混合交通交叉口直行机动车运行特性分析与建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数发展中国家城市道路交通都具有混合交通特点,混合交通特性导致的一系列问题是发展中国家城市面临的重要交通问题。城市路网中的平面交叉口是混合交通流与混合交通问题最集中的地方之一,对平面交叉口的信号配时与交通组织进行优化在缓解整个路网交通拥堵中具有非常重要的意义。开展这项工作的前提是对交叉口的运行现状进行准确把握和评价,尤其是对交叉口各进口的饱和度和服务水平进行精确计算和评定,这也涉及到交叉口通行能力计算问题。
     现有信号交叉口通行能力计算方法未能充分考虑混合交通特点,部分研究提出采用简单的折减系数来体现混合交通环境中行人与非机动车的影响,难以兼顾不同交叉口之间的差异,从而可能导致较大误差。有鉴于此,本文以实际调研数据为基础,考虑了不同类型交叉口行人与非机动车对机动车道通行能力影响的差异,包括到对交叉口混合交通环境进行识别、对行人与非机动车干扰的定量分析;通过对混合交通环境下机动车运行特性的分析,构建了可用于不同混行环境的交叉口通行能力计算方法。该方法以混合交通环境下直行机动车的运行模型为基础,即首先对混合交通交叉口直行机动车的运行特性进行分析和建模,其次利用直行机动车运行模型的特定输出指标定量分析了混合交通交叉口的混行程度,提出了交叉口混行级别的定义与划分方法,最后建立了可考虑行人与非机动车实际干扰影响的信号交叉口通行能力计算模型。主要研究内容和结论包括:
     (1)直行机动车在绿灯初期所受到的干扰分析和在干扰环境下的运行特性分析。对交叉口范围内各类干扰的时空分布特性进行了详细分析,并结合绿灯初期直行车辆加速度的抽样检测数据讨论了直行车辆在交叉口内运行的基本特性。研究表明,交叉口内行人与非机动车对直行机动车的干扰主要发生于三个不同的时间域内和三个独立的小分区上,而且直行车辆在交叉口内运行时表现出一种不同于路段跟驰的中观特性,即致密性行驶队列的形成与消散特性。
     (2)直行机动车在绿灯初期的运行模型。在致密性行驶队列形成与消散的中观特性基础上,该模型首先将直行车辆在绿灯启亮后最初一段时间内的运行过程划分为四个阶段:初始加速阶段(或致密性队列形成阶段)、致密性队列行驶阶段、队列消散阶段以及自由行驶阶段;其次用不同的运动学方程来刻画各阶段的加速特征,得出了队列中每一辆车在每一个阶段运行的速度—时间曲线;最后,根据跟车时距和运行速度的约束又将相邻阶段联接起来,得到了每一辆车包括各个阶段以及相邻阶段衔接点在内的完整的速度—时间曲线,实现了对致密性行驶队列形成与消散过程的完整刻画。案例分析表明,这种模型在描述绿灯初期直行车辆的运行行为上具有一定的精确度和可靠性,由该模型预测的体现直行车辆运行特征的特定指标值(如直行车辆通过交叉口所使用的时间、通过停车线所使用的时间)与这些指标实际观测值之间的相对误差一般小于1%。
     (3)交叉口混行程度的定量分析以及交叉口混行级别划分。这部分研究分两步进行:首先,以行人与非机动车流量分布数据为基础对交叉口的混行程度进行初步分析,并在此基础上对交叉口混行级别进行初步划分;其次,针对初步划分中的最低混行级别交叉口确定直行车辆在绿灯初期运行模型的具体形式,并对直行车辆通过交叉口所使用时间进行预测,并将预测值与该指标的实际观测值进行比较,二者之间的差异反映了行人与非机动车干扰对机动车通过交叉口时间的影响。本文通过这种差异对实际交叉口的混行程度进行识别,并实现对交叉口混行级别的详细定义与划分。研究表明,利用与直行车辆通过交叉口所使用时间有关的相对差异指标以及行人与非机动车流量分布指标可将目前实际运行中的混合交通交叉口划分为三个级别:混行程度最低(A)级别、混行程度中等(B)级别以及混行程度最高(C)级别。
     (4)可考虑行人与非机动车干扰影响及不同混行级别交叉口的直行车道通行能力计算模型。首先,在交叉口混行级别定义与划分的基础上构建了适用于各种混行级别交叉口的通用型直行车辆运行模型;其次,利用所建立模型的特定输出指标对传统停车线法进行改造,构造了一种新的潜在考虑行人与非机动车干扰影响的直行车道通行能力计算方法;最后,运用该方法计算了分属于不同混行级别的实际交叉口的通行能力,并与传统方法进行了比较分析。研究表明,与传统停车线法、《城市道路设计规范》方法相比,由本文方法计算得到的通行能力值最接近实际观测结果(与实测结果之间的相对误差一般在20%以下),也更适合于不同类型交叉口。
     (5)基于仿真的实证分析。利用仿真软件,将本文构建的通行能力计算方法和传统通行能力计算方法应用于实际混合交通交叉口的通行能力计算,通过仿真软件的运行结果对各种方法的应用效果进行比较分析,并在此基础上实现对本文方法的进一步评价。这种仿真分析与评价的实现途径是:首先根据各种通行能力计算方法得出的通行能力估算值设定可行且变化的流量需求作为仿真输入数据,然后根据仿真输出流量和仿真输出延误随仿真输入变化而变化的规律分析通行能力估算值的合理性,并据此对相应的通行能力计算方法进行评价。仿真评价得出了与理论计算基本一致的结论,进一步验证了本文方法的有效性。
Most developing cities are characterized by mixed traffic. Mixed traffic itself always leads to inefficient utilization of network facilities and makes existing methods and models involved in researches on traffic and transportation not so suitable, as they were presented under conditions of pure motorized traffic. The intersection is one of the most significant facilities among the road network in a city, and it is also one of the most prevalent places that pools mixed traffic flows as well as problems induced by mixed traffic flows. Capacity analysis of signalized intersections under conditions of mixed traffic is a difficult but important research