履刺式刚性轮在沙土上的牵引特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2004年,我国正式启动“嫦娥工程”,这标志着我国正式开展对月球的探测活动,作为了解月球最直接的一种方法是将月球探测车送上月球,通过其在月面的实际行走和采集月表的土壤样品等勘探作业,获取其地形、地貌、矿产资源信息,因此以刚性轮为接地部件的月球探测车必须能够适应复杂的月球地形环境、具有良好越障通过性,以保证月球车探测车能够完成各种任务。
     月球探测车通过各种地面和地形的能力包括支承通过性和越障通过性。支承通过性指在松软土壤上可靠行驶的性能,该性能取决于月球土壤性能;越障通过性指克服几何障碍(如垂直台阶、弹坑、壕沟)的性能,该性能与月球探测车的车轮结构密切相关。本文根据地面车辆力学的相关理论对刚性车轮与沙土相互作用的力学特性和试验方法进行了深入的分析和研究。
     本文阐述了月壤的物理及力学特性,并在力学特性中引入了月壤的承压、剪切力学模型,同时进行了试验用土的剪切试验,测量了试验用土的内聚力、内摩擦角、含水量和孔隙比等参数。
     参照地面车辆系统的研究方法,对月球车车轮进行了动力学分析,并建立了刚性轮在月面行驶时的挂钩牵引力模型,并得出了刚性轮的径宽比是影响其挂钩牵引力的重要因素。
     对试验所需月球车车轮性能测试系统,机械结构及驱动电机及主要传感器进行设计及选择。利用该设备进行了试验分析,选用正交试验优化设计方法,考察径宽比、垂直载荷和水平速度对挂钩牵引力的影响。试验结果表明,影响挂钩牵引力的影响因素依次是:径宽比,水平速度,垂直载荷;刚性轮的挂钩牵引力随径宽比增加而增加;分析试验结果得到了刚性轮挂钩牵引力随各因素的变化规律。
     利用有限元分析软件ANSYS,对刚性轮与沙土相互作用过程进行了三维有限元模拟分析。从接触应力和位移矢量等角度,进一步揭示了大径宽比的刚性轮具有较小的行驶阻力,从而为月球车通过性能的提高提供了设计依据和模拟试验方法。
Lunar rover, named planet detect robot, can proceed long-term practical exploration in place of the astronaut. But lunar rover do not hold enough traversing ability to ensure its normal work,when driving in the lax road. Generally, it can cross obstacles which height of these is smaller than the diameter of carwheel, and only step over the deep ditch which width of it do not exceed the diameter of wheel.Thus it can be seen, the performance of the lunar rover depends mostly on the performance of the lunar rover’s wheel.So it is important to study the mechanical performance of the wheel of lunar rover. Now some universities and institutes of China have made some samples of the lunar rovers and theirs wheels, but until now the wheel’s mechanical performance is seldom researched and tested. The paper is organized as follows:
     Firstly , introducing various index of describing its physical characteristic then the mechanical characters of the soil are separated to press-sinkage character and shear character based on Bekker’s theory, and common press- sinkage and shear models are introduced. These basic theories are helpful to construct the rigid wheel with sandy soil model. Some parameters of soil used for experiments are measured by shear experiments .By passing to check against, its various parameter indexs are close to lunar soil, it can be used for experimenting.
     The tractive trust is one of the key factors of vehicle moving. Based on the confirming drawbar pull of lunar rover, using related theories of the ground mechanics and the soil mechanics, I analyze various resistance and driving force of its subjecting to when the lunar rover driving on the surface of the moon. Finally I build the lunar rover dynamics model, then I have a conclusion that drawbar pull relate to the ratio of diameter to width of wheel.
     To study the performance of the wheel further, we design a test-bed. This test system can measure the followed mechanics parameters: drawbar pull、torgue and sinkage etc. at the same time try to imitate the lunar rover have the ability of crossing obstacle and come through various ground and geography normally, under the moon environment.This system has the function of the changed angle.It can measure the biggest angle of the slope that the lunar rover overcome upgrades.
     According to above design request, we have chosen the electrical motor and the direction electrical motor. Based on displacement and drawbar pull, we select displacement sensor and pull/press sensor and checked the driving capability and the distance demand .Experiment shows that the sensor can satisfy the performance requirement.
