爆胎汽车差动制动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车高速行驶爆胎是一种极其危险的情况,由于绝大多数驾驶员不具备爆胎事故处理经验,在爆胎发生及发展的过程中,驾驶员受到外部环境及自身心理恐慌等多种因素影响而容易采取过度操作甚至误操作,导致恶性交通事故的发生。以往的研究人员在爆胎事故预防以及降低爆胎事故损失等方面都做了大量的研究工作,但其中有些研究工作并不具有针对性,有些在短期内尚不具备实际应用条件。
     鉴于爆胎事故所造成的人员伤亡及财产损失巨大,但目前对于汽车爆胎相关问题的研究还很不深入,因此本文在总结国内外研究成果的基础之上,以提高爆胎汽车主动安全性为目标,以某国产A级轿车为研究对象,围绕着爆胎轮胎力学特性试验及爆胎轮胎建模,爆胎汽车的运动特性,用于爆胎汽车轨迹跟随的驾驶员模型以及爆胎汽车差动制动控制方面开展研究,主要研究工作如下:
     1、爆胎轮胎模型建立。爆胎后轮胎的力学特性发生显著变化,建立一个合理的、准确的爆胎轮胎模型是进一步研究爆胎汽车运动特性的关键。为此本文首先完成了标准胎压及零胎压的轮胎力学特性试验,分析了爆胎前后轮胎力学特性的变化以及载荷变化对爆胎轮胎力学特性的影响,并以UniTire模型为基础,将模型中爆胎前后变化较为明显的几个关键力学特性参数进行修正,同时考虑轮胎脱圈与轮辋卡地等情况,建立了UniTire爆胎轮胎模型,实现了对爆胎轮胎力学特性的准确描述并拓展了UniTire模型的应用范围。
     2、爆胎汽车运动特性研究。爆胎后汽车的运动特性发生了显著变化,深入分析爆胎汽车的运动特性是进一步研究爆胎汽车稳定性控制的关键。分析了爆胎后轮胎工作条件的变化,结合爆胎轮胎的力学特性,分析了爆胎对车轮定位参数的影响以及转向轮爆胎对转向系统的影响,并进一步分析了这些变化对爆胎汽车运动特性的影响。利用所建立的爆胎轮胎模型及整车动力学仿真模型,深入分析了汽车在不同情况下发生爆胎后的运动特性,初步完成了爆胎后的实车运动特性试验。
     3、用于爆胎汽车轨迹跟随的驾驶员模型研究。将驾驶员模型应用到汽车爆胎仿真中,深入分析了驾驶员模型在汽车爆胎仿真中轨迹跟随精度下降的问题,提出爆胎汽车转向响应特性的改变是导致驾驶员模型在汽车爆胎仿真中轨迹跟随精度下降的根本原因。建立了考虑汽车左、右转向特性不对称的驾驶员模型,仿真结果表明爆胎后汽车轨迹跟随精度有所提高。为了进一步解决此问题,将状态参考器加入到驾驶员模型中,当汽车发生爆胎后,用参考车辆模型与实际车辆模型之间的状态偏差对驾驶员模型输出的方向盘转角进行补偿,建立了用于爆胎汽车轨迹跟随的驾驶员模型,提高了驾驶员模型在汽车爆胎仿真中的轨迹跟随精度。
     4、爆胎汽车差动制动控制研究。汽车高速行驶爆胎具有极大的危险性,而绝大多数驾驶员往往不具备爆胎事故的处理经验,其错误操作直接导致了爆胎事故的严重后果,因此有必要研究针对于爆胎汽车的控制策略,辅助驾驶员控制爆胎汽车的稳定性与运动状态。为此本文从汽车爆胎的实际出发,分析了爆胎对控制模型中参数的影响,对最优横摆力矩进行修正,提出预防爆胎轮胎脱圈的控制措施,得出了爆胎汽车控制中制动车轮的选择原则,建立了轮缸压力与附加横摆力矩之间的关系,初步探讨了爆胎汽车质心侧偏角估计与如何判断爆胎发生的问题。通过汽车在不同情况下发生爆胎后有无爆胎控制的仿真对比,验证了本文所提出的控制策略不但保证了爆胎汽车的稳定性,而且有效降低了爆胎汽车轨迹偏离程度以及驾驶员转向操作的难度。
     5、驾驶员在环的控制效果验证。爆胎后驾驶员所采取的操作措施在一定程度上直接决定了爆胎汽车的运动状态及稳定性,而在爆胎发生及发展的过程中,驾驶员所采取的操作措施又具有极大的不确定性,很难用一个准确的驾驶员模型去描述,因此本文借助基于dSPACE的汽车实时仿真平台,将UniTire爆胎模型及整车模型连接到dSPACE中,研究了驾驶员操作对爆胎汽车运动状态的影响,并将爆胎汽车控制系统嵌入到汽车爆胎实时仿真平台中,验证了驾驶员在环的爆胎控制效果。
     论文主要创新点如下:
     1、完成了标准胎压与零胎压轮胎力学特性试验,以试验结果为依据,考虑载荷对爆胎轮胎力学特性的影响,建立了UniTire爆胎轮胎模型,实现了对爆胎轮胎力学特性的准确描述;
     2、深入研究了驾驶员模型在汽车爆胎仿真中轨迹跟随精度降低的问题,建立了用于爆胎汽车轨迹跟随的驾驶员模型,提高了驾驶员模型在汽车爆胎仿真中的轨迹跟随精度;
     3、考虑爆胎汽车实际情况,提出了基于电子稳定性控制原理的爆胎汽车差动制动控制策略,该策略不但保证了爆胎汽车的稳定性,而且有效降低了爆胎汽车的轨迹偏离程度及驾驶员转向操作的难度;
     4、基于dSPACE的汽车实时仿真平台,将UniTire爆胎模型与车辆模型连接到dSPACE中,研究了驾驶员操作对爆胎汽车运动状态的影响,并将爆胎汽车控制系统嵌入到汽车爆胎实时仿真平台中,验证了驾驶员在环的爆胎控制效果。
The tire blowout is an extremely dangerous situation for the vehicle at high speed. Dueto the psychological panic, the drivers tend to take excessive even wrong operations after tireblowout, which ultimately leads to vicious accidents. The previous researches had largelyfocused on accident prevention and loss reduction, while some of the researches were nottargeted, and some lacked the practical application conditions in the short term.
