混联式混合动力客车功率均衡能量管理控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源紧缺的预警逐渐增强,以及越来越庞大的城市交通燃油消耗带来的巨大压力,成为发展新能源汽车的外在压力和内在驱动力。综合考虑各种新能源技术产业化应用的成熟度及可行性,油电混合动力汽车由于具备很好的继承性和良好的燃油经济性,不仅成为了在现阶段的研究热点,而且甚至在未来的一个时期内均具有有很大应用空间和发展潜力。对于串联式混合动力汽车可改善低速工况时发动机恶劣的燃油消耗,并联式混合动力则在高速工况或高负荷工况具有较强的动力性;然而混联式混合动力汽车兼具了串联和并联的优点,所以更能适应各种各样的行驶工况,尤其适合城市的公交工况。把混联式混合动力系统作为新能源城市公交客车的首选,主要目的是为了节省燃油,提高燃油的利用效率,而欲实现这一目标,进行相应的多能源的协调控制就显得十分重要。对于多能源的控制,亦所谓的能量管理控制策略是一个涉及时变非线性系统控制和复杂问题决策的多纬度模型,其具体因素来自混合动力系统本身及其各部件间的协调工作极其复杂很难使用准确的数学模型进行表示;另外,运行工况及驾驶员操作均具有相当强的随机性,不同的行驶道路和不同的驾驶员风格习惯都需要相应的控制策略与之匹配;换言之,控制策略具有一定的通用性同时又具有独特性,层出不究,是混合动力系统的关键技术之一。
     本文针对一款混联式混合动力客车以改善其燃油经济性为目的,展开了能量管理优化和控制策略设计,其具体工作概括如下:根据其结构特点,以整车功率匹配及关键部件数值模型、整车动力学模型的建立为基础,制定以期获得燃油经济性的提高并且可应用于实际工程的能量管理控制算法,围绕着实现满足发动机运行于最佳效率曲线并兼顾考虑电池效率的功率均衡分配为核心思想,设计了等效燃油消耗最小的通用优化目标函数,分别进行基于庞特里雅金最小值原理为理论基础的等效燃油最小控制策略进行了功率均衡瞬时优化、动态规划算法进行了控制策略的全局优化,通过了随机动态规划获得了考虑驾驶员特性的功率分配策略并发展了自适应控制策略以期实现对电池能量的有效管理;接着基于优化结果进行统计分析,提取了控制策略的设计规则结合工况识别算法,进一步完善了控制策略;最后,进行了硬件在环实验以及整车道路实验,对所设计的控制策略进行验证。以下对各项工作进行具体介绍:
     整车功率参数匹配是能量管理控制器开发的基础,基于城市客车行驶工况的特点对混合动力系统功率进行匹配设计并根据匹配结果选定各关键动力部件的进行选型;采用实验为主、理论为辅的方法建立了各个动力部件子系统的数值模型以及基于matlab/simulink建立整车仿真模型,为实现整车能量管理控制策略的开发提供了仿真平台。
     基于对混联式混合动力系统的分析,制定以实现发动机运行于最佳效率曲线并考虑兼顾电池效率的功率均衡分配基本控制策略模型。但是采用经验式的规则设计方法很难实现这一控制目标,为此引入了优化目标函数。基于最小值优化控制理论推导出等效燃油消耗最小控制策略的理论模型,根据理论模型进行简化以期获得可用于实际应用的实时优化算法,确定电池等效燃油计算模型,以各时刻下客车燃油消耗率最小为优化目标,对电池和发动机功率进行实时优化均衡控制。最后为获得控制策略实现效果的参考依据,以动态规划算法进行功率均衡全局优化,经仿真结果分析表明采用动态规划全局优化控制策略的燃油经济性最好,相比原型车提高了34%;而基于此参考值,所制定的功率均衡等效燃油最小控制策略对改善整车燃油经济性是有效的,对实际工程的应用具有一定的价值。
     为满足控制策略对不同驾驶员风格的适应性,建立了马尔科夫驾驶员需求功率模型;在此基础上针对混联式混合动力客车,采用随机动态规划算法(又称马尔科夫决策理论)以在每一个SOC和车速的状态下对任何时刻的驾驶员需求功率以及根据统计规律预测的下一时刻的需求功率,以使得当前时刻及未来时刻下的期望成本累加值最小,即燃油消耗最小(这里同样也是采用等效燃油),对混联式混合动力客车动力系统功率分配进行优化,其所获得的发动机和电池之间功率分配的优化结果可直接应用于能量管理控制策略,而且该能量管理策略反映了城市道路行驶工况的特性。
     随机动态规划所获得的控制策略虽然可直接应用于实时控制,但是其在计算过程中仍然会面临“维数灾难”的问题,亦采用的求解方法所需的计算量和数据存储空间会随着状态的数目呈指数级增长,这对于应用在存储空间不大的控制器是一种致命的限制。为此,将随机动态规划所获得的控制策略拟合成数表并以此为基础引入等效燃油系数,通过分析等效燃油系数对对发动机工作点的影响以及在不同工况下对燃油经济性和电池SOC的影响,利用基于最小值原理对功率均衡控制策略模型进行离线优化,获得在各个等效燃油系数,不同需求功率和车速下的最优电池分配功率,并在此基础上利用自适应模糊滑模控制对等效燃油系数进行更新控制,从而制定了功率均衡自适应时实优化控制策略。通过仿真实验验证,自适应时实优化控制策略可对电池SOC进行有效平稳的控制,表明通过利用等效燃油系数改变电池电量的价值进而实现控制策略对行驶工况的适应性,也说证明了在每个道路工况下均存在一个等效燃油系数能够实现电池与发动机功率之间合理均衡的分配。
     基于优化算法的结果,进行能量管理控制系统设计。根据动态规划的全局优化计算结果,通过统计分析和多元非线性回归的方法总结最优控制下车辆能量流分配的宏观规律,确定动力总成工作模式的切换规则及各种模式下能量流分配规则;以“人-车-路”思想为指导,设计行驶道路识别及驾驶员意图识别规则并结合能量管理控制策略,形成基于工况识别的功率均衡控制策略。在上述基础上,以“人-车-路”思想为指导,设计行驶道路识别及驾驶员意图识别规则并结合能量管理控制策略,形成基于工况识别的功率均衡控制策略。最后经设计相应的工况进行仿真实验,其结果表明:工况识别的控制策略适用于实际路况的多变性,该方法具有较好的发展空间及应用前景。