subject for developing cities. But existing capacity formulas either ignore effects of disturbances caused by pedestrians and non-motorized vehicles or merely introduce a fixed discount coefficient to meet the effects. Inevitably these formulas will result in big errors when mixed traffic occurs and varies among different intersections. This thesis develops a novel method for capacity analysis and estimation that based on the recognition and discrimination of mixed traffic conditions. It is relied on the analysis of impact of pedestrians and non-motorized vehicles on the advancement of motorized vehicles. Prior to the capacity method, a mathematic model is developed to describe moving features of motorized vehicles under conditions of mixed traffic, and based on the model disturbance effects of pedestrians and non-motorized vehicles are investigated and analyzed. Recognition of disturbance effects makes it possible to distinguish different mixed traffic conditions and this work helps to develop a novel sorting art for signalized intersections which is also presented before the capacity analysis. All works of this thesis are summarized as below:
     (1) Discussion on the spatio-temporal feature of disturbances caused by pedestrians and non-motorized vehicles at signalized intersections. As the production of the discussion, disturbance time and disturbance zone are defined. The spatio-temporal analysis on disturbances is groundwork in the thesis.
     (2) Development of a mathematic model (called MASPA model in this thesis) to describe through vehicles advancing during the start part of green time. As green indication starting, through vehicles in the involved approach often experience a particular course observed as that a closely-spaced platoon comes into being and then turns to disperse. The model is based on this course and the movement of each through vehicle is divided into four stages:initially accelerating from rest, shortly after which reducing acceleration rate to join a moving platoon, then increasing acceleration rate to disperse from the platoon and eventually stepping into a free flow. Constraints of time headway and speed are introduced to link adjacent stages. This model produces the velocity-time curve for each through vehicle at each stage and at each junction of adjacent stages. And from the velocity-time curve, two important variables of stop-line passing time and intersection passing time are defined for each vehicle, which are used in the following analysis. Case studies show a good fit for this model to describe moving behavior of through vehicles during the early time of green phase. Especially, for performance measures of stop-line passing time and intersection passing time, the relative error between the empirical value and the estimated value by the model is usually less than 1%.
