货车与乘用车正面碰撞相容性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆碰撞相容性问题是目前造成不同车辆之间发生碰撞时伤亡率较高的重要原因之一,货车与乘用车正面碰撞相容性的问题尤为严重,如何提高货车与乘用车正面碰撞时的相容性成为汽车被动安全性分析中的一个关键环节。在车对车的碰撞中,良好的相容性要求,汽车不仅能保护自己车内乘员的安全,而且也必须考虑对方车内乘员的安全,使车辆对双方乘员能提供相同的安全保护水平。目前国内对车辆碰撞相容性问题的研究较少,因此开展这方面的研究具有重要的理论意义和工程应用价值。本文主要进行了以下几方面的研究:
     (1)综述了相容性问题的国内外研究现状,并综述了薄壁构件抗撞性优化的研究现状以及高吸能泡沫材料的研究现状,提出了碰撞相容性研究存在的问题及解决思路。然后基于显式有限元数值求解技术,给出了进行接触-碰撞界面的处理与算法,并给出了优化设计代理模型近似求解理论;
     (2)对四种不同截面结构薄壁直梁的耐撞性进行了研究,分析了结构参数的变化对结构耐撞性能的影响。以矩形薄壁梁为研究对象,对结构参数变化时薄壁直梁件轴向冲击载荷下的耐撞性进行了优化。探讨了提高矩形截面薄壁梁耐撞性能的改进措施。得到了不同结构参数和改进措施对结构耐撞性能的影响规律;
     (3)提出了在矩形薄壁梁内部填充成组圆管的组合梁结构,研究了组合梁在冲击载荷作用下的耐撞吸能特性,并分析了内部填充圆管直径(或排列)、壁厚和长度等参数变化对组合结构耐撞性能的影响。得到了填充圆管的数量、壁厚和长度参数变化对碰撞力峰值、碰撞力均值和吸能特性的影响规律;
     (4)参照欧洲ECE-R93法规,提出了在货车前下部安装前部钻碰防护装置FUP(Front Under-run Protector)来解决钻碰。建立了货车前下部防护装置的有限元模型,研究了静态载荷下FUP的防钻性能和冲击载荷作用下结构的能量吸收与变形特性,分析了FUP结构对货车与乘用车正面碰撞相容性的影响;
     (5)提出了在矩形薄壁梁内部填充圆管组的组合FUP支架,对内部填充圆管直径(或排列)、圆管壁厚和圆管长度等参数进行合理选择,研究了内部填充圆管的组合FUP在冲击载荷作用下的防钻性能和相容性;
     (6)研究了泡沫铝填充薄壁金属件的变形与吸能特性,建立了泡沫铝填充FUP支架的有限元数值模型,研究了泡沫铝填充FUP支架后对货车防钻碰性能和相容性的变化。最后采用响应面法对泡沫铝填充FUP的结构进行了优化研究,得到了耐撞性能较好的填充FUP结构。
Compatibility in a collision between different type vehicles is one of the important causes that results in big ratio of casualty. Compatibility between a passenger car and a truck is more serious in all impacts between vehicles. It is becoming a key items how to improve the level of compatibility in a frontal collision. We can say that the compatibility of a vehicle is good if it takes into account its partner passengers’safety as well as its own passengers’when two vehicles impact together. Thus the passengers in the different vehicles are safeguarded in the same safety level. Few researches focus on compatibility in a collision between different type vehicles. Therefore, it’s very important to research on this aspect.