     最后,论文进行了混联式混合动力客车功率均衡控制策略的实验验证。为验证模式切换、串联和并联模式下的功率分配的控制策略的正确性进行硬件在环实验;以动力性能及经济性进行了整车道路实验,最后并提出了对系统进一步的改进方向。实验结果表明:在满足驾驶员的操作需求下,能够实现较好的电池荷电状态维持能力以及提高燃油经济性,其相对原型车提高了23.73%。
With the energy becoming less and less, the fuel comsuption of urban transportation is required more and more, therefore this contradiction is turn into the internal drives and exterior pressures to investigate and develop the new energy sources vehicles. The various elements should be taken into the comprehensive consideration, such as the industrialization maturity and feasibility of all kind muti-energy vehicle technology, so far the hybrid electric vehicle provide enough efficiency improvement and keep the character inherit from the traditional vichle, and not only has gradually been the research focus of science and industry but also with great potential and promising prospect. The series hybrid electric vehicles can be prodived with certain adantages to improve the fuel efficiency of engine when operating on low speed condition, and while the parallel hybrid electric vehicle with the excellence to drive powerfully on high speed or laod condition. Logically, the series-parallel electric powertrain with both merit of the series and parallel, so it is adaptive to various driving cycle for a series-parallel HEV, especially, it is suitable no more than as an urban transportation vehicle. The reason to select the series-parallel for the optimal choice is its best fuel economy and high fuel efficiency, and it is very important to to acheave this purpose by coordinated controlling between the muti-energy components. Muti-energy management control strategy is a time varying、nonlinear and multidimensional model involving decision making of complex problem, thery are derived from the complexity architecture of the hybrid powertrain itself and the synergetic operation of different components, it is difficult to construct an accurate mathematical model of the hybrid powertrain; Another reason is the unpredictability of driving conditions and driver’s operation and the difficulty of driving intention judgment resulted from the diversity of driving style enhance the difficulty of the conresponding control strategy for the engineer. In a word, energy management control strategy, as one of the key techiques of HEV, is the algorithm to realize vehicle energy management and power distribution control for the powertrain; it is unique for the corresponding configuration.
