基于机敏约束阻尼的车身结构振动噪声控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车产量和保有量的增加,节能、环保、安全业已成为当代世界汽车技术发展面临的重要问题,而在新能源路线不明朗的形势下,汽车轻量化技术则成为全球主流汽车企业应对这一问题的最佳解决途径。汽车车身作为汽车的重要组成部分,是汽车实现轻量化目标的关键部位。然而,当汽车轻量化车身壁板变薄后,必然导致结构出现低刚度、柔性增大,模态密集度高等特点,这不可避免的将带来车身结构动态性能和NVH性能恶化的现象。在这种情况下,采用常规的NVH控制手段往往受到被动阻尼技术和主动阻尼技术缺点的限制而达不到理想的减振降噪效果。本文在这样的背景下,借鉴机敏约束层阻尼(Smart Constrained Layer Damping ,SCLD)结构在薄壁板件振动主动控制方面的优良性能,深入探讨SCLD结构在车身结构振动噪声控制中的潜力,开展以SCLD结构为基础的轻量化车身NVH性能的主动控制基础研究,从而开发出创新的NVH解决方案,为将来开发高档、高品质轿车开辟新路径。
     本文首先以车身结构抽象物理模型-板结构为出发点,研究了SCLD减振板的动力学模型的建立。建模中考虑到SCLD结构各层间的耦合运动及位移协调关系,以及压电材料的机电耦合效应,以ADF模型表征粘弹性材料随温频变化的力学特征,并与有限元方法相结合,基于Hamilton原理导出了全新的SCLD耦合系统的动力学分析模型。通过算例及模态实验研究表明:所建立的模型能较准确的反映出SCLD板结构的动力学特性。针对ADF模型与有限元结合的SCLD耦合系统动力学模型自由度庞大的问题,在状态空间域提出了复模态截断法与内平衡降阶法相结合的联合降阶法。基于该降阶方法获得了自由度维数低、具备可观性、可控性特点的动力学模型。算例计算表明了提出的降阶法准确可行,所得的降阶模型可直接用于后续控制系统的开发设计。
     以局部覆盖SCLD结构的薄钢板为研究对象,分别采用最优控制理论及自适应前馈滤波算法设计了主动控制器,并进行了理论仿真分析。基于自适应主动控制系统,对SCLD薄钢板结构的振动控制问题进行了实验研究。研究证明:SCLD结构具有良好的作动能力和较强的振动响应抑制能力;基于自适应前馈滤波算法的SCLD结构自适应控制器自调节能力较强,具有良好的动态跟踪特性和鲁棒性。随后,建立了SCLD系统辐射声功率预测模型,基于数值方法,开展了SCLD薄钢板结构辐射能力及其影响因素研究。数值计算表明:SCLD结构可以有效降低结构的声辐射,能弥补被动约束阻尼(PCLD)结构对低频辐射噪声控制的不足;SCLD结构阻尼层厚度、粘接层厚度以及压电层厚度变化对结构的动力特及声辐射控制有影响,其中,粘接层、压电层厚度变化影响较大。
     为实现SCLD技术从简单结构走向复杂振动系统,研究了基于动态神经网络的SCLD结构辨识理论。首先,在多层前馈神经网络LMBP算法基础上,提出了网络学习速率自适应调整的动态训练快速算法-ILMBP算法,并将这种算法在神经网络学习及线性系统、非线性系统的模型辨识中进行了尝试。大量研究结果表明了本文提出的ILMBP算法不仅具有良好的辨识性能,而且能提高神经网络学习的收敛速度。其次,运用基于ILMBP算法的动态神经网络NARX模型实现了SCLD板结构的控制系统离线辨识,并建立了基于辨识模型的SCLD板结构自适应控制器。研究结果表明,基于ILMBP算法的NARX网络模型可获得精度较高的辨识模型。该模型能真实的再现系统的动态特性,可直接用于结构主动控制器仿真分析,且所得的控制器参数能直接用于现场实验。
     最后,基于前述研究结论,以某轿车车身缩尺模型为实验对象,建立了SCLD车身结构振动噪声自适应主动控制系统,搭建了SCLD车身结构振动噪声硬件在环主动控制试验平台。在不同外扰激励下,开展了基于SCLD技术的车身结构振动噪声主动控制实验,取得了令人满意的效果。其中,在低频单一谐波激励下,施加控制后车厢内振动噪声降低了7.6dB(A);在低频复杂周期信号激励下,施加控制后车厢内振动噪声降低了5.1 dB(A),并且作用于SCLD结构的驱动电压都能低于150伏。从而在实验上证明了SCLD结构能在较低的能量驱动下有效改善车身结构低频的NVH性能。这为SCLD技术的进一步工程应用奠定了良好的基础。
As the increasing of the production and quantity of the cars, energy economy, environment protection, safety have been the important problems for the auto technology’s development. Under the situation of the noncommittal way of the new energy, the car lightweight technology which used by the global main auto enterprise, will be the best way to solve the problem before. Car body, as the most important constitution of the car, is the key position to attain the lightweight target of the car. However, when the car body becomes thin, the body structure’s rigidity becomes smaller, the flexibility becomes bigger, and the modal concentration becomes higher, which lead to the deterioration of dynamic performance and NVH performance for the body structure. For this situation, the conventional NVH control method, which used to be restricted by the shortcoming of the passive and active damping technology, can’t reach the ideal damping effect. At this background, learning from the good performance of Smart Constrained Layer Damping (SCLD) structure on the active control of the sheet metal’s vibration, the potential of SCLD structure on vibration and noise Control of Car Body is further discussed. The active control fundamental research of the lightweight body’s NVH function based on the SCLD structure is done.It can not only develop new NVH solution, but also open new path to development of high grade, high quality cars for the future. .
