用户名: 密码: 验证码:
增程式电动车动力总成控制与测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对汽车对环境造成污染的问题和节能减排,高效低排放逐渐成为的汽车发展方向。电动汽车具有良好的环保性能和有多种能源为动力的显著特点,可以调整能源的结构,极大降低对环境的污染。纯电动汽车因为受到供电电池组的电量、体积和成本的限制,导致行驶里程不理想。因此针对纯电动车汽车的上述缺点,课题设计一种增程式电动汽车总成控制系统,在原有纯电动汽车基础结构之上增加增程器,在蓄电池供电不足的情况下由增程器提供动力,延长续航里程。
     该动力系统主要分为:增程器发电系统、电机驱动系统。增程器总成控制系统主要由上层控制其网络VCU、发动机控制单元EMS、发动机、发电启动一体机、发电机控制器IPU、及高低压线束、进排气系统组成。电机驱动系统主要由永磁同步交流电机、电机控制器、冷却系统、电池供能系统、电池管理单元组成。确定两套系统的通讯网络匹配、零部件规格匹配,控制需求和架构为主要的研究方向。
     课题通过分析增程式纯电动汽车的优缺点、结构与原理、能量的存储、电机的形式,围绕电动汽车的工作原理“蓄电池电流、电力调节器、电动机、动力传动系统、驱动汽车行驶”逐层进行概述分析,完成增程式电动汽车控制模式的设计;当锂电池电量不足时整车控制器能制动控制增程器启动发电,并为车辆持续行走提供足够的电能动力;当整车需要爬坡时,电池不能提供足够的电功率时,需要额外的能量供给时,此时增程器必须启动,额外提供能量,保证驾驶需求;整车控制系统必须具备故障诊断、高压安全检测和保护功能。
     课题通过理论公式计算电机部件中转速与转矩的关系、转速与功率的关系、功率与转矩的关系等动力系统驱动电机相关参数,由软件仿真得到增程电动车的指标参数;根据相应分析结果提出增程器模块研究方法,完成增程器专用发动机的选取,确定增程式电动车增程器核心部件的设计方法和相应约束条件。根据实际应用环境情况分析得出增程器电动车主要控制策略,完成整个课题的测试研究,并记录相应数据。
     课题研究了增程式电动车的控制原理,并且阐述了测试方法。缓解了人们对资源和环境污染的担心,解决了纯电动汽车续航里程短,大大提高其经济效益等等。在开发过程中不可避免的遇到了一些困难:包括目前蓄电池单位重量储存的能量太少,电动车的购置成本、维护成本较高等等问题。所以本文最后对电动汽车所面临的主要问题进行分析及对其未来发展进行了展望。
Due to the automobile pollution to the environment and energy-saving emission reduction development direction of vehicle with high efficiency and lowe mission is coming. Having good environmental protection performance and significant feature variety of energy as their driving force,the Electric cars can adjust the energy structure and ensure energy security. Duing to battery power supply, volume and cost constraints,the pure electric vehicles's range is undesirable. Aiming at those drawbacks of pure electric vehicles, this paper subjects to design a control system for Journey Increasing Model of Electric-auto(EREV), increasing a Range Extender on the pure electric car to extend range by Range Extender in the case of the insufficience of battery power supply.
     The power system is mainly divided into:extender power generation system, motor drive system. Extender assembly control system is mainly composed of the upper control the EMS network VCU, engine control unit, engine, generator, generator controller IPU, start machine and high and low voltage wiring harness, into the exhaust system. Motor drive system is mainly composed of permanent magnet synchronous ac motors, motor controllers, cooling system, the battery supply system, battery management unit. To determine the two sets of system communication network, spare parts specifications match, control requirements and architecture as the main research direction.
     Project completes the design of Journey Increasing Model of Electric-auto(EREV)'s control mode by analysing its advantages and disadvantages,structure and principle,energy storage, the form of motor,overview analysis one by one arounding the electric car working principle such as battery current, power regulator,motor, power transmission system and the car driving. Complete program main supplied with battery power electric cars, drivers driving; When lithium battery is insufficient for vehicle controller can brake control extender startup power, and provide sufficient electric power for vehicles continues to walk; When the vehicle needs to climb, the battery can't provide enough power, need additional energy supply, extender must start right now, an additional energy, ensure driving demand; The vehicle control system must have fault diagnosis, high pressure safety detection and protection function.