     For the sake of improving fuel economy of a series-parallel hybrid electric bus (SPHEB), this dissertation addresses the vehicle optimal energy managenment and design of the control strategy, and the main contents may be briefly summed up as follows: according to the characteristic of the novel series-parallel architecture, based on the power matching、the theoretical model and data model of key components and kinetic model, an energy management is proposed to expect applied to the engineering practice, which is focus on power balancing distribution control strategy between engine and battery not only advance the engine operating efficiency but also take the battery efficiency into consideration. Aim to the purpose, the equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function that is to minimize the fuel consumption at each sampled time, an optimal control law is proposed based on Principle of Pontryagin, and then proved to be the theoretic model of equivalent consumption minimization strategy, then a global optimization control strategy based on dynamic programming is proposed. Since there are many factors are great influence on the fuel economy of vehicle in real world, such as unpredictability of driving conditions and diversity of driving style. A Markov model for driver’s power requirements based on statistical data from several driving cycle, an optimal power management control strategy based on stochastic dynamic programming (SPD) is proposed, and then an adaptive supervisory control strategy for the battery management is developed. At last, an integrated control strategy that combined the design rules are derived from the results of DP with the driving pattern recognition approach. To validate the proposed strategy effective and reasonable, simulated test based on a forward model, hardware-in-the-loop test and real-world test are carried out. Power matching and parametric design are the fundament of energy management of HEV to explore, an approach of parameter matching of HEV based on Chinese transit bus city driving cycle is developed, so the major power-train components, such as engine, integrated starter generator, traction motor, battery and final drive gear ratio, are selected to meet the requirements on dynamic performance and economic performance from the results of parameter matching method. A forward simulation model of the series-paralle hybrid electric bus is construsted based on Matlab/Simulink software make use of empirical modeling approach and combine with the aid of theoretical modeling. It provides the essential simulated platform for the exploration of energy management control stragety.
     Analysis the operation mode of the series- parallel hybrid electric city bus power-train system, and according to the character of its configuration, control strategy model of power balancing distribution between engine and battery not only advance the engine operating efficiency but also take the battery efficiency into consideration is proposed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function that is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. There are three algorithms applied to seek for the optimal fuel economy, they are Principle of Pontryagin, quivalent consumption minimization strategy and dynamic programming. The simulation results indicate that the fuel economy of proposed global optimization control strategy is higher than the instantaneous optimization control strategy, and also advance 34% than the prototype city bus.
     In order to satify the adaptability of diverse driving style, a markov model for driver’s power requirements based on statistical data from several driving cycle is construsted, and an optimal power management control strategy based on stochastic dynamic programming (SPD), this algorithm consists of two successive steps, namely, policy evaluation and policy improvement, repeated iteratively until convergence. For each possible SOC and velocity state, the policy iteration be intuitively interpreted as the expected cost function value averaged over a stochastic distribution of drive cycles starting at that state. The obtained control law is in the form of a stationary full-state feedback and can be directly implemented.
     Although overcome the limitation of DP algorithm and SDP method will still suffer from“curse of dimensionality”in EMS design.That is,the computation and memory needed by value iteration and policy iteration will increase exponentially with the number of states.This will limit its application in engineering.To deal with this problem, the method ofλestimation is introduced. The method is the Equivalent fuel Consumption Minimization Strategy based on driving pattern recognition in essence. The main idea of adaptive real time control strategy is periodically updating the equivalence factor dependence on the corresponding driving condition. It is assumed that information about the route is available in advance. Using this knowledge, global optimization methods can be used in real-time control to approach optimal fuel consumption while keeping the state of charge (Soc) of the batteries at a desired level. The measured fuel consumption and the obtained battery Soc trajectory demonstrate good performance of the proposed adaptive control.
     An approach of designing SPHEB real-time energy management strategy was derive from the offline global optimization results. The Macro-distribution rules of SPHEB powertrain energy flow under various optimal control and the powertrain operating mode switching rules and power distribution rules were designed, throuth the method of statistical analysis and multivariate nonlinear regression. From the correlation analysis of regression formula, there is a conclution that: the formula regressed by the Levenberg-Marquardt algorithm, whose calculated values was highly relevant to the optimized values, could be used to make an engine operating map for optimizing the distribution of powertrain energy flow. Under the guidance of the concept of“driver-vehicle-road”, the integrated control strategy which is constitued by the rules of driving pattern recognition and driver intention combined with the energy management contrl strategy designed above. The simulation results show that the driving pattern recognition based control strategy can be adaptive to the various driving cycle and indicate a good application prospect.
     Last, the dissertation carried out a series of tests to validate the proposed power-balancing control strategy for series-parallel hybrid electric bus. Both the hardware in the loop simulation and real-world test are adopted to collect the information about fuel consumption and drive performance. And some opinions for further improvement of performances of the system were given. The conclutions of the test are given as following: under the control of proposed strategy, the series-parallel hybrid electric bus not only can be satisfied the drive performance but also achieve the improvement of fuel economy by comparing with the prototype bus up to 23.73%.