     Firstly, the establishment of dynamic model is researched for the SCLD plate which is the abstract physical model of the car body. In the modeling, the coupling motion and displacement compatibility of layers and the electrical and mechanical coupling effect of piezoelectric materials are considered. The constitutive property varied with frequency and temperature for viscoelastic material is characterized by ADF model. Then combining with the finite element method, a new coupling dynamic analysis model is derived based on the Hamilton principle. The results of the numerical examples and modal analysis experiments show that the model can accurately reflect the dynamic characteristics of SCLD plate. Due to the confine of ADF model and FEA method, SCLD coupling structure’s dynamic model is faulted for its giant DOF, a new model reduction method composed of the complex modal truncation method and the internal balanced order reduction method proposed in the state space. The dynamic model with low DOF, considerable and controllable characteristics is derived based on the method above. The results of the examples indicate that the proposed reduction method is feasible and the reduced model can be directly applied to the development of the follow-up control system.
     Regarding thin steel plate with partially covered SCLD structure as the research object, the active controllers are designed respectively based on the optimal control theory and the adaptive feed forward filtering algorithm, and simulation analysis is accomplished. Then, based on the adaptive active control system, the vibration control problem of the thin steel with SCLD structure is researched by experiment. It shows that the SCLD structure has good actuator ability and strong vibration response inhibitory ability; the adaptive controller of SCLD structure owns strong self-adjustment ability, good dynamic tracking characteristics and robustness. Then a radiated acoustic power forecast model of the SCLD system is established. Based on the numerical methods, the radiation ability and its influencing factors of sheet steel with SCLD structure are investigated. The research shows that the SCLD structure can not only effectively reduce the acoustic radiation of the plate, but also can make up for PCLD structure on the low frequency noise control; the damping layer thickness, thickness of splicing layer and piezoelectric layer thickness of SCLD structure have effect on the structural dynamic characteristics and acoustic radiation control, especially the splicing layer thickness and piezoelectric layer thickness.
     In order to apply SCLD technology from simple to complex vibration system, SCLD structure theory is studied based on dynamic neural network. Firstly,based on LMBP algorithm of multilayer feed forward neural network, an adaptive adjust fast algorithm on dynamic training for network learning rate is put forward, named ILMBP algorithm. Then the algorithm is test on neural network learning, linear system identification and nonlinear system identification. By a large number of researches, it shows that the algorithm which put forward before not only has good recognition performance, but also can improve the convergence speed of neural network learning. Then,the offline identification of control system for SCLD plate is realized by NARX neural network model which using ILMBP algorithm. Then adaptive control system based on identification model is set up. The results show that the NARX network model which based on ILMBP algorithm can obtain higher accuracy of identification model and can really represent the dynamic behavior of the system. It can be directly applied to the simulation analysis of active controller and the parameters of the controller can be directly used in the field experiments.
     Finally, based on the conclusion of the study before, taking the body scale model of a car as the experimental object, an adaptive active control system for vibration and noise of SCLD body structure has been build. The hardware online platform of active control experiment for vibration and noise of SCLD body structure has also been established. Under different external disturbance excitation, the active control experiments on body structure are carried out based on the SCLD technology, and the satisfactory results have been obtained. Among them, under single harmonic excitation with low frequency, the interior vibration and noise of the car has reduced 7.6dB (A) after control; as well as under the complex periodic signal excitation with low frequency, the interior vibration and noise of the car has reduced 5.1 dB(A) after control, and the driving voltage on SCLD structure is all smaller than 150 volt . Thus it can be proved that SCLD structure can effectively improve the NVH performance of car body structure with low frequency in lower energy. It also can lay a good foundation for further engineering application.
引文
[1] Elliott S J. A review of active noise and vibration control in road vehicles[R]. ISVR Technical Memorandum No 981,2008.
    [2]庞剑,谌刚,何华.汽车噪声与振动理论与应用[M].北京:北京理工大学出版社, 2006.
    [3]汉森C H,斯奈德S D.噪声和振动的主动控制[M].仪垂杰译.北京:科学出版社,2002.
    [4]陈克安.有源噪声控制[M].北京:国防工业出版社, 2003.
    [5]黄尚廉.智能结构--工程学科萌生的一场革命[J].压电与声光, 1993,15(1):13-15.
