多品种混流制造车间运作控制方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
客户多样化的需求,使得制造模式从传统的大批量、重复型生产逐渐转变为多品种小批量生产,其生产需求的不确定性及生产过程的不稳定性给车间运作控制带来了严峻的挑战。混流制造技术在基本不改变现有生产条件的前提下,可以在同一生产系统或单元中生产多种不同型号、不同数量、但工艺基本相似的产品,因而具有较高的灵活性。然而,传统的混流制造技术仍然无法适用于产品品种变换更为频繁、需求波动更大的生产环境。为此,本文探讨了适合于多品种小批量生产环境下新的混流制造模式及其运作控制方法。
     首先,综述了目前制造系统运作控制相关领域的研究现状,分析了多品种小批量生产环境的特点与困难,指出了多品种小批量混流制造与传统混流制造所运用精益技术的区别,并建立了一个基于约束管理的多品种小批量混流制造系统的总体运作框架。
     接着,围绕着总体运作框架中不同层次的相关技术进行了深入研究,具体包括:
     (1)在车间总体运作控制层次上,提出了基于虚拟制造单元的混流路径动态规划与管理模式。该模式在继承传统混流路径的简化物流、易于管理等优势的同时,结合了虚拟制造单元的逻辑重构和设备可共享的特点,可提高设备的利用率,能适应多品种小批量生产环境下多变的需求。在混流路径的具体规划方法上,首先生成零件族,然后为相应的零件族分配合适的设备资源,最终形成具有资源共享特征的混流生产路径。在零件族的生成过程中,根据零件的工艺相似性,运用相似系数法建立数学模型并求解。在路径资源分配过程中,提出了混流路径资源分配的数学模型,以产出最大化和共享资源数目最小化为优化目标,该模型强调了共享资源的运用,并且考虑了切换时间在各个设备上所占有的比例。
     (2)围绕资源共享的混流路径间基于有限产能的负荷平衡,研究了任务负荷在资源时间段上的合理分配。本文充分考虑产品的柔性路径以及转换时间等因素,建立了更为完善的数学模型来描述负荷分配问题。该模型可以描述不同资源的不同成组规则,并合理地估算切换时间的大小;在描述工序与资源的对应关系时,考虑到可替代资源的情形。这些因素的考虑使得模型描述更加贴合生产实际,尤其适合于多品种小批量的柔性作业车间。此外,针对大规模的问题,本文提出了一种启发式方法对问题进行求解,该方法通过将产能约束进行松弛得到初始解,然后通过资源卸载、时间前拉、时间后推三种方式调整负荷,使得产能约束重新被满足。启发式方法的运用使得负荷分配问题求解速度足以满足实际生产现场的规模需求,并能得到较优解。
     (3)针对具体的混流路径上单元层次的生产运作控制,研究了基于约束理论的作业计划调度与控制方法。重点探讨了以瓶颈资源为中心的任务成组加工调度问题,通过成组调度实现将同类零件成组加工,可以大大降低切换时间,提高瓶颈资源的利用率。本文运用减少最大拖期的启发式方法来平衡切换时间与交货期之间的冲突,以达到减少工件最大拖期的优化目标。同时分析了三种不同的物料投放控制策略,并对缓冲管理开展讨论。
     然后,作为上述研究结果的应用验证与示范,针对某船舶建造企业的管子加工车间的生产现状和需求,借助自主研制开发的高级计划与排程系统X-Planner,对上述新型生产运作控制模式进行了初步的实施应用,以期实现对于车间生产管理现状的改进和完善,并运用仿真系统验证了新的运作控制方法预期的应用效果。
     最后对全文进行了总结,指出了进一步的研究方向。
Nowadays, variable demands of customers have gradually made the production mode shift from high-volume and repetitive to high-mix and low-volume. The uncertainty of demands and turbulence in production process have brought great challenges to the operation management in high-mix and low-volume environment. Flow manufacturing technology enables manufacturing various types of similar products with different volume mix in the same production system (or cell), with seldom or just a few changes to the current production environment. However, the traditional flow manufacturing technology is not adaptable to the production environment with frequently changed production mix and higher demand variability. Therefore, a new mode of flow manufacturing as well as its operation and control method in high-mix and low-volume environment are discussed in this paper.