引文
[1] Yimin Gao and Mehrdad Ehsani. A Torque and Speed Coupling Hybrid Drivetrain-Architecture, Control, and Simulation[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,VOL.21,NO.3, MAY 2006.
    [2] Chau K T,Wong Y S.Overview of power management in hybrid electric vehicles[J].Energy Conversion and Management 2002,43:1953-1968.
    [3] Fontaras G,Pistikopoulos P,Samaras Z.Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles[J].Atmospheric Environment 2008,42:4023-4035.
    [4] Harmon F G,Frank A A,Joshi S S.The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC Neural Net Work[J].Neural Networks 2005,18:772-780.
    [5] Pérez L V,Bossio G R,Moitre D,García G O.Optimization of power management in a hybrid electric vehicle using dynamic programming[J].Mathematics and Computers in Simulation 2004,73:244-254.
    [6] He X,Parten M,Maxwell T.Energy management strategies for a hybrid electric vehicle[J].In:IEEE Conference on Vehicle Power and Propulsion,7-9 Sept.2005.p.536-540.
    [7] Cao M,Chen J.HEV maximum power performance simulation and duty cycle generation[J].International Journal of Vehicle Design 2005,38(1):42-57.
    [8] Syed F U,Kuang M L,Czubay J,Ying H.Derivation and experimental validation of a power-split hybrid electric vehicle model[J].IEEE Transactions on Vehicular Technology 2006,55(6):1731-1747.
    [9] Inada E,Matsuo I,Tahara M,Abe T.Development of a high performance hybrid electric vehicle Tino hybrid[C].In:The 17st International Electric Vehicle Symposium,Montreal,Canada,2002.
    [10] Koprubasi K,Morbitzer J M,Westervelt E R,Rizzoni G.Toward a framework for the hybrid control of a multi-mode hybrid-electric driveline[C].In:Proceedings of the 2006 American Control Conference, Minneapolis,USA,2006:3296-301
    [11] Weiwei Xiong , Yong Zhang, Chengliang Yin. Optimal energy management for a series-parallel hybrid electric bus[J]. Energy Conversion and Management 50 (2009) 1730–1738.
    [12] Barnitt R A,In-use performance comparison of hybrid electric,CNG,and diesel buses at New York city transit[C],In:2008 SAE International Powertrains,Fuels&LubricantsConference,June,2008,Shanghai,China,SAE Paper No.2008-01-1556.
    [13] Ockwell D G,Watson J,MacKerron G,Pal P,Yamin F,Key policy considerations for facilitating low carbon technology transfer to developing countries[J],Energy Policy,2008,36:4104-4115.
    [14] Miller J M,Everett M. An assessment of ultracapacitors as the power cache in Toyota THS-II,GM-Allison AHS-2 and Ford FHS hybrid propulsion systems[C].In:Proc.IEEEApp.Power Electron.Conf.Exhibition, Austin,TX,2005:481-490.
    [15] Miller J M.Hybrid electric vehicle propulsion system architectures of the e-CVT type[J].IEEE Transactions on Power Electronics 2006,21(3):756-767.
    [16]黄援军.前后双离合器式并联混合动力城市公交车控制策略研究[D].博士论文,上海:上海交通大学,2009.
    [17]徐平兴,朱禹.东风EQ7200HEV混合动力轿车成本分析和市场探索[C].中国电工技术学会电动车辆专业委员会第十次学术大会,北京,2002.
    [18]信继欣,彭华涛.湖北省电动汽车三维创新战略体系与发展对策[J].武汉理工大学学报信息与管理工程版2005,27(3):154-156.
    [19]赵子亮,李骏,刘明辉,刘东秦,刘吉顺.CA6100SH8并联混合动力客车工作模式与功率分配研究[J].汽车工程2007,29(8):664-668.
    [20]任勇,秦大同,杨亚联,杨阳.混合动力电动汽车的研发实践[J].重庆大学学报2004,27(4):27-30.
    [21]马建新,朱东,方运舟,韩友国,李燕.BSG混合动力汽车铅酸电池性能预测方法的研究[J].汽车工程2008,30(3):219-221.
    [22]陈虹.推进新能源汽车发展,创建上海汽车工业新优势[J].上海汽车2006.3:1-4
    [23] C.C.Chan.The state of the art of electric,hybrid,and fuel cell vehicles.Proceedings of the IEEE.2007,95(4):704-718
    [24]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].博士论文,上海:上海交通大学,2004.