    [6] Stanway R, Rongong J A, Sims N D. Active constrained layer damping a state of the art review[C]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. Sage Publications: Professional Engineering Publishing, 2003:437-456.
    [7] Benjeddou A. Advances in Hybrid Active-passive Vibration and Noise control Via piezoelectric and Viscoelastic constrained layer treatment [J]. Journal of Vibration and Control, 2001(7):565-602.
    [8]林逸,马天飞,姚为民等.汽车NVH特性研究综述[J].汽车工程, 2002(3):177-181.
    [9] Matthew Harrison. Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles [M]. Publisher: Butterworth-Heinemann, 2004.
    [10] Duncan A E, Su F C. Understanding NVH Basics[C], International Body Engineering Conference Proceedings, (IBEC),1996:111-116.
    [11]何渝生,邓兆祥,陈朝阳.汽车噪声控制[M].北京:机械工业出版社, 1999.
    [12] Lilley K M, Fasse M J, Weber P E. A comparison of NVH treatments for vehicle floorpan applications [J]. SAE Paper No. 2001-01-1464.
    [13] Rao M D. Recent applications of viscoelastic dampingfor noise control in automobiles and commercial airplanes[J]. Journal of Sound and Vibration, 2003(262):457-474.
    [14] Bevan J S, Weber P E,King K. Acoustic Enhancement Using Chemistry to Formulate A Spray- On Constrained Layer Vibration Damper[J]. SAE Paper No.2005-01-2278.
    [15] Chen Anning, Qian Yang.Simulating Low Frequency NVH of Damped Automotive Body Panels Using Frequency Dependent Properties[J]. SAE Paper No.1999-01-1836.
    [16]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社, 2002.
    [17] Hansen C H and Snyder S D. Active nontrol of noise and vibration. London[M]. U.K: E&FN Spon, 1997.
    [18] Lueg P. Process of silencing sound oscillations[P]. United States, Patent 2043416, 1936.
    [19] Convor W B. Fighting noise with noise[J]. Noise Control Engineering Journal, 1956(2):78-82.
    [20] Oswald L J. Reduction of diesel engine noise inside passenger compartments using active adaptive noise control[C]. Proceeding of Inter. Noise’84, 1984. 483-488.
    [21] Nelson P A, Elliott S J. Active control of sound[M]. Academic Press, London, 1992.
    [22]华春雷,靳晓雄,彭为.汽车车内噪声有源控制技术[J].汽车科技, 2008(5):44-47.
    [23] Berge T. Active noise cancellation of low frequency sound inside vehicle cabs[C].Proceeding of luten Noise’83,1983:457-460.
    [24] Sutton T J, Elliott S J, Mcdonald A M, et al. Active control of road noise inside vehicles[J]. Noise Control Engineering Journal, 1994,42(4):137-147.
    [25] Couche J C. Active control of automobile cabin noise with conventional and advanced speakers[D]:(master thesis). Virginia Polytechnic Institute and State University, 1999.
    [26] Sano H, Inoue T, Takahashi A, et al. Active control system for low-frequency road noise combined with an audio system[C]. IEEE Trans. Speech and Audio Processing 9, 2001:755-763.
    [27] Gonzalez A, Ferrer M, et al. Sound quality of low-frequency and car engine noises after active noise control[J]. Journal of Sound and Vibration, 2003, 265(3):663-679.
    [28] Stanef D A, Hansen C H, Morgans R C. Active control analysis of mining vehicle cabin noise using finite element modeling[J]. Journal of Sound and Vibration 2004(277):277-297.
    [29] Diaz J, Ega?a J M, Vi?olas J. A local active noise control system based on a virtual-microphone technique for railway sleeping vehicle applications[J]. Mechanical Systems and Signal Processing, 2006,(20):2259-2276.
    [30]常振臣,王登峰,周淑辉,等.车内噪声控制技术研究现状及展望[J].吉林大学学报, 2002,32(4):86-911.
    [31]李舜酩,仪垂杰,赵玉成,等.车辆内腔噪声分析及控制研究的发展[J].农业机械学报, 1998,29(2):167-169.
    [32]冯振东,宋传学.车内噪声主动控制初探[J].汽车工程, 1991,13(4):202-206.
    [33]王国领,许国贤,连小珉,等.车内有源噪声控制的研究[J].清华大学学报(自然科学版), 1996,36(4):23-26.
    [34]常振臣,王登峰,郑联珠,等.车内噪声主动控制系统设计与试验研究[J].公路交通科技, 2003,20(6):150-153.
    [35]常振臣,王登峰,周淑辉,等.神经网络方法在车内噪声信号预测中的应用[J].农业机械学报, 2003,34(1):21-24.
    [36]王登峰,刘学广,刘宗巍,等.基于发动机转速的车内有源消声控制策略和自适应算法[J].公路交通科技, 2004,21(10):126-129.
    [37]王登峰,刘学广,刘宗巍,等.车内自适应有源消声系统次级声源布放试验[J].中国公路学报,2006,19(3):122-126.