     Though the consequent casualties and property losses are tremendous, but the relatedissues are not thorough. On the basis of the research work at home and abroad, thedissertation takes a domestic A-Class vehicle as the object to study the active safety afterblowout. Concerning several main aspects, such as the mechanical properties tests of the tireafter blowout, the relevant tire modeling, the movement characteristics of the vehicle, alsothe driver model for trajectory following and the differential brake control after tireexplosion, the dissertation carries out the following research work:
     1. The establishment of the tire model after blowout. The mechanical properties of thetire change largely after blowout, so a reasonable and accurate tire model is essential forfurther research on the movement characteristics of the vehicle. Given this, the author firstlytests the mechanical characteristics for the tire under standard tire pressure and zero tirepressure and analyzes the corresponding changes of the tire characteristics when the loadchanges. Based on the UniTire model, several key parameters of the mechanicalcharacteristics, which changes greatly after tire blowout, are modified. And the UniTiremodel for the tire explosion is established when the bead unseating and the rim got stuck inthe ground cracks, so as to improve the accuracy and extend the application range ofUniTire.
     2. The research on the movement characteristics of the vehicle after tire blowout.Similarly, there exist remarkable changes in the movement characteristics of the vehicle aftertire blowout, which is the key factor for the vehicle’s stability control. Besides the variation of the tire’s work conditions, the dissertation analyzes the influence of the flat tire on thewheel alignment parameters. Specially, the influence of the steering front wheel on thesteering system is also considered. Then the movement characteristics of the vehicle affectedby these factors are discussed in this thesis. With the established blowout tire model and thevehicle dynamics simulation model, the author carries out the analysis of the movementcharacteristics of the vehicle when different tires punctured. Moreover, the correspondingvehicle tests are conducted initially.