     (3) Quantitative analysis on the effect of disturbances derived from pedestrians and non-motorized vehicles. This work leads to discrimination of mixed traffic conditions at signalized intersections and consequently a novel sorting art for signalized intersections. The concept of relative increment (RI) of the through vehicle's intersection passing time is introduced and calculated by the MASPA model. Here it is confirmed by the technique of traffic survey that the RI of intersection passing time is mainly caused by disturbances of pedestrians and non-motorized vehicles, so the RI is adopted to stand for the effect of disturbances and used to recognize and distinguish different mixed traffic status at different intersections. This part of study makes it clear that according to mixed traffic status (in fact disturbances effect from pedestrians and non-motorized vehicles) signalized intersections in developing cities can be classified into three interweaving grades:the lowest grade (also named grade A), the moderate grade (grade B) and the highest grade (grade C).
     (4) Development of a novel method for capacity analysis and estimation. This method uses the data of stop-line passing time produced by the MASPA model to found a capacity formula, meanwhile by revising the one of stop-line method which was presented by Beijing Municipal Design Institute, Beijing city, China. In the case study of theoretic calculations at practical intersections, the new method is proved more fit for all kinds of mixed traffic conditions compared to other existed methods.
     (5) Simulating analysis on the capacity methods. A VISSIM-based simulator is designed to evaluate the capacity method developed in this thesis, comparing with other existed methods. In the simulator varied but feasible motorized flows are preset as the input and the fluctuant outputs of flow and delay are recorded. The analysis and thus the evaluation are derived from the relationship between the output and the input. The result of simulating analysis is quite close to that of theoretic calculations, which confirms the validity of the new method.
引文
[1]Akcelik R. The highway capacity manual:delay formula for signalized intersections [J]. ITE Journal,1988,58(3):23-27.
    [2]Akcelik R. Time-dependent expressions for delay, stop rate and queue length at traffic signals [R]. International Report AIR 367-1, Australian Road Research Board, Vermont South,1980.
    [3]Akcelik R., Rouphail N.M. Overflow queues and delays with random and platoon arrivals at signalized intersections [J]. Journal of Advanced Transportation,1994,28(3):227-251.
    [4]Akgungor A.P. A new delay parameter dependent on variable analysis periods at signalized intersections, Part 1:Model development [J]. Transport,2008,23(1):31-36.
    [5]Allen D.P., Hummer J.E., Rouphail N.M., Milazzo Ⅱ J.S. The effect of bicycles on the capacity of signalized intersections [A]. Transportation Reserch Record 1646 [C], he 77th Annual Meeting of the US Transportation Research Board, Washington D C,1998.
    [6]Antonini G, Bierlaire M., Weber M. Discrete choice models of pedestrian behavior [J]. Transportation Research Part B,2006,40(8):667-687.
    [7]Aw A., Rascle M. Resurrection of "second order" models of traffic flow [J]. SLAM Journal on Applied Mathematics,2000,60(3),916-938.
    [8]Bando M., Hasebe K., Nakayama A, Shibata A., Sugiyama Y. Dynamical model of traffic congestion and numerical simulation [J]. Physical Review E,1995,51:1035-1042.
    [9]Biham O., Middleton A.A., Levine D.A. Self-organization and a dynamical transition in traffic flow models [J]. Physical Review A,1992,46:R6124-R6127.
    [10]Blue V.J., Alder J.L. Cellular Automata Microsimulation for Modeling Bi-directional Pedestrian Walkways [J]. Transportation Research Part B,2001,35(3):293-312.
    [11]Brilon W, Wu N. Delays at fixed-time traffic signals under time dependent traffic conditions [J]. Traffic Engineering and Control,1990,31(12):23-63.
    [12]Brilon W, Stuwe B. Capacity and design of traffic circles in Germany. Transportation Research Record,1990,1398:61-67.
    [13]Burstedde C., Klauck K., Schadschneider A., Zittartz J. Simulation of Pedestrian Dynamics Using a Two-dimensional Cellular Automation [J]. Physica A 2001,295:507-525.