    [38]张强,靳晓雄,华春雷,等.车内噪声自适应有源控制系统建模与仿真[J].机械设计与研究, 2009,25(4):62-66.
    [39]姜顺明,陈南.以响度为度量的车内噪声有源控制[J].汽车工程, 2008,30(6):479-482,505.
    [40] Fuller C R, Hansen C H, Snyder S D. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs: An experimental comparison[J]. Journal of Sound and Vibration, 1991,145(2),195-215.
    [41]李传兵,廖昌荣,张玉璘 ,等.压电智能结构的研究进展[J].压电与声光, 2002,24(1):42-46.
    [42] Sunar M, Rao S S. Recent advances in sensing and control of flexible structures via piezoelectric materials technology [J]. ASME Appl.Mech.Rev., 1999,52(1):1-16.
    [43]宋轶民,张策,马文贵.压电材料在机敏结构振动控制中的应用[J].机械设计, 1999(4): 26-29.
    [44] Pan J, Hansen C H, Bies D A. Active Control of noise transmissionthrough a Panel into a cavityⅠ: Analytical study[J]. Journal of the Acoustical Soeiety of Ameriea, 1990, 87(5): 2098-2108.
    [45] Pan J, Hansen C H. Active control of noise transmission througha panel into a cavityⅡ: Experimental study[J]. Journal of the Acoustical Soeiety of Ameriea, 1991,90:1488-1492.
    [46] Banks H T , Silcox R J , Smith R C. Modeling and control of acoustic Structure interaction problems via piezoceramatic actuators:2-D numerical examples[J]. Journal of Vibration and Acoustics, 1994:386-396.
    [47] Sun J Q , Norris M A , Rosset D J et al. Distributed piezoelectric actuators for shell interior noise control[J] . Journal of Vibration and Acoustics , 1996:676-681.
    [48] Hirsch S M, Meyer N E, Westervelt M A et al. Experimental study of smart segmented trim panels for aircraft interior noise control[J]. J. Sound Vib., 2000,31(4):1023-1037.
    [49] Henry J K, Clark R L. Active control of sound transmission though a curved panel into a cylindrical enclosure[J]. Journal of Sound and Vibration, 2002,249(2):325-349.
    [50] Hagiwara, I Wang, D W, Shi, Q Z, Rao, Z S. Reduction of noise inside a cavity by piezoelectric actuators[J], ASME J.of Vibration and Acoustics, Vol.125, No.1, January 2003,12-17.
    [51] Fang B, Kelkar A G, Joshi S M, et al. Modelling,system indentification, and control of acoustic-structure dynamics in 3-D enclosures[J]. Control Engineering Practice, 2004,12(8): 989-1004.
    [52] Liu Z S, Lee H P, Lu C.Passive and active interior noise control of box structures using the structural intensity method[J]. Applied Acoustics, 2006(67):112-134.
    [53] Zimcik D G. Active Control of Aircraft Cabin Noise[J]. RTO-MP-AVT-110,2004(20):1-9.
    [54] Hurlebaus S, Gaul L. Smart structure dynamics[J]. Mechanical Systems and Signal Processing, 2006,20(2):255-281.
    [55]张建辉.智能结构的研究现状及其前景展望[J].科学技术与工程, 2008,8(21):5886-5889.
    [56]李克强,黄尚廉.智能结构系统的噪声主动控制方法[J].压电与声光, 1997,19(1):42-46.
    [57]李克强,段飞,罗禹贡.结构噪声主动控制原理及方法[J].声学技术, 1998,17(4):163-168.
    [58]谢建良,陈南,钟秉林,等.封闭空间中结构声辐射的有源力控制研究[J].振动工程学报, 1999,12(1):15-20.
    [59]耿厚才.不规则封闭空间结构声辐射有源消声的建模、机理分析与实验研究[D].上海交通大学,上海,2001.
    [60]宋学伟,陈塑寰,高峰等.车内噪声智能控制系统的模态最优控制[J].吉林大学学报, 2004,34(1):25-30.
    [61]罗超.基于压电薄膜的非规则封闭空间噪声主动控制的理论及实验研究[D].上海交通大学博士论文,上海, 2005.
    [62]陈骏凯.基于模糊控制应用压电陶瓷对空腔噪声进行主动控制的研究[D].同济大学,上海, 2006.
    [63]靳国永,刘志刚,卢熙群,等.通过辐射模态研究封闭空间结构声辐射及其有源控制[J].哈尔滨工程大学学报, 2009,30(4):376-382.
    [64] St?bener U, Gaul L. Active vibration control of a car body based on experimentally evaluated modal parameters[J]. Mechanical Systems and Signal Processing, 2001,15(1):173-188.
    [65] St?bener U. Untersuchungen zur schwingungs-und schallabstrahlungsregelung fl?chenhafter strukturen, Dissertation, Institut A für Mechanik, Universit?t at Stuttgart, Stuttgart, 2002.