     3. The research on the driver model for trajectory following of the vehicle. Applying thedriver model to the vehicle simulation after tire explosion, the author discusses the precisiondecrease in trajectory following faced by the driver model, and points out it is the change insteering response characteristics that leads the driver model unable to control the vehicleback to its original path when tire blowing out. In addition, having built and simulated thedriver model considering the asymmetric left, right steering characteristic, the paper indeedimproves the trajectory following accuracy. After the foregoing analysis, a state referencedevice is added to the driver model. When a deviation exists, compared with the ideal state,it would compensate the steering wheel angle of the driver model. In other words, with theestablishment of the driver model for trajectory following, the corresponding followingprecision is improved in the tire blowout simulation.
     4. The differential brake control of the vehicle after tire blowout. It is known to all thatthe tire blowout at high speed is extremely dangerous, and the vast majority of drivers do nothave relevant experience of handling this, which would directly lead to a serious trafficaccident. So it is necessary to do a research on the control strategy so as to assist the driversto control the vehicles’ stability and movements after tire blowout. Considering the actualsituation of the tire blowout, the dissertation analyzes its affect on the parameters of thecontrol model and modifies the optimal yaw moment. Then the control measures to preventtire from bead unseating are put forward. In addition to the selection principle of the brakewheels after tire blowout, the author also establishes the relations between the wheel cylinderbraking pressure and the yaw moment, followed by the estimation of the slip angle for the vehicle and the judgment of tire blowout. Necessarily, considering tire blowout underdifferent conditions, the simulations are carried out with the control strategy mentionedabove, which ensures the stability of the vehicle. Meanwhile, the trajectory deviation of thevehicle is decreased and the steering operation is easier for maneuvering.
     5. The validation for driver in the loop control. To some extent, what the drivers doafter tire blowout would directly affect the movement state and the stability of the vehicle.While the fact is that the drivers’ operations are of great uncertainty, and the accurate drivermodel is subsequently hard to build. Therefore, the dissertation turns to the dSPACE, a realtime simulation platform. After linking the UniTire model for tire blowout and the vehiclemodel to the dSPACE, the author studies the influences of drivers’ operations on themovement state of the vehicle. With the control system embedded in the simulation platform,the driver in the loop control is validated.
     Major innovation points of this dissertation are as follows:
     1、The mechanical characteristics are tested for the tire under standard tire pressure andzero tire pressure. Based on the test results and the load, the UniTire model for tire blowoutis established, and the characteristics could be accurately prescribed.
     2、The precision decrease in trajectory following faced by the driver model is deeplyanalyzed. In view of this, the driver model for the trajectory following after tire blowout isbuilt, which improves the precision of the model.
     3、Given the actual situation, the differential brake control strategy after tire blowout,which is based on electronic stability program, is proposed, whose participation in the modelensures the stability. Besides, the trajectory deviation of the vehicle is decreased and thesteering is easier for maneuvering.
     4、Assisted by the real time simulation platform dSPACE, the UniTire model for tireblowout and the vehicle model are linked to dSPACE. Then the drivers’ operations are takeninto consideration. With the control system embedded in the real time simulation platform,the driver in the loop control for tire blowout is verified effectively.
引文
[1]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [2]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1997.
    [3]曹兴举.汽车在高速公路上爆胎原因及防治措施.交通科技与经济,2008,2:56-57.
    [4]吉利汽车BMBS爆胎监测与安全控制系统创新技术.中国科技奖励,2008,2:72-73.
    [5]王锦桥,张玉琴,唐亚鸣.基于Matlab的爆胎紧急充气动态仿真.河海大学常州分校学报,2007,21(3):26-28.
    [6]韩玉昌.汽车驾驶员的反应时间检测及其数学处理方法[J].心理科学,1997(05):436-440.
    [7]李学民.汽车爆胎的原因及预防措施[J].汽车运用,2004,6:46.
    [8]宁乐然.高速公路爆胎事故的影响因素及其预防[J].道路交通与安全,2007.4,7(2):53-55.
    [9] Klien E.Z, Black T.L. Anatomy of Accidents Following Tire Disablements. SAE Publication,1999, No.1999-01-0446.
    [10]周焕成.应对行车“爆胎”危象的防范措施[J].交通标准化,2010,(Z2):118-120.
    [11]秦东炜,吴云强.爆胎与轮胎安全技术[J].道路交通管理,2009,(08):54-56.