     The main research works include:
     (1) At the beginning of the dissertation, recent developments of compatibility and crashworthiness of vehicles are briefly summarized. Thin-walled components optimization and researches on high energy-absorption foam materials are also summarized. The matters needed to been solved are found out and some schemes are put forward to solve this problem. Then, the main theoretical backgrounds are introduced, such as explicit finite element technique, contact-impact problems and response surface method;
     (2) The crashworthinesses of thin-walled straight beams with different shapes are studied based on finite element theory. Structural crashworthinesses are analyzed when the structural parameters are different. Thin-walled straight beam with rectangular section are studied based on dynamic finite element model. Crashworthiness optimization of thin-walled beam, which is subjected to axial impacting load, is processed. Many measures are researched to improve the crashworthinesses of thin-walled beams with rectangular section. The characteristics of various structures and measures effection on crashworthiness are derived;
     (3) The combined rectangular section thin-walled beams filled with circular section tubes are brought forward. Energy-absorbing characteristics and crassworthiness of the combined beams are studied while they are subjected to axial impacting loads. Influences of parameters change including diameter (or arrangement), wall thickness and length of filled tubes are analyzed on performance of combined beams. The parameters influences on crashworthiness are derived when they are different;
     (4) According to ECE regulation ECE-R93, front under-run protector (FUP) is put forward and installed on the truck in order to settle the issue of under-run. The finite element model of truck’s FUP is set up. The performance of FUP used to prevent from under-run is studied while it bears static load. Energy-absorbed performance and deformation characteristics of FUP are studied while it bears impacting loading. The influence of FUP assembly on compatibility is analyzed while a truck impacts passenger vehicle in a frontal collision;
     (5) FUP bracket which combining rectangular section thin-walled beams with circular section tubes is advanced. The parameters (including diameter, wall thickness and length of filled tubes) are selected correctly. The performances of combined FUP used to prevent from under-run and improve compatibility are studied;
     (6) Deformation and energy-absorbing characteristics of thin-walled component filled with foam aluminium are studied. The finite model of FUP filled with foam aluminium is set up. The influence of FUP filled with foam aluminium is studied on compatibility and characteristic of proteting from under-run. Finally, the structure of FUP bracket filled with foam aluminium is optimized by response surface method. Optimal structure of FUP bracket filled with foam aluminium is derived.
引文
[1]钟志华.汽车碰撞安全技术[M].北京:机械工业出版社,2003.
    [2] NHTSA 2005 Project“Motor Vehicle Traffic Crash Fatalities and Injuries”, 20-April-2006.
    [3] Ahmed M. Elmarakbi and Jean W. Zu. Numerical Analysis and Optimization of Vehicle Compatibility Using a Smart Vehicle Structure. SAE paper 2003-01-2802, 2003
    [4] Clay Gabler, Steven Summers, William T. Hollowell. NHTSA’s Vehicle Compatibility Research Program. SAE paper 1999-01-0071, 1999
    [5] NHTSA 2005 Project“Motor Vehicle Traffic Crash Fatalities and Injuries”, 20-April-2006.
    [6] William T Hollowell, Stephan M Summers, Aloke Prasad‘NHTSA’s Research Program for Vehicle Aggressivity and Fleet Compatibility’Vehicle Safety 2002. May 2002.
    [7] NHTSA 2005 Project“Motor Vehicle Traffic Crash Fatalities and Injuries”, 20-April-2006.
    [8] Motor Vehicle Traffic Crash Fatality Counts and Estimates of People Injured for 2006. September 2007
    [9] Summers, S. Hollowell, T. Prasad, A. NHTSA’S research program for vehicle compatibility, ESV 2003
    [10] Hampton C. Gabler. The evolution of side crash compatibility between cars, light trucks and vans. SAE paper 2003-01-9000, 2003
    [11] Hollowell, W.T., Gabler, H.C. 1996. NTHSA’s vehicle aggressivity and compatibility program. Proceedings of 15th International Technical Conference on Enhanced Safety Vehicles, DOT HS 808 465, pp. 576–592.
    [12] Clay Gabler, Steven Summers, William T. Hollowell. NHTSA’S Vehicle Compatibility Research Program. SAE paper 1999-01-0071, 1999
    [13] Stephen Summers. NHTSA's compatibility research program update. SAE paper 2001-01-1167, 2001
    [14] Stephen Summers. Design considerations for a compatibility test procedure. SAE paper 2002-01-1022
    [15] James W. Saunders III, Shashi Kuppa and Aloke Prasad. NHTSA’s Frontal Offset Research Program. SAE paper 2004-01-1169
    [16] Kennerly H. Digges, A. Eigen. Application of Load Cell Barrier Data to Assess Vehicle Crash Performance and Compatibility. SAE paper 1999-01-0720, 1999
    [17] M. K. Verma, R. Nagappala, Y. J. Tung, M. R. Zimmerman, etc. Significant Factors in Heightof Force Measurements for Vehicle Collision Compatibility. SAE paper 2004-01-1165, 2004
    [18] Mukul K. Verma. Relationship of crash test procedures to vehicle compatibility. SAE paper 2004-01-1162, 2004
    [19] Thomas J. Trella. A moving deformable barrier with dynamic force and deflection spatial measurement capabilities for full-scale tests. SAE paper 2000-01-0637, 2000
    [20] K. Digges,A. Eigen. Analysis of load cell barrier data to assess vehicle compatibility. SAE paper 2000-01-0051, 2000
    [21] Satoshi Takizawa, Eisei Higuchi, Tatsuo Iwabe and Tomiji Sugimoto. Experimental evaluation of test procedures for frontal collision compatibility. SAE paper 2004-01-1162, 2004
    [22] Pradeep Mohan, David L.Smith. Analysis of Compatibility Metrics in Frontal Collisions. SAE paper 2007-01-1182
    [23] K. Digges. Examination of car to light truck compatibility in frontal crashes. SAE paper 2001-01-1165, 2001
    [24] Masashi Makita. Evaluation and research of structural interaction between two cars in car-to-car compatibility. SAE paper 2003-01-2819, 2003
    [25] Mukul K. Verma. Relationship of crash test procedures to vehicle compatibility. SAE paper 2004-01-1162, 2004
    [26] Yuichi Kitagawa. Evaluation and research of vehicle body stiffness and strength for car-to-car compatibility. SAE paper 2003-01-0908.