    [66] St?bener U, Gaul L. Modal vibration control for PVDF coated plates[J]. Journal of Intelligent Material Systems and Structures, 2000,11(4):283-293.
    [67]周炜,靳晓雄.轿车车身板件振动自适应主动控制研究与实验[J].同济大学学报, 2002, 30(8):979-982.
    [68]周炜.利用压电陶瓷进行轿车车内噪声主动控制基础研究[D].同济大学,上海, 2002.
    [69]黄锁成.车内噪声主动控制理论与技术的研究[D].同济大学,上海, 2004.
    [70]黄锁成,靳晓雄.压电陶瓷的轿车车身板件振动主动控制[J].汽车工程师, 2010(6):32-37.
    [71]邓国红.基于压电陶瓷的轿车顶棚振动主动控制技术研究[D].重庆大学,重庆, 2010.
    [72] Trindade M A, Benjeddou A. Hybrid Active-Passive Damping Treatments Using Viscoelastic and Piezoelectric Materials: Review and Assessment[J]. Journal of Vibration and Control, 2002(8):699-745.
    [73] Baz A ,Ro J. Vibration control of plates with active constrained layer damping[J]. Smart Mater. Struct., 1996 (5):272-280.
    [74] Park C H, Baz A. Vibration Damping and control using active constrained layer damping: a survey [J]. The Shock and Vibration Digest, 1999(5):355-364.
    [75] Shen I Y. Hybrid damping through intelligent constrained layer treatments[J]. Journal of Vibration and Acoustics, 1994,116(3):341-349.
    [76] Azvine B, Tomlinson G R, Wynne R. Use of active constrained-layer damping for controlling resonant vibration[J]. Smart Materials and Structures, 1995,4(1):1-6.
    [77] Gao J X, Liao W H. Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments[J].Journal of Sound and Vibration,2005(280): 329-357.
    [78] Liao W H, Wang K W. A new active constrained layer configuration with enhanced boundary actions[J]. Smart Mater. Struct., 1996(5):638-648.
    [79]杜海平,石银明,张亮,等.主动约束层阻尼振动控制研究进展[J].力学进展, 2001,31:547-554.
    [80]范子杰.主动约束层阻尼技术[J].北京轻工业学院学报, 1998,16:78-84.
    [81] Plump J M, Hubbard J E. Modeling of active constrained layer damping[C]. Proceedings of 12th International Congress on Acoustics 1986, Toronto.
    [82] Bailey T, Gruzen A, Maddan P. RCS/Piezolctic distributed actuator study[R]. Air Force Astronautics Laboratoyr 1988, Technical Repotr No. AFAL-TR-088-038.
    [83] Bailey T, Hubbard J E. Distributed piezoelectric polymer active vibration control of a cantilever beam[J]. Jounral of Guidnace, Control and Dynamics, 1988,8(5):605-611.
    [84] Agnes G S, Napolitano K. Active constrained layer viscoelastic damping[C]. Proceedings of 34th Structures, Structural Dynamic and Material Conference, 1993:3499-3506.
    [85] Shen I Y. Bending-vibration control of composite and isotropic plates through intelligent Constrained-layer treatments[J]. Smart Materials and Structures, 1994(3):59-70.
    [86] Yellin JM, Shen I Y. A self-sensing active constrained layer damping treatment for a Euler-Bernoulli beam[J]. Smart Materials and Structures , 1996,5(5):628-637.
    [87] Baz A. Robust control of active constrained layer damping [J]. Journal of Sound and Vibration, (1998),211(3),467-780.
    [88] Park C H, Baz A.Comparison between finite element formulations of active constrainedlayer damping using classical and layer-wise laminate theory[J]. Finite Elements in Analysis and Design, 2001(37):35-56.
    [89] Baz A. Dynamic boundary control of beams using active constrained layer damping[J]. Mechanical Systems and Signal Processing, 1997,11(6):811-825.
    [90] Ray M C, Oh J, Baz A. Active constrained layer damping of thin cylindrical shells[J]. Journal of Sound and vibration, 2001,240(5):921-935.
    [91] Baz A, Chen T. Control of axi-symmetric vibrations of cylindrical shells using active constrained layer damping [J]. Thin-Walled Structures, 2000(36):1-20.
    [92] Ray M C, OH J, Baz A. Active constrained layer damping of thin cylindrical shell[J]. Journal of Sound and vibration, (2001)240(5),921-935.
    [93] Ro J and Baz A . Control of sound radiation from a plate into an acoustic cavity using active constrained layer damping [J]. Smart Materials and Structures, 1999(8):292-300.
    [94] Liao W H, Wang K W. on the analysis of viscoelastic materials for constrained layer damping treatments[J], Journal of Sound and Vibration, (1997)207(3),319-334.
    [95] Varadan V V, Lim Y H, Varadan K V. Closed loop finite-element modeling of active/passive damping in structural vibration control[J]. Smart Materials and Structures, 1996, (5):685-694.