     Subject through the theoretical formula calculation speed and the torque of the motor parts in the relationship, the relationship between speed and power, the relationship between power and torque and power system such as drive motor related parameters, the extended range of electric parameters are obtained by software simulation; According to the results of the analysis put forward corresponding rights Range Extender module research methods, the complete rights Range Extender special selection of engine, determined to add program design method of electric vehicle extender core components and the corresponding constraint conditions. Analysis according to the practical application environment situation Range Extender electric main control strategy, complete the fit subject of a test study, and records the corresponding data.
     The research programs Journey Increasing Model of Electric-auto(EREV)'s control principle, and expounds the test method. Easing people worry about resources and environment pollution, solved the problem of pure electric vehicle range is too short, greatly improve its economic benefit and so on. During the research we met with difficulties are inevitable, including the battery energy storage unit rate is too small, electric vehicle purchase costs and maintenance costsare too high,etc. So finally, the paper analyzes the main problems that the electric cars face by, and prospectes its future development.
引文
[1]帅石金.汽车文化[M].北京:清华大学出版社,2006.
    [2]黄庆生.进入汽车时代[M].北京:机械工业出版社,1999.
    [3]李朝晖,杨新桦.汽车新技术[M].重庆:重庆大学出版社,2004.
    [4]朴昌浩,覃丹丹,段志辉,陈平,刘冬群等.电动汽车动力电池的生态系统——性能、成本及市场[J].汽车安全与节能学报.2011,03:4-11.
    [5]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [6]张荣贵.我国电动汽车发展[J].机电技术.2008.4.
    [7]余志生.汽车理论第三版[M].北京:汽车工业出版社,2000.
    [8]陈清泉,孙逢春.混合电动车辆基础[M].北京:北京理工大学出版社,2001.
    [9]饶运涛,邹继军,王进宏等.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2007:111-119.
    [10]宫学庚等.电动汽车动力电池模型和SOC估算策略[J].电源技术:2004,13(28): 2-3.
    [11]刘洋成.混合动力客车助力系统参数匹配和优化[D].哈尔滨:哈尔滨工业大学,2009:34-44.
    [12]李蓬.轻度混合动力汽车制动能量回收策略仿真[D].北京:清华大学.2005.
    [13]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005:1-2.
    [14]胡人之.永磁同步电机转子初始位置估计[D].哈尔滨:哈尔滨工业大学,2008.
    [15]龚君.混合动力汽车控制策略的研究[D].武汉:武汉理工大学,2007:29-35.
    [16]郑善亮.汽车发动机故障诊断研究的理论与方法[D].重庆:重庆交通大学.2009.
    [17]吴剑锋,高超学.汽车发动机常见故障排除方法及案例分析[J].轻工科技,2012年1月,第1期,37-38.
    [18]朱健新,郑荣良,卓斌等.电动汽车高压电安全诊断与控制策略的研究[J].汽车工程,2007年第4期.
    [19]黄妙华,喻厚宇.影响并联混合动力电动汽车发动机在高效区工作的因素[J].汽车工程,2005,6(1):3-5.
    [20]李应.内燃机流固耦合传导热研究[D].浙江:浙江大学,2006:39-45.
    [21]王保华.混合动力城市客车控制策略与试验研究[D].上海:上海交通大学2008:31-35.
    [22]熊明杰,胡国强.纯电动汽车动力系统选择与匹配[J].汽车工程师.2011(5)
    [23]刘平,刘和平,郭强,付强等.电池组直接供电对电动汽车驱动性能的影响[J].电机与控制学报.2011,11:8-12.
    [24]Cheng Ximing, Sun Feng chun, Control Strategies of an Aux-iliary Power Unit [J]. IEEE 2007,7.