    [12] Niclas Persson, Fredrik Gustafsson. Indirect Tire Pressure Monitoring Using Sensor Fusion[J].SAE2002-01-1250.
    [13] SAE J2657,2004. Tire Pressure Monitoring System for Light Duty Highway Vehicles.
    [14] U.S. Department of Transportation. Tire Pressure Monitoring System FMVSS No.138.
    [15]秦拯,胡建国,姚丽娜等.胎压监测系统研究与应用[J].微处理机,2009,(01):164-166.
    [16]徐玲艳,张茂青,孙长岭.轮胎压力监测系统(TPMS)的研究[J].苏州大学学报(工科版),第30卷第1期,2010年2月.
    [17]韩加蓬.基于轮胎纵向刚度估计理论的间接轮胎压力监测技术研究[D].江苏大学,2008.
    [18]王艳阳.基于ABS轮速信号的间接胎压监测技术研究[D].山东理工大学,2008.
    [19] William Blythe,Terry D.Day,Wesley D.Grimes,3-Dimensional Simulation of Vehicle Responseto Tire Blow-outs,SAE Paper,980221.
    [20] Zbigniew Lozia. Simulation Tests of Biaxial Vehicle Motion after a Tire Blow-Out [J]. SAEPaper,2005-01-0410.
    [21] Fabio Orengo, Malcolm H.Ray, Chuck A.Plaxico.Modeling Tire Blow-out in Roadside HardwareSimulations Using LS-DYNA.ASME IMECE Washington, D.C.,2003-55057,2003.
    [22] Ric Robinette, Darrell Deering, Richard J.F ay. Drag and Steering Effects of Under Inflated andDeflatedTires. SAE Publication,1997, No.970954.
    [23] Fay, R.J., Robinette R.D, Smith J, etal. Drag and Steering Effects from Tire Tread Belt Separationand Loss. SAE Publication,1999, No.1999-01-0447.
    [24] Ric D. Robinette and Richard J. Fay. Drag and Steering Effects From Disablements of Run FlatTires. SAE Publication,2000, No.2000-01-1316.
    [25] S. Patwardhan, M. Tomizuka, Wei-Bin Zhang, Peter Devlin. Theory and Experiments of TireBlow-out Effects and Hazard Reduction Control for Automated Vehicle Lateral Control System.Proceedings of the American Control Conference, Baltimore, June1994.
    [26]周景宇.爆胎汽车建模与稳定性控制[D].湖南大学,2012.
    [27]郭大鹏.爆胎车辆轨迹控制[D].吉林大学,2011.
    [28]陶峰.爆胎轮胎瞬态特性及对整车运动的影响[D].吉林大学,2012.
    [29]刘海贞.爆胎汽车动力学建模及其主动控制算法研究[D].吉林大学,2011.
    [30]王英麟.基于CarSim与UniTire的爆胎汽车动力学响应研究[D].吉林大学,2007.
    [31]黄江.爆胎汽车稳定性控制原理与仿真研究[D].湖南大学,2009.
    [32]傅建中,石勇.轮胎气压监测与爆胎自动减速系统[J].汽车工程,2006,(02):199-202+171.
    [33] PACEJKA H B. Tyre and Vehicle Dynamics[C]. Butterworth-Heinemann,2006:216-219.
    [34]张洪欣.汽车系统动力学[M].同济大学出版社,1996.
    [35]张洪欣,余卓平译.汽车底盘基础[M].科学普及出版社,1992.
    [36] GILLESPI T D著,赵六奇译,车辆动力学基础[M].清华大学出版社,2006.
    [37] Schuring D J. Dynamic Response of Tires [J]. Tire Science and Technology,1976,4(2):115-145.
    [38] Donald L Nordeen. Analysis of Tire Lateral Forces and Interpretation of Experimental Tire Data[J]. SAE Paper,670173.
    [39]郭孔辉.用于汽车制动、驱动与转向运动模拟的轮胎力学统一模型[J].汽车技术,1992年第1期.
    [40] Konghui Guo, Qi Liu. Modeling and simulation of non-steady state cornering properties andidentification of structure parameters of tyres. Vehicle System Dynamics,1997,27:80-93.