    [96] Lim Y H, Varadan V V, Varadan K V. Closed loop finite-element modeling of active constrained layer damping in the time domain analysis[J]. Smart Mater. Struct., 2002 (11): 89-97.
    [97] Chantalakhana C, Stanway R. Active constrained layer damping of plate vibrations: a numerical and experimental study of modal controllers[J]. Smart Materials and Structures, 2000(9):940-952.
    [98] Balamurugan V, Narayanan S. Finite element formulation and active vibration control study on beams using smart constrained layer damping(SCLD) treatment[J]. Journal of Sound and Vibration (2002):249(2),227-250.
    [99] Lee J T. Active structural acoustics control of beams using active constrained layer damping through loss factor maximization [J]. Journal of Sound and Vibration, 2005(287):481-503.
    [100] Vasques C M A, Mace B R, Gardonio P, et al. Arbitrary active constrained layer damping treatments on beams:Finite element modeling and experimental validation[J]. Computers and Structures, 2006(84):1384-1401.
    [101] Sharnappa, Ganesan N, Sethuraman R. Dynamic modeling of active constrained layer damping of composite beam under thermal environment [J]. Journal of Sound and Vibration, 2007(305):28-749.
    [102] Vasques C M A, Rodrigues D J. Combined feedback/feedforward active control of vibration of beams with ACLD treatments: Numerical simulation [J]. Computers and Structures, 2008(86):292-306.
    [103] Kumar N, Singh S P. Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations [J]. Materials and Design, 2009(30): 4162-4174.
    [104] Kumar S,Kumar R, Sehgal R. Enhanced ACLD treatment using stand-off-layer: FEM based design and experimental vibration analysis[J]. Applied Acoustics, 2011(72):856-872
    [105]张希农,张景绘.具有主动约束阻尼层板的振动杂交控制[J].应用数学和力学, 1998, 19(12):1035-1046.
    [106]张希农.可控约束阻尼层及其在航天结构中的应用[D],西安交通大学,西安, 1998.
    [107]张希农等.可控约束阻尼层板的杂交控制[J].应用力学学报, 1999,16(3):15-21.
    [108]田晓耕,沈亚鹏,张元冲.主动约束层阻尼结构的数值分析方法[J].计算力学学报, 1998,15(4):423-428.
    [109] Shi Y M, et al. The modeling and vibration control of beams with active constrained layer Damping[J]. Jounral of Sound and Vibration, 2001,245(5):785-800.
    [110] Shi Y M, Hua H X, Sol H. The finite element analysis and experimental study of beams with Active constrained layer damping treatments[J]. Jounral of Sound and Vibration, 2004(278): 343-363.
    [111] Liu T X, Hua H X, Zhang Z Y. Robust control of plate vibration via active constrained layer Damping[J]. Thin-Walled Structures, 2004,4-2(3):427-448.
    [112]邓年春,邹振祝,黄文虎.约束阻尼板的主被动一体化振动控制[J].机械工程学报, 2004,40(3):128-132.
    [113] Hau L C, Fung E H K.Multi-objective optimization of an active constrained layer damping treatment for shape control of flexible beams[J], Smart Mater. Struct , 2004(13):896-906.
    [114]章艺,童宗鹏,张志谊.充液压电阻尼圆柱壳的有限元建模[J].振动工程学报, 2006(1):24-30.
    [115]刘志臻,李东旭.基于主动约束层阻尼控制的大型挠性航天器动力学模型[J].中国空间科学技术, 2007(2):1-9.
    [116]王淼,方之楚,孟光.主动约束层阻尼结构的一种新模型[J].振动与冲击, 2008,27(5):74-75.
    [117]谢石林,张希农,张景绘.可控约束阻尼层结构H∞控制[J].振动工程学报, 2000,13(3): 368-375.
    [118] [118]续秀忠.子空间辨识法在主动约束层阻尼筒形结构建模中的应用[J].煤炭学报, 2005, 30(6):809-812.
    [119]郝联盈,姚起杭,王亚锋.主动约束层阻尼结构振动控制试验研究[J].应用力学学报, 2001(18): 101-105.
    [120] Li Fengming,Kishimoto K, Wang yuesheng , et al. Vibration control of beams with active constrained layer damping[J]. Smart materials and structures, 2008(17):1-9.
    [121]郑玲,谢熔炉,王宜,等.主动约束层阻尼梁有限元建模与动态特性研究[J].动力学与控制学报, 2009, 7(1):61-65.
    [122] Zheng Ling, Zhang Dongdong and Wang Yi. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments[J]. Smart Materials and Structures, 2011(20):1-9.
    [123]曹友强,邓兆祥,鲜淼峰,等.基于机敏约束阻尼技术的结构动态性能主动控制[J].汽车工程学报, 2011,1(1):18-26.
    [124] Badre-Alam A, Wang K W, Gandhi F. Optimization of enhanced active constrained laye(EACL) treatment on helicopter flex-beams for aeromechanical stability augmentations[J]. Smart Materials and Structures, 1999(8):182-196.