    [25] Robert Bradley Cooley. Engine Selection, Modeling, and Control Development for an Extended Range Electric Vehicle [D]. Master thesis, University of Ohio State, Ohio, 2010.
    [26] Wang B H, Luo Y G. Application study on a control strategy for a hybrid electric public bus[J]. International Journal of Automotive Technology, 2011, 12(1): 141-147.
    [27] Chau K T,Wong Y S.Overview of power management in hybrid electric vehicles[J].Energy Conversion and Management 2002,43:1953-1968.
    [28]王保华.混合动力城市客车控制策略与试验研究[D].博士论文,上海:上海交通大学,2008.
    [29] Ahn K,Cho S,Cha S W. Optimal operation of the power-split hybrid electric vehicle powertrain[J].Proc. IMechE , 222(Part D: J. Automobile Engineering):789-800.
    [30]王庆年,孙树韬,曾小华,等.并联混合动力客车广义最优工作曲线控制研究[J].汽车工程,2008,30(5): 391-394.
    [31] Wang F, Mao X J, Yang L, et al. Steady-state and idle optimization of internal combustion engine control strategies for hybrid electric vehicles[J]. Chinese Journal of Mechanical Engineering,2008,21(2):58-64.
    [32]王锋,钟虎,冒晓建等.混合动力汽车发动机优化控制策略研究[J].汽车工程,2008,30(2): 111-116.
    [33]王锋,冒晓建,卓斌. ISG并联混合动力轿车最优转矩分配策略[J].重庆大学学报,2008,31(5):499-504.
    [34] Marcello Canova, Yann Guezennec, Steve Yurkovich. On the Control of Engine Start/Stop Dynamics in a Hybrid Electric Vehicle[J]. Journal of Dynamic Systems, Measurement, and Control,2009,vol.131(061005):1-12
    [35]张博,李君,杨世春,等.混合动力汽车发动机起停控制策略[J].吉林大学学报,2009,39(3):561-565
    [36]何仁,刘凯,黄大星,等.发动机智能怠速停止起动系统控制策略的研究[J].汽车工程,2010,32(6):466-469.
    [37]胡明辉.CVT轻度混合动力汽车能量管理策略研究[D].博士论文,重庆:重庆大学,2008.
    [38]胡明辉,秦大同,杨亚联,等.轻度混合动力汽车巡航工况总工作效率分析和优化[J].机械工程学报,2008,44(9):148-153.
    [39]叶心. ISG型中度混合动力AMT汽车综合控制策略研究[D].博士论文,重庆:重庆大学,2008.
    [40]叶心,秦大同,胡明辉,等.ISG型中度混合动力汽车能量管理策略研究[J].系统仿真学报,2011,23(4):832-837.
    [41]舒红.并联型混合动力汽车能量管理策略研究[D].博士论文,重庆:重庆大学,2008.
    [42] Paganelli.G., Guerra, T.M., Santin, J.-J., et al. Simulation and assessment of power control strategies for a parallel hybrid car[C]. Proceedings of the Institution of Mechanical Enineers, Part D: Journal of Automobile Engineering,2000,214(7).
    [43] Brahma A, Guezennec Y, Rizzoni G,et al.Optimal energy management in series hybrid electric vehicles[C]. In Proceedings of the American control conference, Chicago,IL,2000:60-64.
    [44] Lorenzo Serrao. A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles[D]. PhD thesis, Department of Mechanical Engineering, The Ohio State University,2009.
    [45] Ambuhl D., Sundstrom O., Sciarretta A., et al. Explicit optimal control policy and its practicalapplication for hybrid electric powertrains[J]. Control Engineering Practice, Conengprac.2010.08.003.
    [46] Guzzella,L.,& Sciarretta,A. Vehicle propulsion systems: Introduction to modeling and optimization (2nd ed.). Berlin:Springer Verlag,2007.
    [47] Rahman Z,Butler K L,Ehsani M.A comparison study between two Parallel hybrid control concepts[C].SAEPaper2000-01-0994,2000
    [48] Liang Chu, Shaomin Ming, Yongsheng Zhang. Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus [J]. SAEPaper 2006-01-3571,2006
    [49] P. Pisu, G. Rizzoni, and E. Calo.Control strategies for parallel hybrid electric vehicles[C]. Proc. IFAC Symp. Adv. Automot. Control, 2004, 508–513.