    [14]Cassidy M.J., Anani S.B., Haigwood J.M. Study of freeway traffic near an off-ramp [J]. Transportation Research Part A,2002,36(6):563-572.
    [15]Chen A., Yang H., Lo H.K., Tang W.H. Capacity reliability of a road network:an assessment methodology and numerical results [J]. Transportation Research Part B,2002, 36(3):225-252.
    [16]Chen X.M., Shao C.F., Yue H. Influence of Bicycle Traffic on Capacity of Typical Signalized Intersection [J]. Tsinghua Science& Technology,2007,12(2):198-203.
    [17]Chen Z.Q., Mao B.H., Liu M.J., Liu Z.L., Liang X. Modeling vehicles movement at signalized intersection [A]. In:Mao B.H., Tian Z.Z., Huang H.J., Gao Z.Y. Proceedings of the Sixth International Conference on Traffic and Transportation Studies [C]. ASCE, USA, 2008,653-668.
    [18]Chen Z.Q., Feng X.S., Liu M.J. A model for the mesoscopic feature of vehicles movement at signalized intersections [A]. In:Yu H.G, Jiang Y. Proceedings of the First International Conference of Modeling and Simulation Volume IV:Modelling and simulation in Business, management, economic and finance [C]. Nanjing, China,2008,389-395.
    [19]Chopard B., Droz M. Cellular automata modelling of physical systems [M]. Cambridge University Press, Cambridge,1998.
    [20]Chowdhury D., Santen L., Schadschneider A. Statistical physics of vehicular traffic and some related systems [J]. Physics Reports,2000,329(5):199-329.
    [21]Chung K., Rudjanakanoknad J., Cassidy M.J. Relation between traffic density and capacity drop at three freeway bottlenecks [J]. Transportation Research Part B,2007,41(1):82-95.
    [22]Clement S.J., Taylor M.A.P., Yue W. L. Simple platoon advancement:a model of automated vehicle movement at signalized intersections [J]. Transportation Research Part C:Emerging Technologies,2004,12(3-4):293-320.
    [23]Comert G, Cetin Mecit. Queue length estimation from probe vehicle location and the impacts of sample size [J]. European Journal of Operational Research, In Press, Corrected Proof, Available online 1 July 2008
    [24]Daganzo C F. Requiem for second-order fluid approximation of traffic flow. Transportation Research B,1995,29(4):277-286.
    [25]Darbha S., Rajagopal K.R. A non-continuum approach to modelling the flow of traffic [J]. Mathematical Models and Methods in Applied Sciences,2002,12(10):1381-1399.
    [26]Drew D.R. Traffic Flow Theory and Control [M]. New York:McGraw-Hill Book Company, 1968.
    [27]Fruin J.J. Pedestrian Planning and Design [J]. Metropolitan Association of Urban Designers and Environmental Planners. New York,1971.
    [28]Fukui M., Ishibashi Y. Traffic flow in ID cellular automaton model including cars moving with high speed [J]. Journal of the Physical Society of Japan,1996,65(6):1868-1870.
    [29]Gazis D.C., Herman R., Potts R.B. Car-following theory of steady-state traffic flow [J]. Operations Research,1959,7(4):499-505.
    [30]Gazis D.C., Herman R., Rothery R.W. Nonlinear follow-the-leader models of traffic flow [J]. Operations Research,1961,9:545-567.
    [31]Grimes S. Rural areas in the information society:diminishing distance or increasing learning capacity? [J]. Journal of Rural Studies,2000,16(1):13-21.
    [32]Hakkert A. Shalom, Gitelman Victoria, Ben-Shabat Eliah. An evaluation of crosswalk warning systems:effects on pedestrian and vehicle behavior [J]. Transportation Research Part F,2002,5(4):275-292.
    [33]Heidemann D. Queue length and delay distributions at traffic signals [J]. Transportation Research Part B,1994,28(5):377-389.
    [34]Heidemann D. Queue length and waiting-time distributions at priority intersections [J]. Transportation Research Part B,1991,25(4):163-174.