     Firstly, this thesis provides a systematic literature review on the methods for operation and control in manufacturing system and its related fields, and points out the characteristics and difficulties in the high-mix and low-volume production environment. The differences of flow manufacturing between the traditional environment and high-mix environment are analyzed. Based on this, the operation framework for high-mix and low-volume production is established.
     Then, the related techniques in the different levels of the operation framework are studied in detail as follows:
     (1) In the overall operation and control level, the dynamic formation and management based on virtual manufacturing cell are presented. It simplifies the material flow and makes the production system easy to manage. Meanwhile, in combination of the machine sharing, it improves the utilization of equipments, which is suitable to the variable demand in high-mix and low-volume production. The flow path design process is divided into two stages. Part families are formed in the first stage. A mathematical model based on similarity coefficient is established. In the second stage, machines are allocated to the flow paths corresponding to part families. The machine sharing is feasible by using a novel mathematical programming approach. The objective is to maximize the throughput of the system and minimize the number of shared machines. It addresses the machine sharing, and setup times on each machine are also considered.
     (2) To balance the workload on a flow paths with machine sharing based on finite capacity, the reasonable workload allocation on the proper resource in the proper time bucket is studied. Considering flexible routing and setup times, a mathematical model is established to describe the workload allocation problem. This model describes different group rules on different machines and estimates the setup times reasonably. The alternate resources are considered when corresponding operation to resources. All these factors make this model practical, especially to the flexible job shop in high-mix and low-volume production. Besides, a heuristic algorithm is proposed to deal with the large-scale problem. This algorithm initiates with the relaxation of capacity constraint, and then adjusts the workload by offloading, pulling and pushing, to make capacity constraint satisfied again. This algorithm reaches a good solution at an acceptable speed for the real shop floor.
     (3) As to the operation and control of cellular level in a specific flow path, the production scheduling and control methods based on theory of constraints (TOC) are studied. The thesis emphasizes on the group scheduling problem on bottleneck. Group scheduling decreases the setup times so as to improve the utilization of bottleneck. A heuristic algorithm with the objective of minimizing the maximum tardy time is utilized to balance the conflict between the setup time and due date. Then, three different material release control policies are analyzed and buffer management is discussed.
     After that, to validate and demonstrate the application of the results above, the proposed new mode of operation and control has been preliminarily implemented in a tube manufacturing shop of a shipyard based on its production conditions and requirements. It tries to improve the shop floor by using an advanced planning and scheduling system X-Planner which is developed independently. The expected application effect of the improvement is verified by a simulation system.
     Finally, some conclusions are drawn with some of the further research directions being anticipated.
引文
[1]Jina, J., Bhattacharva, A. K. and Walton A. D. Applying lean principles for high product variety and low volumes:some issues and propositions. Logistics Information Management,1997,10(1):5-13.
    [2]Golhar, D. Y., Stamm, C. L. the Just-in-time philosophy:a literature review. International Journal of Production Research,1991,29 (4):657-676.
    [3]Watson, K.J., Blackstone, J. H., and Gardiner S.C. The evolution of a management philosophy:The theory of constraints. Journal of Operations Management,2007, 25(2):387-402.
    [4]陈荣秋,马士华.生产与运作管理.北京:高等教育出版社,1996.
    [5]车建国.多品种小批量下精益生产系统的改进研究.天津大学博士学位论文,2006.
    [6]Pine, B, J. Mass customization:the new frontier in business competition. [M]. Boston: Harvard Business School Press,1993.
    [7]郑华林.面向大规模定制的生产管理模式及其产品族建模技术研究.重庆大学博士学位论文,2002.