    [50] Niels J.Schouten et al.Fuzzy Logic Control for Parallel Hybrid Vehicles.IEEE Transactions on Control Systems Technology, 2002,10(3).
    [51] Kheir N A , Mutasim A. Salman , Niels J. Schouten. Emissions and fuel economy trade-off for hybrid vehicles using fuzzy logic [J]. Mathematics and Computers in Simulation 66 (2004) 155–172
    [52] Amir Mohammad Fazeli, Ali Nabi, Farzad Rajaei Saimasi and Meisam Amiri, et al. Development of energy management system for a parallel hybrid electric vehicle using Fuzzy logic [C]. 8th Biennial ASME Conference on engineering Systems Design and Analysis, Torino, Italy, 2006.
    [53]姚明亮,秦大同,胡明辉,等.基于模糊逻辑控制策略的混合动力汽车仿真研究[J].汽车工程,2007,29(11):934-941.
    [54]殷承良,浦金欢,张建武.并联混合动力汽车的模糊转矩控制策略[J].上海交通大学学报,2006,40(1):157-162
    [55] Dawei Gao, Zhenhua Jin, Qingchun Lu. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus[J]. Journal of Power Sources 185 (2008) 311–317.
    [56] Antonio Sciarretta, Lino Guzzela. Control of hybrid electric vehicles[J]. IEEE Control Systems Magazine,2007,27(2):60-70.
    [57] Sciarretta,A, Back M, Guzzella,L. Optimal of parallel hybrid electric vehicles [J]. IEEE Transactions on Control Systems Technology.2004,12 (3).
    [58] Musardo, C., Rizzoni,G., Guezennec,Y, et,al. A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management [J].European Journal of Control, 2005,11(4-5).
    [59] Bo Gu, Giorgio Rizzoni. An adaptive algorithm for hybrid electric vehicle energy management based on driving pattern recognition [C]. ASME International mechanical engineering congress and exposition, Chicago, Illinois, USA, 2006.
    [60] Kleimaier A, Schroder D. An approach for the online optimized control of a hybrid powertrain [C]. 7th International Workshop on Advanced Motion Control, 2002:215-220.
    [61] Paganelli G, Delprat S Guerra T,et al. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE Vehicular Technlogy Conference, 2002:2076-2081.
    [62] Rodatz P, Paganelli G, Sciarretta A,et al. Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle[J].Control Engineering Practice,2005,13(1):41-53.
    [63] Paganelli G, Ercole G, Brahma A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review,2001,22:511-518.
    [64] Sun Hui. Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm [J]. Engineering Applications of Artificial Intelligence 23 (2010) 27–33.
    [65]张昕,宋建峰,田毅,等.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报, 2009,45(2):36-40.
    [66] Morteza Montazeri-Gh_, Amir Poursamad, Babak Ghalichi. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles [J]. Journal of the Franklin Institute 343 (2006): 420-435
    [67] L. Perez, Guillermo R. Bossio, Diego Moitre, Guillermo O.Garcia. Optimization of power management in an hybrid electric vehicle using dynamic programming [J]. Mathematics and Computers in Simulation, 73(2006), 244-254.
    [68] Olle Sundstrom, D Ambuhl and Guzzella L. On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints [J]. Oil& Science and Technology–Rev.IFP, 2010,65(1): 91-102.
    [69]欧阳易时,金达锋.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):
    [70] Olle Sundstrom,Lino Guzzella. A generic dynamic programming matlab function[J]. 18th IEEE International Conference on control applications part of 2009 IEEE Multi-conference on Systems and Control Saint Petersburg, Russia,2009,July:1625-1630.
    [71]胡红斐,黄向东,罗玉涛,等.并联式混合动力电动汽车全局优化控制[J].华南理工大学学报(自然科学版),2006,34(4):28-32.
    [72] Delprat S,Guerra M T,Rimaux J.Optimal control of a parallel powertrain:From global optimization to real time control strategy.Berlin:Technical Paper of EVS18,2001:2082-2088.
    [73] T. van Keulen, B. de Jager, A. Serrarens.Optimal Energy Management in Hybrid Electric Trucks Using Route Information[J]. Oil & Gas Science and Technology, 2010, 65(1):103-113.
    [74]浦金欢,殷承良,张建武.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-957.
    [75] Johannesson, L.,Pettersson,S., Egardt,B.Approximatedynamic programming applied to a four quadrant transducer series-parallel hybrid electric bus.In European controlconference, Budapest, 2009.