    [35]Helbing D., Tilch B. Generalized force model of traffic dynamics [J]. Physical Review E, 1998,58:133-138
    [36]Heydecker B.G. Capacity at a signal-controlled junction where there is priority for buses [J]. Transportation Research Part B,1983,17(5):341-357.
    [37]Hossain M. Capacity estimation of traffic circles under mixed traffic conditions using micro-simulation technique [J]. Transportation Research Part A,1999,33(1):47-61.
    [38]Hughes R.L. The flow of large crowds of pedestrians [J]. Mathematics and computers in simulation,2000,53:367-370.
    [39]J. von Neumann. Theory of Self-Reproducing Automata [M], A. W. Burks, Ed. Urbana, IL: Univ. of Illinois Press,1966.
    [40]Jiang B. Flow dimension and capacity for structuring urban street networks [J]. Physica A, 2008,387(16-17):4440-4452.
    [41]Jiang R, Wu Q.S., Zhu Z.J. Full velocity difference model for a car-following theory [J]. Physical Review E,2001,64:017101.
    [42]Jiang Rui, Wu Qing-song. The Moving behavior of a large object in the crowds in a narrow channel [J]. Physica A,2006,364:457-463.
    [43]Katja Vogel. A comparison of headway and time to collision as safety indicators [J]. Accident Analysis and Prevention,2003,35(3):427-433.
    [44]Kerner B. S., Konhauser P. Cluster effect in initially homogeneous traffic flow [J]. Physics Review E,1993,48(4):R2335-R2338.
    [45]Kimber R.M. The traffic capacity of roundabout [R]. TRRL report, LR942, Department of Environment, Department of Transport, UK,1980.
    [46]Kuhne, R.D. Traffic Patterns in unstable Traffic Flow on Freeways [C]. Highway Capacity and Level of Service, Brannolte (ed.), Rotterdam, (1991).
    [47]Lee Chris, Abdel-Aty Mohamed. Comprehensive analysis of vehicle-pedestrian crashes at intersections in Florida [J]. Accident Analysis and Prevention,2005,37:775-786.
    [48]Lenz H., Wagner C.K., Sollacher R. Multi-anticipative car-following model [J]. The European Physical Journal B,1999,7:331-335.
    [49]Lighthill M.J., Whitham GB. On kinematic waves:II. A theory of traffic flow on long crowed roads [C]. Proceedings of the Royal Society of London, Series A,1955,229: 317-345.
    [50]Lin F.B., Thomas D.R. Headway compression during queue discharge at signalized intersections [A]. Transportation Research Record:Journal of the Transportation Research Board [C], No.1920, Transportation Research Board of the National Academies, Washington, D.C.,2005,81-85.
    [51]Long G Intervehicle spacings and queue characteristics [J]. Transportation Research Record, 2002,1796:86-96.
    [52]McDonaid R.P. An Index of Goodness of fit based on noncentrality [J]. Journal of Classification,1998,6:97-103.
    [53]Mao B.H., Chen H.H., Chen S.L Sustainability Assessment of Speed Regulation of Urban Traffic [J]. Journal of International Association of Traffic and Safety Sciences, Japan,2002, 26(2):18-24.
    [54]Marin A., Patricia Jaramillo. Urban rapid transit network capacity expansion [J]. European Journal of Operational Research,2008,191(1):45-60.
    [55]May A.D. Traffic Flow Fundamentals [M]. New Jersey:Prentice-Hall, Inc,1990.
    [56]Michael P.G, Leeming F.C. Dwyer, W.O. Headway on urban streets:observational data and an intervention to decrease tailgating [J]. Transportation Research Part F,2000,3 (2):55-64.
    [57]Nagatani T. Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction [J]. Physical Review E,1999,60:6395-6401.
    [58]Nagel K., Schreckenberg M. A cellular automaton model for freeway traffic [J]. Journal de Physique I (France),1992,2:2221-2229.
    [59]Newell G.F. A simplified theory of kinematic waves in highway traffic, Part Ⅱ:Queuing at freeway bottlenecks [J].Transportation Research Part B,1993,27(4):289-303.