    [27] Gary Brown. Investigation of the major factors influencing front compatibility design of vehicles. SAE paper 2001-01-1166, 200
    [28] Evans, L. and Frick, M.C., 1993. Mass ratio and relative driver fatality risk in two-vehicle crashes. Accident Analysis and Prevention 25, pp. 213–224.
    [29] Joksh, H.C., 1993. Velocity change and fatality risk in a crash? A rule of thumb. Accident Analysis and Prevention 25, pp. 103–104.
    [30] C. Kahane. Vehicle Weight, Fatality Risk and Crash Compatibility of Model Year 1991-99 Passenger Cars and Light Trucks. NHTSA Technical Report, DOT HS 809 662, October 2003.
    [31] Ahmed M. Elmarakbi. Numerical analysis and optimization of vehicle compatibility using a smart vehicle[C]. SAE paper 2003-01-2802, 2003
    [32] Masashi Makita. Evaluation and research of structural interaction between two cars in car-to-car compatibility. SAE paper 2003-01-2748, 2003
    [33] Yuko Nishiura. A method for developing truck FUP with the aim of lessening the severity of injuries of car occupant. SAE paper 2003-01-2821, 2003
    [34] Shinji Fujii, Takayuki Sunakawa, Akiko Abe, ect. Aggressivity-reducing structure for large vehicles in frontal car-to-car crash. SAE paper 2004-01-1163, 2004
    [35] Jeffrey S. Augenstei,Elana B. Perdeck ,Khaled I. Mostafa ,and ect. The Role of Intrusion in Injury Causation in Frontal Crashes. SAE paper 2005-01-1376
    [36]朱西产.汽车正面碰撞法规及其发展趋势的研究[J].,汽车工程,2000,Vol.24: 1-6
    [37]雷雨成,严斌,程昆.汽车的碰撞相容性研究[J].汽车科技,2004,1
    [38]侯淑娟.薄壁构件的抗撞性优化设计,[博士学位论文].长沙:湖南大学,2007
    [39] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells. Advance in Engineering Software, 2000, 31: 425-434
    [40] Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial load. Quarterly Journal of Mechanics and Applied Mathematics, 1969, 13: 10-15
    [41] Johnson W, Soden P D, Al-Hassani S T S. Inextensional collapse of thin-walled tubes under axial compression. Journal of Strain Analysis, 1977, 12:317-330
    [42] Wierzbicki T, Abramowicz. On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics, 1983, 50: 727-734
    [43] Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. International Journal of Impact Engineering, 1984, 2(3): 263-281
    [44] Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes. Structural Optimization, 1998, 16: 37-46
    [45] Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells. Advance in Engineering Software, 2000, 31: 425-434
    [46] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Structural and Multidisciplinary Optimization, 2002, 24: 185-194
    [47] Redhe M, Giger M, Nilsson L. An investigation of structural optimization in crashworthiness design using a stochastic approach. Structural and Multidisciplinary Optimization, 2004, 27: 446-459
    [48] Forsberg J, Nilsson L. On polynomial response surface and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243
    [49] Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization. International Journal of Impact Engineering, 2006, 32: 759-777
    [50] Avalle M, Chiandussi G, Belingardi G. Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Structural and Multidisciplinary Optimization, 2002, 24: 325-332