     Orthogonal test optimization is adopted in the rigid wheel passing ability test, which the primary and secondary factor is the ratio of diameter to width of wheel, the level speed and the load. I get the optimal combination is ratio of diameter to width of wheel is 3, speed at 3.6m/min and plumb load is 30N. One equation was obtained based on the one factor regression experiment. The rigid wheel equation between ratio of diameter to width of wheel and drawbar pull is: y = -11.758x2 + 81.729x - 58.512. Concluded by the orthogonal experiment, the quadratic equation between drawbar pull and these three factors was: y=-2.39+1.882Z1-0.03Z2+0.053Z3-0.006Z1Z2 -0.003Z1Z3-0.001Z2Z3-0.33Z12+0.001Z22
     Using ANSYS software to analyze three dimensional finite element model of rigid wheel and sandy soil contacting process. This method cannot only provide physical parameters that cannot be measured in experiments, but also modify the parameters of structure and movement conveniently. The method can shorten the development period of lunar rover and improve the testing technique. ANSYS simulation involves three parts: modeling, solution and analysis. The model of the contact of the rigid wheel with sandy soil was established after Studying on the interaction between rigid wheel and sandy soil. Element type, material and same parameters were defined. The model was meshed, limited conditions were added and resolution parameters were setup. Afterwards, the procedure of the contact of the rigid wheel with sandy soil was simulated. The simulation result was analyzed through powerful postprocess functions. 3D stress nephogram and Y direction stress curve through the path node for the driving soil were obtained. The simulating results showed that: the average stress on 200x100 rigid wheel surface was 0.251 KPa, the average stress on 250x200 rigid wheel surface was 0.267 KPa and the average stress on 300x100 rigid wheel surface was 0.238 KPa. The stress of the bigger rigid wheel with ratio of diameter to width of wheel reduced 10%coKParing with the smaller one. This shows the bigger rigid wheel can decrease rolling resistance and be helpful to lead sandy soil movement under moving lunar rover, which is useful to improve lunar rover trafficability.
引文
[1] 李晓艳.中国“探月”成期待.时事中国.2006 03 52-55
    [2] 王林.月球车车轮与沙土作用的力学特性分析与测试系统设计.[硕士论文] .哈尔滨工业大学.2006
    [3] 孙伟.轮式月球车驱动特性与控制技术研究.[硕士论文] .哈尔滨工业大学.2006
    [4] 孟宪伟.月球车车体差动平衡机构的设计及分析.[硕士论文] .哈尔滨工业大学.2006
    [5] 梁斌.王巍.王存恩.未来我国月球车的初步设想.中国航天.2003,(1):29-33
    [6] 殷礼明.褚桂柏.中国深空探测技术的发展与展望.国际太空.2003,(2):6-11
    [7] 叶培建.肖福根.月球探测工程中的月球环境问题.航天器环境工程.2006,23(1):1-11
    [8] 宋春霞.基于虚拟样机的月球车移动性能方针分析研究.[硕士论文].国防科学技术大学.2005
    [9] 高海波.邓宗全.胡明.王少纯.行星轮式月球车移动系统的关键技术.机械工程学报.2005,41(12):156-161
    [10] 高乃修 . 月球车驱动系统及其控制设计 .[硕士论文 ] . 吉林大学.2006
    [11] 庄继德.汽车地面力学.机械工业出版社.北京.1980
    [12] M.G..Bekker. Theory of land locomotion. The University of Michigan Press, Ann Arbor, Michigan, 1956
    [13] Z.Janosi., Hanamoto B.Analytical Determination of Drawar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proc. 1st Int. Conf. of ISTVS,Torino, 1961: 707-736
    [14] Reece. A. R. Problems of Soil-Vehicle Mechanics. U.S. Army L.L.L., ATAC, No.8479 warren, Mich., 1966
    [15] Scholfield A, Wroth P. Critical State Soil Mechanics. Mc Graw-Hill, 1968
    [16] Perumpral J V, Lilzedahl J B. and Perloff W H. A Numerical Method for Predicting the Stress Distribution and Soil Journal ofTerramechanics, 1971, 8(1):9~22