    [41] Konghui Guo, Lei Ren. A unified semi-empirical tire model with higher accuracy and lessparameters. SAE paper,1999,1999-01-0785.
    [42] Konghui Guo, Lei Ren. A non-steady and non-linear tire model under large lateral slip condition,SAE paper,2000,2000-01-0358.
    [43]任雷.复杂工况下的轮胎非稳态侧偏特性研究[D].吉林工业大学,2000.
    [44]袁忠诚. UniTire轮胎稳态模型研究[D].吉林大学,2006.
    [45]刘涛.轮胎稳态力学特性分析及建模[D].吉林大学,2005.
    [46] Pacejka H B and Besselink I J M. Magic Formula Tyre Model with Transient Properties [J].Vehicle System Dynamics,1997,27(supplement):234-249.
    [47] Edward M, Kasprzak, Kemper E Lewis. Inflation Pressure Effects in the Non-dimensional TireModel [J]. SAE Paper2006-01-3607.
    [48] Christopher Robert Carlson and Christian J. Identifying Tire Pressure Variation by NonlinearEstimation of Longitudinal Stiffness and Effective Radius. In Proceedings of AVEC20026thInternational Symposium of Advanced Vehicle Control,2002.
    [49] Schmeitz A J C, Besselink I J M, Hoogh J. Extending the Magic Formula and SWIFT tyre modelsfor inflation pressure changes [J]. Reifen, Fahrwerk, Fahrbahn-VDI conference HannoverGermany,2005,201-225.
    [50] Besselink I J M, Schmeitz A J C, Pacejka H B. An improved Magic Formula/Swift tyre modelthat can handle inflation pressure changes [J].Vehicle System Dynamics,2010(48):337-352.
    [51] Ir.I.J.M.Besselink, Dr.H.Nijmeijer, Ir.A.J.C.Schmeitz, Implementing inflation pressure andvelocity effects into the Magic Formula tyre model, TNO Automotive and Eindhoven Universityof Technology, April20,2005.
    [52]韩加蓬,周孔亢,孙春玲.影响轮胎滚动半径的因素研究[J].农机化研究,2007,(01):163-166.
    [53]王爽.某微车悬架KnC特性研究及其对整车操纵稳定性的影响[D].吉林大学,2008.
    [54]金凌鸽.某C级车开发初期悬架KnC特性优化设计方法研究[D].吉林大学,2010.
    [55]景立新.汽车悬架稳健性设计研究[D].吉林大学,2011.
    [56]郭孔辉,刘涛.某车液压助力转向系统的试验与仿真[J].吉林大学学报(工学版),2011,(S1):5-11.
    [57]汽车操纵稳定性试验方法,中华人民共和国国家标准, GB/T6323.1~6-94.
    [58]汽车道路试验方法通则,中华人民共和国国家标准, GB/T12534-90.
    [59]汽车制动系统结构、性能和试验方法,中华人民共和国国家标准, GB12676-1999.
    [60]郭孔辉,黄江,宋晓琳.爆胎汽车整车运动分析及控制[J].汽车工程,2007,(12):1041-1045+1109.
    [61] Hassan Shraim, Abdelhamid Rabhi, Leonid Fridman. Estimation and Analysis of the Tire PressureEffects on the Comportment of the Vehicle Center of Gravity [J]. Proceedings of the2006International Workshop on Variable Structure Systems,2006,268-273.
    [62]张越今.汽车多体动力学及计算机仿真[M].吉林科学技术出版社,1998.
    [63]王正林,王胜开,陈国顺. MATLAB/Simulink与控制系统仿真.电子工业出版社,2005.
    [64]金凌鸽.统一轮胎模型与动力学软件的连接[D].吉林大学,2006.
    [65]郭孔辉,金凌鸽,卢荡.统一轮胎模型在车辆动力学仿真中的应用[J].吉林大学学报(工学版),2009,(S2):241-245.
    [66] Liu Tao,Konghui Guo,Xiaoyan Wang,Jiahui Tong,Application of UniTire in ve-DYNADynamic Simulation,2010International Conference on Engineering Education and EducationalTechnology,2011:587-592.
    [67]最新高速公路建设标准大全,中国交通出版社,2009年10月.