    [76] Lin C, Peng H,Grizzle J W,et al. Power management strategy for a parallel hybrid electric truck. IEEE Trans.Contr. Syst.Technol.,2003,11(6):839-849.
    [77] Domenico Bianchi, Luciano Roiando, Lorenzo Serrao,et al. A rule-based strategy for a series/parallel hybrid electric vehicle: an approach based on dynamic programming [C]. Proceedings of the ASME 2010 Dynamic Systems and control Conference, Cambridge, Massachuetts, USA, 2010
    [78] F. Salmasi.Control strategies for hybrid electric vehicles: Evolution, classification, comparison, and future trends [J]. IEEE Transactions on Vehicular technology, 2007,56(5): 2393-2404.
    [79] Amir Poursamad,Morteza Montazeri.Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles.Control Engineering Practice 16(2008):861-873.
    [80] Chun-Yan Li, Guo-Ping Liu. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles [J]. Journal of Power Sources 192 (2009) 525–533.
    [81] Dongyun Wang, Xiao Lin, Yu Zhang. Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm[J]. Automation in Construction 20 (2011) 581-587.
    [82] Jungme Park, Zhihang Chen, Leonidas Kiliaris, et al. Intelligent Vehicle Power Control Based on Machine Learning of Optimal Control Parameters and Prediction of Road Type and Traffic Congestion[J].IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009,58(9):4741-4756.
    [83] T. Hofman, M. Steinbuch, R. van Druten, et al.Rule-based energy management strategies for hybrid vehicles[J]. Int. J. Electric and Hybrid Vehicles, 2007,1(1):71–94.
    [84]庄建兵,超轻度混合动力汽车传动系统匹配控制及仿真研究[D],硕士学位论文,重庆:重庆大学,2007
    [85] He,X, Parten,M, Maxwell, T. Energy management strategies for a hybrid electric vehicle[C]. Vehicle Power and Propulsion, IEEE Conference, Sept. 7-9,2005.
    [86] Niassar A.H., Moghbelli H., Vahedi A. Design methodology of drivetrain for a series-parallel hybrid electric vehicle (SP-HEV) and its powerflow control strategy[C]. IEEE.trans, 2005: 1549-1554.
    [87]熊伟威,舒杰,张勇等.一种混联式混合动力客车动力系统参数匹配[J].上海交通大学学报,2008,42(8):1324-1328.
    [88]郭晋晟,王家明,杨林等.无级变速混联式混合动力客车能量分配策略[J].中国公路学报,2008,21(5):115-120.
    [89]王家明,郭晋晟,冒晓建等.新型混联式混合动力客车动力系统分析[J].设计·计算·研究, 2008(9):1-4.
    [90]秦大同,游国平,胡建军.新型功率分流混合动力传动系统工作模式分析与参数设计[J].机械工程学报,2009,45(2):184-191.
    [91]彭涛,陈全世,田光宇,等.并联混合动力电动汽车动力系统的参数匹配[J].机械工程学报,2003,39(2):69-73.
    [92]舒红,秦大同,杨为.混合动力汽车传动系统参数设计[J].农业机械学报,2002,33(1):19-22.
    [93]王峰,冒晓建,杨林,等.电磁耦合混合动力公交车整车控制策略及参数匹配[J].西安交通大学学报,2008,42(3):342-346.
    [94]刘永刚,秦大同,叶明. ISG型中度混合动力汽车动力驱动系统设计及性能仿真[J].中国公路学报,2008,21(5):121-126.
    [95]张桂连,基于行驶工况的混合动力汽车参数匹配、控制策略研究及仿真平台搭建[D],硕士学位论文,广州:华南理工大学,2010.
    [96]王庆年,何洪文,李幼德,等.并联混合动力汽车传动系参数匹配[J].吉林工业大学自然科学学报,2000,30 (1) :72-75.
    [97] Yongqin Zhou, Chunli Han, Xudong Wang et al.Research on Power Train Source Matching for Single-axle PHEV[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), 2008, Harbin, China.
    [98]郑维.混合动力汽车动力总成参数匹配方法与控制策略的研究[D].哈尔滨工业大学, 2010.
    [99] WANG Baohua, LUO Yongge, LI Zhang. Dynamic Simulation and Analysis on City Bus Performance Based on Actual Urban Driving Cycle[J].SAE. 2006-01-348.
    [100] C.C. Lin, P. Huei, and J. Grizzle. A stochastic control strategy for hybrid electric vehicles [J]. In Proc. Amer. Control Conf. 2004:4710-4715.
