12 I. Shmulevich, U. Mussel. The Effect of Velocity on Rigid Wheel Performance. Journal of Terramechanics. 1998, 35(3):189~207
    13 W. Hermawan, M. Yamazaki. Theoretical Analysis of Soil Reaction on a Lug of the Movable Lug Cage Wheel. Journal of Terramechanics. 2000, (37):65~86
    14 K. Fukami, M. Ueno. Mathematical Models for Soil Displacement under A Rigid Wheel. Journal of Terramechanics. 2006, (43):287~301
    15张克键,张相麟.履刺效应的有限元分析.兵工学报. 1982, (4):54~60
    16谢小研,邵耀坚.水田表层土壤粘度及承压特性的探讨.中国地面机械系统研究会第四届年会论文集. 1987:21~24
    17王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报. 1995, (4):33~38
    18李杰,庄继德,翟忠魁.车辆行驶的表层沙土非线性弹性本构模型的实验研究.农业工程学报. 1996, (2):54~58
    19樊慧文.地面—车辆系统模型及性能预测.物探装备. 1997, (4):7~12
    20李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法.农业机械学报. 2003, (3):5~7
    21李杰.车辆行走机构与沙地相互作用及仿骆驼蹄轮胎力学模型的研究.吉林工业大学. 1997:45~50
    22 K. Iagnemma. A Labrotory Single Wheel Testbed for Studying Plannetary Rover Wheel-Terrain Iteraction. MIT Field and Space Robotics Laboratory, Technical Report 01-05-05. 2005:49~54
    23 D. S. Apostolopoulos. Analytical Configuration of Wheeled Robotic Locomotion. Robotics Institute Carnegie Mellon University. CMU-RI-TR-01-08. 2001:1~3
    24 K. Yoshida, T. Shiwa. Development of a Reasearch Testbed for Exploration Rover at Tohoku University. Journal of Space Technology and Science. 1996, 12(1):9~16
    25 G. Ishigami. Terramechanics-Based Analysis and Control for Lunar/Planerary Exploration Robots. Tohoku University, Ph.D Dissertation. 2007:9~10
    26 K. Yoshida, G. Ishigami. Steering Characteristics of a Rigid Wheel for Explaration on Loose Soil. Proc of the 2004 IEEE Int. Conf. on Intelligent Robots and Systems Sendai, Japan. 2004:3995~4000
    27 H. Fujii. Analysis of Interaction between Lunar Terrain and Treaded Wheel by Distinct Element Method, ISTVS14th. 2002:20~24
    28王林.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨工业大学硕士学位论文. 2006:7~9
    29陈世荣.摇杆-转向架式月球车月面通过性能研究.中国科学技术大学博士学位论文. 2009:3~5
    30 NASA JPL Uses Working Model 2D and 3D for Asteroid Mission with Japanese Space Institute. www.workongmodel.com
    31 Yoji Kuroda, Teppei Teshima, Yoshinori Sato. Mobility Performance Evaluation of Planetary Rover with Similarity Model Experiment. IEEE ICRA New Orleans, LA. 2004:2098~2103
    32 L. Richeter, A. Ellery, Gao Y, et al. A Predictive Wheel-Soil Interaction Model for Planetary Rovers Validated Test Beds and Against MER Mars Rover PerformanceData. 10th European Conference of the International Society for Terrain-Vehicle Systems. Budapest, Hungary October 3~6. 2006:55~67
    33 H. Nakashima, H. Fuji, A. Oida, M. Momozu. Parametric Analysis of Lugged Wheel Performance for a Lunar Micro Rover By Means of DEM. Journal of Terramechanics. 2007, (44):153~162
    34 I. H. Kojiro, Kanamori, TK. Experimental Study on Rover Mobility on Lunar Simulant Terrain. Proceedings of the 15th International Conference of the ISTVS. Hayama, Japan. 2005: 199~202
    35 H. Shibly, K. Iagnemma, S. Dubowsky. An Equivalent Soil Mechanics Formulation for Rigid Wheels in Deformable Terrain, with Application to Planetary Exploration Rovers. Journal of Terramechanics. 2005, (42):1~13
    36 Kazuyoshi Tateyama. Development of a Simple Shear Test Apparatus with Low Confining Pressure for a Regolith Simulant. Proceedings of the Joint North America. Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Alaska. 2007:70~71
    37刘暾,杜建军,院老虎等.一种新的月球车行走系统构型及驱动控制研究.中国空间科学学会空间机械年会. 2005:89~93
    38侯建,齐乃明.月球车视觉系统立体匹配算法研究.南京理工大学学报(自然科学版). 2008, (2):176~180
    39 J. Hou, N. Qi, H. Zhang. A Multi-Stage Matching Algorithm for Mobile Robot Navigation. Industrial Robot. 2007, 34(1):54~59
    40张建英,刘暾.基于人工势场法的移动机器人最优路径规划.航空学报. 2007, (1):183~188
    41毕贞法,邓宗全.两轮并列式月球车的性能及其稳定性分析.哈尔滨工程大学学报. 2006, 27(4):560~564
    42禹鑫燚,高海波,邓宗全.新型八轮月球车不同运动学建模方法及分析.北京航空航天大学学报. 2009, 35(4):457~463
    43邓宗全,方海涛,董玉红等.六圆柱-圆锥轮式月球车多轮协调运动控制研究.哈尔滨工程大学学报. 2008, 29(1):73~77
    44骆训纪,孙增圻.月球漫游车仿真系统研究.系统仿真学报. 2002, (9):1235~1238
    45李圣怡,刘阳,戴一帆.月球探测车研制及其机电系统关键技术研究.第二届月球探测技术研讨会论文集. 2001:59~160
    46 C. Baichao, W. Rongben, J. Yang, et al. Design of a High Performance Suspension for Lunar Rover Based on Evaluation. Acta Astronautica. 2009, 64(9):925~934
    47 M. G. Bekker. Introduction to Terrain-Vehicle Systems. The University of Michigan.1969:30~35
    48 G. Ishigami, K. Yoshida, K. Yoshida. Slope Traversal Experiments with Slip Compensation Control for Lunar/Plantary Exploration Rover. 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA. 2008:2295~2300
    49 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stress, Part I: Performance of Driven Rigid Wheels. Jounal of Terramechanics. 1967, 4(1):81~89
    50 Z. JANOSI, B. HANAMOTO. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Deformable Soils. Proceedings of the 1st International Conference of ISTVES, Torino, Italy. 1961:707~726
    51 E. Hegedus. A Simplified Method for the Determination of Bulldozing Resistance. Land Locomotion Research Laboratory, Army Tank Automotive Command Report. 1960:61
    52杜建军,月球车行走系统总体结构规划与动力学的研究,哈尔滨工业大学博士后论文. 2006:57~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700