    [17] S.WANJII, T.HIROMA. Prediction Of Wheel Performance by analysis of Normal And Tangential Stress Distributions under The Wheel Soil Interface. Journal of Terramechanics. 1998, 34(3) :165-186
    [18] Shmulevich I, Mussel U. The effect of velocity on rigid wheel performance. Journal of Terramechanics, 1998, 35(3):189-207
    [19] Hermawan W, Yamazaki M.Theoretical analysis of soil reaction on a lug of the movable lug cage wheel.Journal of Terramechanics 2000,(37):65~86
    [20] Fukami K, Ueno M.Mathematical models for soil displacement under a rigid wheel.Journal of Terramechanics.2006.(43):287–301
    [21] K.Iagnemma, C. Brooks. Visual Tactile and VibrationBased Terrain Analysis for Planetary Rovers. Proceedings of the 2004 IEEE Aerospace C2004,(2):841-848
    [22] Carrier W D,O lhoeft G R,Mendell W., Physical properties of the lunar surface. In:Heiken G H,Vaniman D T, French B M.eds,Lunar Source book .Cambridge Univ. Press, New Yo rk. 1991: 475~594
    [23] Reece A A, Wils B M D. Force-slip wheel and track tester Mechanics of soil. Vehicle System. 1961:387~401
    [24] 陈炳聪.土壤-车辆系统力学.北京:中国农业出版社.1981
    [25] 张克健,张相麟.履刺效应的有限元分析.兵工学报.1982,(4):54~60
    [26] 邓卓荣,由书城.水田拖拉机行走机构与土壤相互关系的研究报告.中国地面机械系统研究会.第四届年会论文集.1987
    [27] 谢小妍,邵耀坚.水田表层土壤粘度及承压特性的探讨.中国地面机械系统研究会第四届年会论文集.1987
    [28] 庄继德.计算汽车地面力学.北京.机械工业出版社.2001
    [29] 刘聚德.车辆沙地行驶理论.北京.机械工业出版社.1996
    [30] 王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报.1995, (04):33~38
    [31] 李杰,庄继德,翟忠魁.车辆行驶的表层沙土非线性弹性本构模型的试验研究.农业工程学报.1996,(02):54~58
    [32] 刘大维,陈吉清,王国林.轮脚与土壤相互作用的有限元分析.农业机械学报.1996(3):12~17
    [33] 赵奇,徐颖,李杰.车辆行驶工况下的沙漠沙本构特性模型的建立.吉林大学学报(工学版).2003(1):42~45
    [34] 孙刚,高峰,李雯,孙鹏.深空探测中车辆地面力学研究内容与方法.第二届学术会议论文集.2005:445-451
    [35] 刘聚德.车辆沙地行驶理论.北京.机械工业出版社.1996
    [36] 庄继德.计算汽车地面力学.北京.机械工业出版社.2001
    [37] 郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质.矿物岩石.2004,24(4):14-19
    [38] 陈志,冯开明.核聚变与开发月球 3He 资源的可行性研究.科学技术与工程.2004,8(4):717-721
    [39] 杨水林.自动展开式月球车着陆梯结构设计与分析.[硕士论文] .哈尔滨工业大学.2006
    [40] 樊 慧 文 . 地 面 — 车 辆 系 统 模 型 及 性 能 预 测 . 物 探 装 备 .1997, (04):7~12
    [41] 王庆年,王志浩,李杰敏.车轮重复通过对沙土力学特性影响及参数预测.农业工程学报.1995, (04):33~38
    [42] 李杰,庄继德;,叶楠.确定松软地面剪切特性模型参数的新方法.农业机械学报.2003(3):5~7
    [43] 庄 继 德 . 现 代 汽 车 轮 胎 技 术 . 北 京 . 北 京 理 工 大 学 出 版 社 , 2001:65~78
    [44] 王占魁.深空探测器测控通信控制器的设计与实现.[硕士论文] .哈尔滨 工业大学.2006
    [45] 陈百超 . 月球车悬架研究及动力学仿真 .[硕士论文 ] . 吉林大学.2006
    [46] 邹猛,李建桥.月面车轮试验方法.中国农业机械学会 2006 年学术年会论文集.2006:694-698
    [47] 任露泉,贾阳,李建桥,王荣本,柳忠尧.月球车行走性能地面模拟试验方案设想.第二届学术会议论文集.2005:458-466
    [48] 李竑.基于立体视觉的月球车定位和路径规划.[硕士论文] .哈尔滨工业大学.2006
    [49] 任露泉.试验优化设计与分析.吉林科学技术出版社
    [50] 戴巍伟.11.00R20 载重子午胎结构非线性有限元分析.[硕士论文].江苏大学.2006
    [51] 赵志国.防风固沙草方格铺设机通过性研究.[硕士论文].东北林业大学.2005
    [52] 左信, 韩建立, 殷卫兵等. PID 仿真培训软件的开发及应用. 化工自动化及仪表. 2006, (2):50~55
    [53] 刘长国.全刚载重子午线轮胎稳态力学特性有限元分析.[硕士论文].吉林大学.2004
    [54] Vinogradov A P.Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe ′ Luna-16 ′ [J].Geochimica et Cosmochimica Acta(Proc.of2nd Lunar Science Conf.),1971,1(Suppl. 2):1-16.
    [55] McKay D S,Fruland R M,Heiken G H.Grain size and the evolution of lunar soils[A].In:Lunar Science Conference,5th1[C].1974, 887-906.
    [56] Mahmood A,Mitchell J K,Carrier W D, III, Grain orientation in lunar soil[A].In:Lunar and Planetary Science Conference5[C].1974, 2 347-2 354.
    [57] Shkuratov Y G,Bondarenko N V.Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data[J].Icarus,2001,149(2): 329-338
    [58] 张克健.汽车理论.安徽科学技术出版社,2000.8
    [59] 庄继德.计算汽车地面力学.机械工业出版社,2002.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700