    [8]Randy Nauta. Flow Manufacturing, www.ncoaug.org.8/12/1999/1002-3100 (2004) 09-0086-04.
    [9]Processing lean:modifying traditional techniques for complex environment. A white paper, Invistics.
    [10]谭益智.柔性制造系统.北京:兵器工业出版社,1995.
    [11]张培忠.柔性制造系统.北京:机械工业出版社,1996.
    [12]谢莎莉.CIMS计算机信息集成制造系统.长沙:湖南大学出版社,1998.
    [13]Noaker, P.M. The search for agile manufacturing. Manufacturing Engineering, 1994(11):52-56.
    [14]Koren Y. Reconfigurable Manufacturing Systems. Annals of the CIRP,1999,48(2): 1-14.
    [15]Bi, Z.M., Lang, S.Y.T., Shen, W. and Wang, L. Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research,2008,46(4):
    967-992.
    [16]曹智安.多品种小批量生产计划与控制优化技术研究.沈阳工业大学硕士学位论文,2005.
    [17]石柯.敏捷制造单元若干关键技术的研究.华中理工大学博士学位论文,2000.
    [18]高亮.敏捷制造中重构技术的研究.华中科技大学博士学位论文,2002.
    [19]罗振璧,盛伯浩,赵晓波等.快速重组制造系统.中国机械工程,2000,11(3):300-303.
    [20]罗振璧,盛伯浩.制造及其系统的创新与管理的发展.工业工程,1999,2(1):5-8.
    [21]Mehrabi, M. G., Ulsoy A. G., Koren Y. and Heytler, P. Trends and perspectives in flexible and reconfigurable manufacturing systems. Journal of Intelligent Manufacturing,2002,13:135-146.
    [22]Black, J. The design of the factory with a future, McGraw-Hill, Inc, New York,1991.
    [23]Defersha F. M. An Integrated Approach to the Design of Cellular Manufacturing Systems for Dynamic Production Requirements. PHD thesis, Concordia University, 2006.
    [24]Skinner, W., The focused factory. Harvard Business Review,1974,52(3):113-121.
    [25]Singh, N. Design of Cellular Manufacturing Systems:An Invited Review. European Journal of Operational Research,1993,69:284-291.
    [26]Olorunniwo, F. A framework for measuring success of cellular manufacturing implementation. International Journal of Production Research,1997,35:3043-3061.
    [27]Suresh, N.C. Partitioning work centers for group technology:analytical extension and shop level simulation investigation. Decision Sciences,1992,23:267-290.
    [28]Rheault, M., Drolet, J. R., and Abdulnour, G. Dynamic cellular manufacturing system (DCMS). Computers and industrial Engineering,1996,31(1/2):143-146.
    [29]张曙,独立制造岛—可持续发展的生产模式,同济大学学报,1997,25(6):687-692.
    [30]McLean, C. R., Bloom, H. M. and Hopp, T. H., The virtual manufacturing cell. Proceedings of 4th IFAC/IFIP Conference on Information Control Problems in Manufacturing Technology, Maryland,1982, pp.207-215.
    [31]Kuo-Cheng KO& Pius J, Egbelu. Virtual cell formation. International Journal of Production Research,2003,41(11):2365-2389.
    [32]冷晟.分布式虚拟制造单元关键技术研究与应用.南京航空航天大学博士学位论
    文,2005.
    [33]慕继武.基于虚拟制造单元的混流制造模式研究与应用.华中科技大学硕士学位论文,2007.
    [34]Joines, J., Culbreth, C. and King, R. A Comprehensive Review of Production Oriented Cell Formation Techniques. International Journal of Factory Automation and Information Management,1996,3(3-4):225-265.
    [35]Nomden, G., Slomp, J. Suresh, N. C. Virtual manufacturing cells:A taxonomy of past research and identification of future research issues. International Journal of Flexible Manufacturing Systems,2006,17:71-92.