    [60]Olszewski P. Overall Delay, Stopped Delay, and Stops at Signalized Intersections [J]. Journal of Transportation Engineering,1993,119(6):835-852.
    [61]Pacey GM. The progress of a bunch of vehicles released from a traffic signal. RRL Note, No. RN/2665/GMP, Transport and Road Research Laboratory, Growthorne, UK,1956.
    [62]Parker M.T. The effect of heavy good vehicles and following behaviour on capacity at motorway roadwork sites [J]. Traffic Engineering and Control,1996,37,524-531.
    [63]Payne H.J. Models of freeway traffic and control [J]. Mathematical Models of Public Systems,1971,1(1):51-61.
    [64]Peter Hides. A car-following model for urban traffic simulation [J]. Traffic Engineering and Control,1998,39(5):300-305.
    [65]Pipes L.A. An operational analysis of traffic dynamics [J]. Journal of Applied Physics,1953, 24:274-281.
    [66]Pollatschek M.A., Polus A., Livneh M. A decision model for gap acceptance and capacity at intersections [J]. Transportation Research Part B,2002,36(7):649-663.
    [67]Qiao F., Yang H., Lam W.H.K. Intelligent simulation and prediction of traffic flow dispersion [J]. Transportation Research Part B,2001,35(9):843-863.
    [68]Reuschel R. Fahrzeugbewegungen in der Kolonne bei gleichformig beschleunigtem oder verzogertem Leitfahrzeug [J]. Zeitschrqt des Osterreichische Ingenieure-und Architekten Vereines (in German),1950,95:52-62;73-77
    [69]Richards P.I. Shock waves on the highway [J]. Operations Research,1956,4:42-51.
    [70]Roberston D.I. Transyt:a traffic network study tool. RRL Report, No. LR253, Transport and Road Research Laboratory, Growthorne, UK,1969.
    [71]Schaefer A. Lisa, Mackulak T. Gerald, Cochran K. Jeffery, Cherilla L. Jennifer. Application of a General Particle System Model to Movement of Pedestrians and Vehicles [A]. Proceeding of the 1998 Winter Simulation Conference [C],1998:1155-1160.
    [72]Songchitruksa P., Hard E.N. Queuing simulation of roadside survey station:blocked traffic lane [J]. Transportation Research Part A,2008,42(6):857-873.
    [73]Stephanopoulos G, Michalopoulos P., Stephanopoulos G Modeling and analysis of traffic queue dynamics at signalized intersections [J]. Transportation Research A,1979,13(5): 295-307.
    [74]Transportation Research Board. Highway Capacity Manual [M]. National Research Council, Washington D.C.,2000.
    [75]Troutbeck R.J. Capacitu and design of traffic circles in Australia [J]. Transportation Research Record,1990,1398:68-74.
    [76]Tyagi V., Darbha S., Rajagopal K.R. A dynamical systems approach based on averaging to model the macroscopic flow of freeway traffic [J]. Nonlinear Analysis:Hybrid Systems, Volume 2, Issue 2, June 2008, Pages 590-612
    [77]Van Zuylen H.J., Viti F. Delay at controlled intersections:the old theory revised [C]. Proceedings of the IEEE ITSC 2006,2006 IEEE Intelligent Transportation Systems Conference, Toronto, Canada, September 17-20,2006,68-73.
    [78]Vlahogianni E.I., Jr. Webber C.L., Geroliminis N., Skabardonis A. Statistical characteristics
    of transitional queue conditions in signalized arterials [J]. Transportation Research Part C, 2007,15(6):392-403.
    [79]Wang Yinhai, Nihan Nancy L. Estimating the risk of collisions between bicycles and motor vehicles at signalized intersections [J]. Accident Analysis and Prevention,2004,36: 313-321.
    [80]Washburn S.S., Larson N. Signalized intersection delay estimation:Case study comparison of TRANSYT-7F, synchro and HCS [J]. ITE Journal,2002,72(3):30-35.
    [81]Webster F.V. Traffic signal settings. Road Research Laboratory Technical Paper No.39, HMSO, London,1958.