    [101] Lars Johannesson, Mattias Asbogard and Bo Egardt. Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,MARCH,8(1), 2007:71-83.
    [102] Daniel Ambuhl. Energy Management Strategies for Hybrid Electric Vehicles[D]. PhD thesis, Dipl. Ing. ETH in Mechanical Engineering, ETH ZURICH,2009.
    [103] Lorenzo Serrao, Simona Onori, Giorgio Rizoni. ECMS as a realization of Pontryagin’s minimum principle for HEV control[C]. American Control Conference Hyatt Regency Riverfront, St.Louis, Mo.USA, 2009:3964-3969.
    [104] Delphine Sinoquet, Gregory Rousseau, Yohan Milhau. Design optimization and optimal control for hybrid vehicles [J]. Optim Eng (2011) 12: 199-213.
    [105] H. P. Geering, Optimal Control with Engineering Applications[M]. Berlin Heidelberg: Springer, 2007.
    [106]朱庆林.基于瞬时优化的混合动力汽车控制策略研究[D].博士论文,吉林:吉林大学,2009.
    [107]徐梁飞.燃料电池混合动力系统动态建模及优化控制[D].博士论文,北京:清华大学,2009.
    [108] Scott J. Mouraa, Duncan S. Callaway, el at. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles [J]. Journal of Power Sources 195 (2010) 2979-2988
    [109] C.C. Lin, P. Huei, and J. Grizzle. A stochastic control strategy for hybrid electric vehicles [J]. In Proc. Amer. Control Conf.,2004:4710-4715.
    [110] J. Dai. Isolated word recognition using Markov chain models [J]. IEEE Transactions on Speech and Audio Processing, 1995,3,458-463.
    [111] Soon-il Jeon, Sung-tae Jo, Yeong-il Park,et al. Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition [J]. ASME, Journal of Dynamic System, Measurement and Control,2002, 124:141-149.
    [112] K. S. Narendra and A. M. Annaswamy,“A new adaptive law for robust adaptation without persistent excitation,”IEEE Trans. Autom. Control, 1987,AC-32(2): 134-145.
    [113] F. C. Chen and H. K. Khalil. Adaptive control of nonlinear systems using neural networks a dead zone approach[C]. Proc. Amer. Control Conf.,1991: 667-672.
    [114]孙冬野,秦大同.基于人-车-路环境下汽车无级自动变速传动的智能控制[J].中国机械工程,2005,16(4):357-360.
    [115]罗勇,孙冬野,秦大同,等.基于参数统计特征的无级变速车辆智能控制策略[J].机械工程学报, 2011,47(18):101-109.
    [116]邓涛.基于“人-车-路”闭环的无级自动变速系统硬件在环仿真研究[D].博士论文,重庆:重庆大学,2010.
    [117] Salman M A,Schouten N J,Kheir N A.Control strategies for parallel hybrid vehicles[C].In:Processing of American Control Conference,Chicago,USA,2000.p.524-528.
    [118]张博.可外接充电混合动力汽车能量管理策略研究[D],博士学位论文,吉林:吉林大学,2009.
    [119]余锦华,杨维权.多元统计分析与应用(第二版)[M].广州:中山大学出版,2005:269-278.
    [120] Eva Ericsson. Independent driving pattern factors and their influence on fuel-use and exhaust emission[C]. Transportation Research Part D, 2001, vol.6: 325-341.
    [121] JONG-SEOB WON. Intelligent energy management agent for aparallel hybrid vehicle [D].Texas A&M University, May 2003.
    [122] Soonil Jeon and Jang-moo Lee. Adaptive multi-mode control strategy for a parallel hybrid electric vehicle based on driving pattern recognition [C]. Proceedings of IMECE, ASME, Nov. 15-21,2003, Washington, D.C., USA.
    [123]罗勇.金属带式无级变速传动系统匹配控制研究[D].博士论文,重庆:重庆大学,2010.
    [124]王晓明,陈熙,赵春明,等.多能源动力总成硬件在环仿真试验系统开发与研究[J].汽车工程,2008,28(3):221-224.
    [125]宋君花,王俊席,冒晓建,等. SEK/VDX的混合动力汽车实时操作系统[J].农业机械学报,2008,39(6):21-24.
    [126]罗禹贡,杨殿阁,金达锋,等.轻度混合动力电动汽车多能源总成控制器的开发[J].机械工程学报,2006,42(7):98~102.
    [127]中华人民共和国国家标准:GB/T19754-2005重型混合动力电动汽车能量消耗量试验方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700