    [36]Kamrani, A., Parsaie, H. and Chaudhry, M. A survey of Design Methods for Manufacturing Cells. Computers and Industrial Engineering,1993,25(1-4):487-490.
    [37]King, J. Machine-component group in PFA:an approach using a rank-order clustering algorithm. International Journal of Production Research,1980,18:213-232.
    [38]Babu, A.S., Nandurkar. K.N. and Thomas Austin. Development of virtual cellular manufacturing systems for SMEs. Logistics Information Management,2000,13(4): 228-242.
    [39]Burbidge, J.L., Production Flow Analysis for Planning Group Technology. Oxford University Press, Oxford.1989.
    [40]Askin, R. and Chiu, K. A graph partitioning procedure for machine assignment and cell formation in group technology. International Journal of Production Research, 1990,28(8):1555-1572.
    [41]Rajagopalan, R. and Batra, J. Design of cellular production systems-a graph theoretic approach. International Journal of Production Research,1975,13:56-68.
    [42]Faber, Z and Carter, M. A new graph theory approach for forming machine cells in cellular production systems. In Flexible Manufacturing Systems:Methods and Studies, ed. A. Kusiak. North-Holland, New York,1986:301-318.
    [43]Irani, S. A., Cavalier T. M. and Cohen., P. H. Virtual manufacturing cells:exploiting layout design and intercell flows for the machine sharing problem. International Journal of Production Research,1993,31(4):791-810.
    [44]Kusiak, A. EXGR-S:a knowledge based system for group technology. International Journal of Production Research,1988,26:887-904.
    [45]Xu, H. and Wang, H.P. Part family formation for GT applications based on fuzzy
    mathematics. International Journal of Production Research,1989,27:1637-1651.
    [46]Malave, C.O. A neural network-based design of cellular manufacturing systems. Journal of Intelligent Manufacturing,1991,2:305-314.
    [47]slomp, J., Chowdary, B. V. and Suresh, N.C. Design of virtual manufacturing cells:a mathematical programming approach, Robotics and Computer-Integrated Manufacturing,2005,21:273-288.
    [48]Chowdary, B. V. and Praveen. P. Formation of virtual manufacturing cells by incorporating flexibility. Global Journal of Flexible Systems Management,2005,6(1): 1-8.
    [49]Schaller, J. Designing and redesigning cellular manufacturing systems to handle demand changes. Computers& Industrial Engineering,2007,53:478-490.
    [50]Albadawi, Z., Bashir, H. A., and Chen, M. Y. A mathematical approach for the formation of manufacturing cells. Computers& Industrial Engineering,2005, 48:3-21.
    [51]Choobineh, F. A framework for the design of cellular manufacturing systems. International Journal of Production Research,1988,26 (7):1161-1172.
    [52]Jeon, G. and Leep, H.R. Forming part families by using genetic algorithm and designing machine cells under demand changes. Computers and Operations Research, 2006,33:263-283.
    [53]Kioon, S. A., Bulgak, A. A., and Bektas, T. Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. Production, Manufacturing and Logistics,2009,192:414-428.
    [54]Mahadevan, B. and Venkataramanaiah, S. Incorporating product information in the design of a cellular manufacturing system. Working Paper,2002.
    [55]梁福军,宁汝新.可重构制造系统中基于相似性理论的虚拟制造单元生成方法.计算机集成制造系统,2004,10(11):1370-1376.
    [56]冷晟,魏孝斌,王宁生,张文艺.虚拟制造单元重构中资源选择问题研究.计算机集成制造系统,2006,12(11):1814-1820,1831.
    [57]杨宏波.基于成组技术的制造单元规划设计的研究.南京航空航天大学硕士学位论文,2004.
    [58]Rondeau, P. J., Litteral, L. A. Evolution of manufacturing planning and control systems:From reorder point to enterprise resource planning. Production and
    Inventory Management Journal,2001,42 (2):1-7.