    [125] Herdic P C, Vibration control of stiffened cylindrical shells using active constrained layer damping [D]. The Catholic University of America, Washington, D C, 1998.
    [126] Kwak S K, Washington G, Yedaralli R. Active and passive vibration control of landing gearcomponents[J]. ASME, AD-59,1999,269-275.
    [127]郝联盈,姚起杭.主/被动约束层阻尼结构的振动控制[R].六二三所资料, 2000.
    [128]王慧彩.约束夹层板的动态特性研究[D].大连理工大学,大连, 2003.
    [129] Ochoa P Pons J L, Villegas M,et al. Effect of bonding layer on the electromechanical response of the cymbal metal-ceramic piezocomposite[J]. Journal of the European Ceramic Society, 27(2007):1143–1149.
    [130] Wu T, Ro P I. Dynamic peak amplitude analysis and bonding layer effects of piezoelectric bimorph cantilevers[J]. Smart Mater. Struct., 2004(13):203–210.
    [131] Poh S, Baz A, Balachandran B. Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping[J]. Smart Mater. Struct., 1996(5):649–659.
    [132] Hu Y C, Huang S C. The frequency response and damping effect of a three-layer thin shell with viscoelastic core[J]. Computers and structures, 2000,76(5):577-591.
    [133] Baz A.Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping[J]. Smart Mater. Struct., 2000(9):372-377.
    [134] Duane E V, Rao S S. A Comparison of Active, Passive and Hybrid Damping in Structural Design[J]. Smart Material and Structure, 1996(5):660-671.
    [135] Golla D F, Hughes P C. Dynamics of Viscoelastic Structures-A Time-Domain Finite Element Formulation[J]. Applied Mechanics,1985(52):897-907.
    [136] McTavish D J, Hughes P C. Modeling of Linear Viscoelastic Space Structures[J]. J.of Vibration and Acoustics, 1993(115):103-110.
    [137] Lesieutre G A, Bianchini E. Time domain modeling of linear viscoelasticity using anelastic displacement fields[J]. J. Vib. Acoust., 1995,117(4):424-430.
    [138] Lesieutre G A, Lee U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics[J]. Journal of Smart Materials and Structures, 1996,5:615-627.
    [139]王矜奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社, 1989.
    [140]贾菲B.压电陶瓷[M].北京:科学出版社, 1979.
    [141] IEEE Std 176-1987. IEEE Standard on Piezoelectricity[S]. New York: IEEE Press, 1987.
    [142]张阿舟.实用振动工程(2):振动控制与设计[M].北京:航空工业出版社, 1997.
    [143]刘棣华.粘弹阻尼减振降噪应用技术[M].北京,宇航出版社, 1990.
    [144]陈前,朱德懋,周蒂莲.粘弹性阻尼结构的动特性分析[J],航空学报, 1986,7(1):36-45.
    [145]任建亭,邱阳.粘弹性复合结构特征值问题的迭代算法[J].计算力学学报, 1997,14(3):353-359.
    [146]张海燕.复合夹层板结构动力特性研究[D].武汉理工大学,武汉, 2005.
    [147]陈前.粘弹性复合结构的动力分析[D].南京:南京航空学院博士论文, 1987.
    [148] Park C H, Inman D J, Lam M J. Model Reduction of Viscoelastic Finite Element Models[J]. Journal of Sound and Vibration , 1999,219(4):619-637.
    [149] Lesieutre G A, Blanchini E. Finite Element Modeling of One-Dimensional Viscoelastic Structures Using Anelastic Displacement Fields[J]. Journal of Guidance, Control, and Dynamics, 1996,19(3):520-527.
    [150] Coronado A, Trindade M A, Sampaio R. Frequency-dependent viscoelastic models for passive vibration isolation systems[J]. Shock and Vibration, 2002(9):253-264.
    [151] Trindade M.A. Reduced-order finite element models of viscoelastically damped beams through internal variables projection[J]. J. Vib. Acoust., 2006,128(4):501-508.
    [152]孙靖民.机械优化设计[M].北京:机械工业出版社, 1999.
    [153]王琼,吕微,任伟建.免疫遗传算法及在优化问题中的应用综述[J].计算机应用研究, 2009,26(12):4428-4431.
    [154] Kennedy J,Eberhart R C. Particle Swarm Optimization [C].IEEE International Conference on Neural Networks, Piscataway: IEEE Service Center, 1995:1942-1948.
    [155]任建亭,邱阳.粘弹性复合结构特征值问题的迭代算法[J].计算力学学报, 1997,14(3):353-359.
    [156]颜云辉,谢里阳,韩清凯.结构分析中的有限单元法及其应用[M].沈阳:东北大学出版社, 2002.
    [157]吴家龙.弹性力学[M].上海:同济大学出版社, 1993.
    [158]孙社营.粘弹阻尼结构动态性能的有限元分析[J].材料开发与应用, 1999,14(6):31-36.
    [159]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社, 1997.
    [160]罗虹,李军,曹友强,等.有限元模型动力缩聚中主副自由度选取方法[J].机械设计, 2010,27(12):11-14.