    [82]Weidemann R., Reiter U. Microscopic traffic simulation the simulation systym-misson [R]. German:University Karlsrube,1992.
    [83]Werner Brilon, Ning Wu. Capacity at unsignalized two-stage priority intersections [J]. Transportation Research Part A,1999,33(3-4):275-289.
    [84]Wolfram S. Theory and application of cellular automata [M]. Singapore:World Scientific, 1986.
    [85]Wu N. Capacity of shared-short lanes at unsignalized intersections [J]. Transportation Research Part A,1999,33(3-4):255-274.
    [86]Yang Jianguo, Deng Wen, Wang Jinmei, Li Qingfeng, Wang Zhaoan. Modeling pedestrians' road crossing behavior in traffic system micro simulation in China [J]. Transportation Research A,2006,40:280-290.
    [87]Zhang Y.L., Owen L.E., Clark J.E. Multiregime approach for microscopic traffic simulation [J]. Transportation Research Record,1998,1644:103-114.
    [88]Zhao X.M, Gao Z.Y., Jia B. The capacity drop caused by the combined effect of the intersection and the bus stop in a CA model [J]. Physica A,2007,385(2):645-658.
    [89]Zhao X.M, Gao Z.Y., Li K.P. The capacity of two neighbour intersections considering the influence of the bus stop [J]. Physica A,2008,387(18):4649-4656.
    [90]陈宽民,严宝杰.道路通行能力分析[M].北京:人民交通出版社,2003.
    [91]陈绍宽,郭谨一,王璇,毛保华.信号交叉口延误计算方法的比较[J].北京交通大学报,2005,29(3):77-80.
    [92]高海军,陈德望,陈龙.混合交通流环境下信号配时研究[J].公路交通科技,2003,20(4):80-83.
    [93]郭学琴,袁振洲.主路优先控制交叉口通行能力分析[J].山东理工大学学报,2006,20(6):89-92.
    [94]何民.混合交通流微观仿真关键技术研究[D].北京工业大学博士学位论文,2003.
    [95]黄荣,郭敏,陈绍宽,梁肖.拥堵状态下信号交叉口通行能力计算方法[J].交通运输系统工程与信息,2008,8(3):58-65.
    [96]姬杨蓓蓓,张小宁,孙立军.基于元胞传输模型的交通事件消散建模[J].重庆交通大学学报,2007,27(3):42-45.
    [97]贾斌,高自友,李克平,李心刚.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社,2007.
    [98]姜锐.交通流复杂动态特性的微观和宏观模式研究[D].中国科学技术大学博士学位论文,2002.
    [99]景春光,王殿海.典型交叉口混合交通冲突分析与处理方法[J].土木工程学报,2004,37(6):97-100.
    [100]隽志才,魏丽英,李江.信号交叉口排队长度宏观模拟的自适应分析法[J].中国公路学报,2000,13(1):77-80.
    [101]孔惠惠,秦超,李新波,李引珍.交通事故引起的排队长度及消散时间的估算[J].2005,5:65-67.
    [102]李建新,毛保华.混合交通环境下有信号控制交叉口通行能力研究[J].交通运输系统工程与信息,2001,1(2):119-123.
    [103]龙小强,晏启鹏.非机动车道对机动车道干扰的流体内摩擦模型[J].中国公路学报,2002,15(1):100-102.
    [104]路峰,钱劭武,侯刚.混合交通条件下平交路口放行方法的比较分析[J].中国人民公安大学学报(自然科学版),2003,33(1):67-71.
    [105]毛保华,贾顺平等.北京市三里河路至西二环地区交通组织优化研究报告[R].北京:北京交通发展研究中心,北京交通大学,2006.
    [106]毛保华等.北京市交通拥堵调查与缓堵措施研究报告[R].北京:北京交通发展研究中心,北京交通大学,2007.
    [107]毛保华,孙壮志,贾顺平等.区域交通组织优化方法及实践研究[M].北京:人民交通出版社,2007.