    [51] Cho Y B, Bae C H, Suh M W, et al. A vehicle front frame crash design optimization using hole-type and dent-type crush initiator. Thin-Walled Structures, 2006, 44: 415-428
    [52]钱立军,杨士钦,马恒永.具有诱导结构的汽车薄壁杆件的抗撞性研究.汽车技术,2001,6: 9-11
    [53]解跃青,方瑞华,雷雨成.基于碰撞数值模拟的汽车纵梁焊点布置方法.焊接学报,2003,24(1): 73-77
    [54]雷雨成,严斌,程昆.车辆典型薄壁梁碰撞仿真中接触摩擦问题的研究.机械设计与制造,2004,3: 109-111
    [55]刘金朝,王成国,房加志.薄壁圆柱在轴向冲击力作用下的动力学响应.中国铁道科学,2004,25(4): 18-24
    [56]范兵,严斌,秦明.薄壁梁碰撞仿真中时间步长问题的研究.计算机应用,2005,2: 32-36
    [57]贾宇,肖守讷.抗撞性车体吸能装置的薄壁结构研究.铁道车辆,2005,43(5): 6-11
    [58]刘中华,程秀生,杨海庆,等.薄壁直梁撞击时的变形及吸能特性.吉林大学学报,2006,36(1): 25-30
    [59]郝琪,吴胜军.基于数值模拟的薄壁构件碰撞性能研究及焊接影响.湖北汽车工业学院学报,2006,20(1): 6-9
    [60] Banhart J, Baumeister J. Deformation characteristics of metal foams. Journal of Materials Science, 1998, 33: 1431-1440
    [61] Yu C J, Eifert H H. Metal foaming by a powder metallurgy method: production, properties and applications. Material Research and Innovation, 1998, 2: 181-188
    [62] Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 2000, 24(4): 347-383
    [63] Hanssen A G, Hopperstad O S, Langseth M. Bending of square aluminum extrusions with aluminium foam filler. Acta Mechanica, 2000, 142(1-4): 13-31
    [64] Hanssen A G, Langseth M, Hopperstad O S. Optimum design for energy absorption of square aluminum columns with aluminum foam filler. International Journal of Mechanical Sciences,2001, 43, 153-176
    [65] Hanssen A G, Hopperstad O S, Langseth M, et al. Validation of constitutive models applicable to aluminum foams. International Journal of Mechanical Sciences, 2002, 44: 359-406
    [66] Santosa S, Wierzbicki T, Hanssen A G, et al. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering, 2000, 24(5): 509-534
    [67]桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性.清华大学学报,2003,43(11): 1526-1529
    [68]桂良进,范子杰,王青春.泡沫填充圆管的动态轴向压缩吸能特性.清华大学学报,2004,44(5): 709-712
    [69] Song H W, Fan Z J, Yu G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures, 2005, 42: 2575-2600
    [70] Forsberg J, Nilsson L. On polynomial response surface and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243
    [71] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems. Structural and Multidisciplinary Optimization, 2002, 24: 185-194
    [72] Avalle M, Chiandussi G, Belingardi G. Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Structural and Multidisciplinary Optimization, 2002, 24: 325-332
    [73] Lee S H, Kim H Y, Oh S I. Cylindrical tube optimization using response surface method based on stochastic process. Journal of Materials Processing Technology, 2002, 130-131: 490-496
    [74] Jansson T, Nilsson L, Redhe M. Using surrogate models and response surfaces in structural optimization-with application to crashworthiness design and sheet metal forming. Structural and Multidisciplinary Optimization, 2003, 25: 129-140
    [75] Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics, 2002, 29: 409-421
    [76]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2002
    [77] Burton D E. Physics and numerics of the TENSOR code. Lawrence Livermore National Laboratory: Internal Document UCID-19428, 1982
    [78] Hallquist J O. LS-DYNA Theoretical Manual. California: Livermore Software Technology Corporation, 2006
    [79] Stander N. LS-OPT user’s manual v. 2.2[M]. Livermore: Livermore Software Technology Company; 2004.