    [161]高淑华,赵阳,黄涛等.有限元动力学模型缩聚与实现[C]. 2002年全国振动(诊断、模态、噪声与结构动力学)工程及应用学术会议论文集, 2002,482-487.
    [162]瞿祖清.结构动力缩聚技术:理论与应用[D].上海交通大学,上海, 1999.
    [163] Qu Zu-Qing.A Multi-step Method for Matrices Condensation of Finite Element Models[J] . Journal of Sound and Vibration, 1998,214(5):965-971.
    [164]姜忻良,王菲.基于势能判据的约束模态综合法截断准则[J].振动与冲击, 2011,30(2): 32-38.
    [165] Wamsler M. On the selection of the mode cut-off number in component mode reduction [J]. Engineering with computers, 2009, 25(2):139-146.
    [166] Yae K H, Inman D J. Control-Oriented order reduction of finite element model[J]. Journal of Dynamics Systems, Measurement, and Control, 1993(115):708-711.
    [167]瞿祖清,傅志方.一种高精度动力缩聚法[J].机械强度, 1998,23(3):230-218.
    [168] Meirovitch L. Dynamics and control of structures[M]. New York: John Wiley & Sons, 1990.
    [169] Bouc R, Friot E. Contr?le optimal par rétroaction du rayonnement d'une plaque munie de capteurs et d'actionneurs piézo-électriques non colocalisés[C]. In:2eme Colloque GDR Vibroacoustique. Marseille, France, 1996:229-248.
    [170]丁平,顾彦.子结构模态综合在汽车振动噪声分析的应用[J].上海汽车, 2007,11:22-24.
    [171] Moore B C. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. IEEE Trans on Automatics control, 1981,26(1):17-32.
    [172]张景绘.动力学系统建模[M].北京:国防工业出版社, 2002.
    [173] Kougen Ma. Vibration control of smart structures with bonded PZT patches: novel adaptive filtering algorithm and hybrid control scheme[J]. Smart Mater. Struct., 2003(12):473-482.
    [174]何振亚.自适应信号处理[M].北京:科学出版社, 2002.
    [175] Haykin S S. Adaptive filter theory[M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
    [176] Widrow B, Stearn S D. Adaptive signal processing. Englewood cliffs, NJ: Prentice Hall, inc,1985.
    [177] Jianfeng Liu. A novel adaptation scheme in the NLMs algorithm for echo cancellation[J]. IEEE signa1 Processing Letters, 2001,8(1):20-22.
    [178]姚千斌.金属材料阻尼测试研究[D].西北工业大学,西安, 2007.
    [179]王积伟,陆一心,吴振顺.现代控制理论与工程[M].北京:高等教育出版社, 2003.
    [180] Williams E G. Sound radiation and nearfield acoustical holography[M]. London:Academic Press, 1999.
    [181] Elliott S J, Johnson M E.Radiated modes and the active control of sound power [J]. Journal of the Acoustical Society of America, 1993,94(4):194-2204.
    [182]赵明旺,王杰.智能控制[M].武汉:华中科技大学出版社, 2010.
    [183] Narendra K S, Parthasarathy K.Identification and control of dynamical system using neural networks[J]. IEEE Trans. on Neural Networks, 1990,1(1):4-27.
    [184]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社, 2006.
    [185] Narendra K S, Mukhopadhyay S.Neural Networks in Control Systems[C].Proc. of the 31th Conf. on Decision and Control, Arizona, 1992,1992:1-5.
    [186] Haykin S. Neural Networks:A Comprehensive Foundation, second edition [M]. Prentice Hall, 1999.
    [187] Siegelmann H T, Horne B G, Giles C L. Computational capabilities of recurrent NARX neural networks [J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 1997,27(2):280-215.
    [188]师黎,陈铁军,李晓媛,等.智能控制理论及应用[M].北京:清华大学出版社, 2009.
    [189]丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用[J].系统工程与电子技术, 2003,25(2):194-197.
    [190] Hagan M T, Menhaj M B.Training feedforward networkswith the Marquardt algorithm [C]. IEEE Transactions on Neural Networks, 1994,5:989-993.
    [191] Baruch L S, Mariaca-Gaspar C R. A Levenberg–Marquardt Learning Applied for Recurrent Neural Identification and Control of a Wastewater Treatment Bioprocess[J]. International Journal of Intelligent Systems, 2009(24),1094-1114 .
    [192] Suratgar A A, Tavakoli M B, Hoseinabadi A. Modified Levenberg-Marquardt Method for Neural Networks Training[J]. World Academy of Science,Engineering and Technology, 2005(6):46-48.
    [193] Chen T C, Han D J, Au F T K, and Tham L G.Acceleration of Levenberg-Marquardt Training of Neural Networks with Variable Decay Rate [C]. International Joint Conference on Neural Networks Proceedings, Portland, Oregon, 2003(3):1873-1878 .
    [194]王文成.神经网络及其在汽车工程中的应用[M].北京理工大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700