    [68]余卓平,刘高翔.汽车制动过程中参考车速计算方法的研究[J].上海汽车,1998,(05):1-3.
    [69]杨财,宋健. ABS/TCS/AYC中参考车速和滑移率算法研究[J].汽车工程,2009,(01):24-27.
    [70]刘景辉.轿车制动系建模与仿真及ABS控制策略[D].上海交通大学,2007.
    [71]于东.汽车防抱死制动系统ABS控制方法仿真研究与控制器设计[D].山东大学,2007.
    [72] CHARLES C.MACADAM, Understanding and Modeling the Human Driver, Vehicle SystemDynamics,2003.
    [73] CHARLES C.MACADAM, Development of a Driver Model for Near/At-Limit VehicleHandling, The University of Michigan Transportation Research Institute, December2001.
    [74] Guo KH, A Study of Method for Modeling Closed-Loop Vehicle Directional Control, Report inUMTRI, Dec.1982.
    [75] Konghui Guo, Feng Pan, Ying Cheng, Haitao Ding, Driver Model Based on the Preview OptimalArtificial Neural Network, The6thInternational Symposium on Advanced Vehicle Control(AVEC’02),2002.
    [76]程颖.基于误差分析法的驾驶员模型及其在ADAMS中的应用[D].吉林大学,2003.
    [77]王汝辉.方向与速度控制驾驶员模型及其误差分析法[D].吉林大学,2004.
    [78]万芳.用于汽车操纵稳定性评价的神经网络驾驶员模型[D].吉林大学,2004.
    [79]刘涛.两种驾驶员方向控制模型的比较与研究[D].吉林大学硕士学位论文,2007.
    [80] Guo KH, et al, Preview-Follower Method for Modeling Closed-loop Vehicle Directional Control,Symposium of19thAnnual Conference on Manual Control, Cambridge Massachusetts, May1983.
    [81]刘涛,郭孔辉.驾驶员模型在制动到零仿真中的应用[J].科学技术与工程,2012,(29):7644-7648.
    [82]李英.方向与速度综合控制驾驶员模型及在ADAMS中的应用[D].吉林大学,2008.
    [83]刘涛,郭孔辉.用于爆胎车辆仿真的驾驶员模型[J].吉林大学学报(工学版),2012,(05):1077-1082.
    [84]余志生主编.汽车理论(第3版),机械工业出版社,2000.
    [85][德]M·米奇克著,陈荫三译.汽车动力学C卷(第二版)[M].人民交通出版社,1992.
    [86] Y. Shibahata, K. Shimada and T. Tomari. Improvement of Vehicle Maneuverability by Direct YawMoment Control [J]. Vehicle System Dynamics,22(1993) pp.465-481.
    [87] Shoji Inagaki, Ikuo Kshiro, Masaki Yamamoto. Analysis on Vehicle Stability in Critical CorneringUsing Phase-Plane Method[C]. Proceeding of the Advanced Vehicle Control (AVEC)1994.
    [88] Young Eun Ko, Jang Moo Lee. Estimation of the stability region of a vehicle in plane motionusing a topological approach [J]. Int.J.of Vehicle Design, Vol.20, No.3,2002.
    [89] Ken’ichi KITAHAMA. Analysis of vehicles’ handling behavior using a phase plane[C].Proceeding of the Advanced Vehicle Control(AVEC)2002.
    [90]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海交通大学,2008.
    [91] YOSHIMI FURUKAWA, MASATO ABE, Advanced Chassis Control Systems for VehicleHandling and Active Safety, Vehicle System Dynamics,28(1997),pp.59-86.
    [92] H. Cherounat, M.Lakehal-Ayat, S.Diop. An integrated braking and steering control for a corneringvehicle[C]. Proceeding of the Advanced Vehicle Control (AVEC)2004.
    [93] V.Alberti, E.Babbel. Improved Driving Stability by Active Braking of the Individual Wheels[C].Proceeding of the Advanced Vehicle Control (AVEC)1996.
    [94] Howard Dugoff, Francher P.S, Leonard Segel. An analysis of tire traction properties and theirinfluence on vehicle dynamic performance [D]. SAE Technical Paper,700377.