    [80]孙光永,李光耀,张勇,等.基于鲁棒性的概率优化设计在薄壁构件耐撞性中的应用.中国机械工程2007,18 (4): 479-483
    [81]张铁茂,丁建国.试验设计与数据处理.北京:兵器工业出版社,1990
    [82]栾军.现代试验设计优化方法.上海:上海交通大学出版社,1995
    [83]陈魁.试验设计与分析.北京:清华大学出版社,2005
    [84] Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(2): 239-245
    [85] Keramat M, Kielbasa R. Modified latin hypercube sampling Monte Carlo(MLHSC) estimation for average quality index. International Journal of Analog Integrated Circuits Signal Process, 1999, 19(1): 87-98
    [86]陈秀宁.机械优化设计.杭州:浙江大学出版社,1991
    [87]孙靖民.机械优化设计.北京:机械工业出版社,1996
    [88]博弈创作室. ANSYS9.0经典产品高级分析技术与实例详解.北京:中国水利水电出版社,2005
    [89]胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1982
    [90] Kim H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Structures, 2002, 40: 311-327
    [91] Stander N. LS-OPT user’s manual v.2.2. Livermore: Livermore Software Technology Company; 2004.
    [92] John D. Reid. LS-DYNA examples manual. Livermore: Livermore Software Technology Company; 2001
    [93] McNay I I, Gene H. Numerical modeling of tube crash with experimental comparison. In: SAE Passenger Car Meeting and Exposition. America: SAE, 1988, 123~134
    [94] Mukul K Verma.Relationship of crash test procedures to vehicle compatibility[C]. SAE paper 2003-01-0900.
    [95] G.M. Nagel, D.P. Thambiratnam. Computer simulation and energy absorption of tapered thin-walled rectangular tubes[J].Thin-Walled Structures, 2005,43:1225~1242
    [96] Santosa S, Banhart J, Wierzbicki T. Experimental and numerical analysis of bending of foam-filled sec-tions[J ], Acta Mechanica ,2001, 148:199~213.
    [97] Nagel GM, Thambiratnam DP. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. Int J Mech Sci 2004,46(2):201~16.
    [98] D.C. Han, S.H. Park. Collapse behavior of square thin-walled columns subjected to oblique loads. Thin-Walled Structures 35 (1999) 167–184
    [99] Yuko Nishiura. A method for developing truck FUP with the aim of lessening the severity of injuries of car occupant. SAE paper 2003-01-2821, 2003
    [100] United Nation Ecnomic Commission for Europe. ECE Regulation No.93. 15-March-1994
    [101]付锐,陈荫三.用筒系吸能结构改进横梁的缓撞性能.汽车工程,2000,24(4):359~363
    [102]钟志华.汽车碰撞安全技术[M].北京:机械工业出版社,2003
    [103] Wierzbicki T. Crushing analysis of metal honeycombs. International Journal of Impact Engineering, 1983, 1(2):157-174
    [104]曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击,2002,22(4):153-156
    [105] Andrews E, Sanders W, Gibson L J . Compressive and tensile behavior of aluminum foams [J]. Material s Scinece and Engineering,1999,270(2),113~124.
    [106] BAUM E ISTER J, BANHART J, W EBER. Aluminum foams for transport industry[J]. Materials M.&Design, 1997, 18 (4?6) : 217-222
    [107]黄西成,陈裕泽,蒋家桥,等.撞击作用下泡沫铝填充结构吸能特征.解放军理工大学学报(自然科学版),2007,5:470-473
    [108] Gibson L, Ashby M. Cellular solids: Structure and Properties. Oxford: Pergamon Press, 1988
    [109] Evans A E, et al. Progressing of Material Science, 1999, 43: 171-177
    [110] Wood J, et al. Proceedings of Fraunhofer USA Symposium on Metal Foams. Bremen: MIT Press-Verlag, 1998: 31
    [111] Abramowicz W, Jones N. Dynamic axial crushing of circular tubes. International Journal of Impact Engineering, 1984, 2(3): 263-281
    [112] Reid S R, Reddy T Y, Gray M D. Static and dynamic crushing of foam-filled sheet metal tubes. International Journal of Mechanical Sciences, 1986, 28(5): 295-322
    [113] Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam. Computer & Structures, 1998, 68(4): 343-367
    [114] Santosa S, Wierzbicki T. Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns. International Journal of Mechanical Sciences, 1999, 41(8): 995-1019
    [115] Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminiumextrusions with aluminium foam filler. International Journal of Impact Engineering, 2000, 24(4): 347-383
    [116] Song H W, Fan Z J, Yu G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures, 2005, 42: 2575-2600
    [117] Hallquist J O. Theoretical Manual. California: Livermore Software Technology Corporation, 1998
    [118] Song H W, Fan Z J, Yu G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures, 2005, 42: 2575-2600
    [119] H.R.Zarei, M.Kr &o& ger. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures 46 (2008) 214–221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700