    [25]宗立志,段建民,许家群等.混合动力汽车辅助动力控制器设计与实现[J].计算机测量与控制.2008,16(3).
    [26]杨雨平,杨福源,何桦.串联式混合动力系统APU结构设计[J].车用发动机.2010.
    [27]吴艳苹.串联式混合动力汽车能量控制策略研究[D].北京:北京工业大学,2008,1.
    [28]谢星,王廷宏,陈凤祥等.基于Cruise/Simulink的车用燃料电池/蓄电池混合动力能量管理策略仿真[J].汽车工程.2010
    [29]简晓春,杜仕武.现代汽车技术及应用[M].北京:人民交通出版社,2004.
    [30]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2000:5-10.
    [31]孙旭东,王善铭等.电机学[M].北京:清华大学出版社,2006.
    [32]谢星,王廷宏,陈凤祥等.基于Cruise/Simulink的车用燃料电池/蓄电池混合动力能量管理策略仿真[J].汽车工程,2010.
    [33]税江.驱动工况下基于最佳效率的电力驱动系统控制研究[D].重庆:重庆大学2007:15-20.
    [34]田广宇.混合动力汽车关键技术[J].汽车技术,2002(1):8-11.
    [35]刘庆.进入汽车时代[M].北京:机械工业出版社,2000.
    [36]CIKANEK SR, BAILY KE, et al. Control System and Dynamic Model Validation for a Parallel Hybrid Electric Vehicle[A]. Procceedings of the American control conference[C]. California:SanDiefo 1999:1222-1224.
    [37]张嘉君,吴志新,乔维高.混合动力汽车整车控制策略研究[J].客车技术与研究:2007,6(4):2-4.
    [38]JOHNSTON B, MCGOLDRICK T, FUNSTON D, et al. The Continued Design and Developmentof the University ofCalifornia, Davis Future Car[A]. SAE 1998, 459-462.
    [39]AN FENG, BARTH MATTHEW, SCORA G. Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance[A]. SAE 1997,36-38.
    [40]BULTER K L, STAVENS K M. A versatile computer simulation tool for design and analysis of electric and hybrid drive trains [A]. SAE 1997,22-24.
    [41]Johston B, Mcgoldrick T, Funston D, et al. The Continued Design and Development of the University of California, Davis Future Car[A]. SAE 1998,459-462.
    [42]Cajander D, Hoang L H. Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation[J]. Mathematics and Computers in Simulation,2006(71):333-344.
    [43]周健CFA6470E四驱混合电动汽车关键技术研究[D].长沙:湖南大学,2007:13-20.
    [44]Cuddy MR, Wipke KB. Analysis of the Fuel Economy Benefit of Drive train Hybridization[A]. SAE 1997,101-103.
    [45]Anderson C, Pettit E. The Effects of APU Characteristics on the Design of Hybrid Control Strategies for Hybrid Electric Vehicle[A]. SAE 1995,66-68.
    [46]Schouten N J, Salman MA, Kheir N A. Energy man-agement strategies for parallel hybrid vehicles using fuzzy logic[J]. Control Engineering Practice,2003,2(11): 171-177.
    [47]Morteza M G, Poursamad A, Ghalic B. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles [J]. Journal of the Franklin Institute.2006,4-5(343):420-435.
    [48]刘胜铁.并联混合动力客车模糊控制策略的研究[D].长春:吉林大学,2006:21-31.
    [49]吴伟岸.混合动力汽车动力系统参数选择及匹配研究[D].合肥:合肥工业大学,2005:31-34.
    [50]邢伟岩.混合动力电动汽车能量存储系统的性能研究及仿真[D].大连:大连理工大学,2003:12-15.
    [51]R.Jayabalan, B.Fahimi. Diagnosis of solid state DC/DC Cascaded Converter Faults in Hybrid Electric Automotive Power Systems. SAE 2006-01-0370.
    [52]黎林.纯电动汽车用锂电池管理系统的研究[D].北京:北京交通大学,2009.
    [53]郑杭波.新型电动汽车锂电池管理系统的研究与实现[D].北京:清华大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700