    [95] P ilutti T, Ulsoy G, Hrovat D. Vehicle Steering Intervention Through Differential Braking.Transactions of the ASME,1998,120(9):314-321.
    [96]张丽霞,潘福全,费贤松.提高汽车操纵稳定性的联合控制研究[J].拖拉机与农用运输车,2010,(01):66-68.
    [97] Seung-Han You, Jin-Oh Hahn, Jae-Woong Hur, etal. Empirical Modeling of a Hydraulic Actuatorfor Vehicle Control. International Symposium on Advanced Vehicle Control (AVEC), Hiroshima,2002.
    [98] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated Control of Active Rear WheelSteering and Direct Yaw Moment Control[C]. Vehicle System Dynamics,27(1997), pp.357-370.
    [99] Anton T.Van Zanten,Rainer Erhardt,Georg Pfaff. VDC the Vehicle Dynamics Control System ofBosch[C]. SAE Technical Paper,950759.
    [100] Anton T.Van Zanten, Rainer Erhardt, Georg Pfaff, Friedrich Kost, Uwe Hartmann. ControlAspects of the Bosch-VDC[C]. Proceeding of the Advanced Vehicle Control (AVEC)1996.
    [101] Anton T.Van Zanten,Rainer Erhardt,Klaus Landesfeind,Georg Pfaff. VDC System Developmentand Perspective[C]. SAE Technical Paper,980235.
    [102]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,2000,(03):97-99.
    [103]王会义,宋健.汽车电子稳定程序的控制算法[J].清华大学学报(自然科学版),2007,(02):224-227.
    [104]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉科技大学,2007.
    [105]陶健民.车辆稳定性控制策略之比较[J].湖北汽车工业学院学报,2005,(01):1-5+26.
    [106] Sergey V.Drakunov, Behrouz Ashrafi, Alessandro Rosiglioni. Yaw Control Algorithm via SlidingMode Control[C]. Proceeding of the American Control Conference (ACC)1999.
    [107] Kenneth R.Buckholtz. Use of Fuzzy Logic in Wheel Slip Assignment–Part I: Yaw RateControl[C]. SAE Technical Paper,2002-01-1221.
    [108]李亮,宋健.汽车动力学控制系统研究进展[J].世界科技研究与发展,2005,(01):10-17.
    [109]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报,2006,(02):141-144.
    [110]胡寿松.自动控制原理[M].国防工业出版社,1995.
    [111]张锋.线性二次型最优控制问题的研究[D].天津大学,2009.
    [112]丁海涛,郭孔辉,陈虹.汽车稳定性控制中横摆力矩决策的LQR方法[J].吉林大学学报(工学版),2010,(03):597-601.
    [113]范小彬.轮胎侧偏刚度在线估算方法.汽车工程,2010,9:34-36.
    [114]许男.复合工况下轮胎稳态模型研究[D].吉林大学,2012.
    [115]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,(02):101-104.
    [116]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].吉林大学,2003.
    [117]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报,2009,(05):20-33.
    [118]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].吉林大学,2008.
    [119] Paul J.T, Venhovens, Karl Naab. Vehicle Dynamics Estimation Using Kalman Filters.International Symposium on Advanced Vehicle Control (AVEC). Nagoya,1998.
    [120] Jihan Ryu, Eric J.Rossetter, J.Christian Gerdes. Vehicle Sideslip and Roll Parameter EstimationUsing GPS[C]. Proceeding of the Advanced Vehicle Control(AVEC)2002.
    [121] Masato Abe, Akihisa Kato, Kazuasa Suzuki, etal. Estimation of Vehicle Side-Slip Angle for DYCby Using On-Board-Tire-Model. International Symposium on Advanced Vehicle Control (AVEC).Nagoya,1998.
    [122] Masugi Kaminaga, Genpei Naito. Vehicle Body Slip Angle Estimation Using an AdaptiveObserver. International Symposium on Advanced Vehicle Control (AVEC). Nagoya,1998.
    [123] dSPACE Inc. Control Desk—experiment guide, Release3.4.2002.
    [124]杨涤等.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2002.
    [125]马培蓓,吴进华,纪军,徐新林. dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,(4):667-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700