    [108]毛保华等.北京交通结构优化研究报告[R].北京:北京交通发展研究中心,北京交通大学,2008.
    [109]潘俊卿,邓卫.环形交叉口公交优先通行措施及其影响研究[J].公路交通科技,2005,22(6):130-133.
    [110]钱大琳,蒋海峰,黄迪,赵春龙,杨露平.信号交叉口混合交通流干扰影响及其计算方法研究[J].交通运输系统工程与信息,2006,6(3):75-78.
    [111]任福田,刘小明,荣建.交通工程学[M].北京:机械工业出版社,2004.
    [112]邵长桥,荣建,马国旗.信号交叉口控制延误模型研究[J].公路交通科技,2004,21(3):86-88.
    [113]邵长桥.平面信号交叉口延误分析[D].北京工业大学博士学位论文,2002.
    [114]邵长桥,杜晓辉,李光芹.信号交叉口排队离散车头时距统计分析[J].公路交通科技,2003,20(4):76-79.
    [115]孙明正,杨晓光.机非混行平面交叉口交通设计理论研究[J].公路交通科技,2004,21(8):82-86.
    [116]汪秉宏,邝乐琪,许伯铭.高速公路交通流元胞自动机模型的一种统计平均解耦处理[J].物理学报,1998,47(6):906-915.
    [117]王殿海,景春光,曲昭伟.交通波理论在交叉口交通流分析中的应用[J].中国公路学报,2002,15(1):93-96.
    [118]王殿海,杨少辉,景春光.累计曲线法计算饱和流率和相位损失时间[J].交通运输工程学报,2003,3(3):75-78.
    [119]王涛,高自友,赵小梅.多速度差模型及稳定性分析[J].物理学报,2006,55:634-640.
    [120]王永明,周磊山,吕永波.基于弹性安全换道间距的元胞自动机交通流模型.系统仿真学报,2008,20(5):1159-1162.
    [121]魏恒,任福田,刘小明.自行车行驶状态与自行车道通行能力关系研究[J].中国公路学报,1993,6(4):60-64.
    [122]魏恒,任福田.非机动车因素对交叉口机动车运行的影响[J].北京工业大学学报,1993,19(3):75-79.
    [123]吴兵,李晔.交通管理与控制[M].北京:人民交通出版社,2005.
    [124]吴正.低速混合型城市交通的流体力学模型[J].力学学报,1994,26(2):149-157.
    [125]吴建平,黄玲,赵坚利.北京市道路信号交叉口自行车和行人的行为研究[J].交通运输系统工程与信息,2004,4(2):105-114.
    [126]徐立群,吴聪,杨兆升.信号交叉口通行能力计算方法[J].交通运输工程学报,2001,1(1):82-85.
    [127]徐良杰,王炜,俞斌.信号交叉口混合交通流协调优化方法研究[J].公路交通科技,2006,23(6):127-131.
    [128]杨晓光,陈白磊,彭国雄.行人交通控制信号设置方法研究[J].中国公路学报,2001,14(1):73-76,80.
    [129]姚荣涵.车辆排队模型研究[D].吉林大学博士学位论文,2007.
    [130]喻丹,吴义虎,何霞,郭文莲.一种基于动态期望车头时距的跟驰模型[J].长沙理工大学学报(自然科学版),2007,4(4):25-28.
    [131]袁晶矜,袁振洲.信号交叉口通行能力计算方法的比较分析[J].公路交通技术,2006,1:123-128,132.
    [132]张晋,王慧,李平.基于元胞自动机(CA)的自行车流建模及仿真[J].公路交通科技,2006,23(1):125-129.
    [133]张旭旻,刘文清,李文权.环形交叉口多车型混合车流的通行能力模型[J].公路交通科技,2007,24(1):139-142.
    [134]张文彤,董伟.SPSS统计分析高级教程[M].北京:高等教育出版社,2004.
    [135]张亚平,李硕.信号交叉口车辆集结与消散分析[J].长沙交通学院学报,1999,15(3):57-61.
    [136]庄焰,曾文佳.信号交叉口延误计算模型研究[J].深圳大学学报,2006,23(4):309-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700