    [59]Husseini, S.M.M., Brien, C.O', Hosseini, S.T. A method to enhance volume flexibility in JIT production control. International Journal of Production Economics,2006, 104(2):653-665.
    [60]Gupta, M. Constraints management-recent advances and practices [J]. International Journal of Production Research,2003,41(4):647-659.
    [61]程控.MRP Ⅱ/ERP原理与应用.清华大学出版社,2002.
    [62]王军强,张翠林,孙树栋,付平.MRP Ⅱ、JIT、TOC生产计划与控制比较研究.制造业自动化,2005,27(2):9-13,29.
    [63]Miltenburg, J. Comparing JIT, MRP and TOC, and embedding TOC into MRP. International Journal of Production Research,1997,35(4):1147-1169.
    [64]Buentello, E. J. G. A comparative simulation study of manufacturing resource planning, Just-in-time and theory of constraints in VAT classified flow shops facing smooth and lumpy demand. PHD thesis of Texas Tech University,2002.
    [65]Sale, M. L., Inman, R.A. Survey-based comparison of performance and change in performance of firms using traditional manufacturing, JIT and TOC. International Journal of Production Research,2003,41(4):829-844.
    [66]郭永辉,钱省三.基于DBR理论的半导体晶圆厂生产作业控制.工业工程与管理,2006.5:70-75.
    [67]Kayton, D. Using the theory of constraints' production application in a semiconductor fab with a reentrant bottleneck. IEEE/CPMT International Electronics Manufacturing Technology Symposium,1998, pp:352-357.
    [68]曹德弼,汪建,孙林岩.制约理论——美国制造业的秘密武器.机械设计及制造,1001-3997-(2004)04-0109-03,2004.
    [69]Kim, S., Davis, K. R., Cox III J. F. An investigation of output flow control, bottleneck flow control and dynamic flow control mechanisms in various simple lines scenarios, Production Planning& Control,2003,14(1):15-32.
    [70]Roser C., Nakano M., and Tanaka M. Shifting Bottleneck Detection, Proceedings of the 2002 Winter Simulation Conference.
    [71]Bragg, D. J., Duplaga, E. A., Penlesky R.J. Impact of production structure on order review/evaluation procedures, Industrial Management& Data Systems,2005,105(3): 307-324.
    [72]Kuhl, M. E., Steiger, N. M., Armstrong F. B., and Joines. J. A, Simulation-based assessment of order release strategies for a distributed shifting bottleneck heuristic, Proceedings of the 2005 Winter Simulation Conference.
    [73]Yuan, K. J., Chang, S. H., Li, R. K. Enhancement of Theory of Constraints replenishment using a novel generic buffer management procedure, International Journal of Production Research,41(4/2003):725-740.
    [74]Ribeiro, M. A., Silveira, J. L., Qassim R.Y. Joint optimization of maintenance and buffer size in a manufacturing system. European Journal of Operational Research, 2007,176:405-413.
    [75]Radovilsky, Z. D. A quantitative approach to estimate the size of the time buffer in the theory of constraints. International Journal of Production Economics,1998,55: 113-119.
    [76]Uzsoy, R., Wang, C.S. Performance of decomposition procedures for job shop scheduling problems with bottleneck machine, International Journal of Production Research,2000,38(6).
    [77]Trietsch, D. From Management by Constraints (MBC) to Management By Criticalities (MBC Ⅱ). Human Systems Management,2005,24:105-115 IOS Press.
    [78]周峰.DBR管理模式的生产计划与控制机制探讨.中国管理科学,2000,8(1):17-21.
    [79]戚晓耀.基于约束理论的管理方法及其应用.工业工程,1001-7375(2005)01-0019-05.
    [80]王军强,孙树栋,王东成等.基于约束理论的制造单元管理与控制研究.计算机集成制造系统,2006,12(7):1108-1116.
    [81]郭永辉,钱省三.DBR理论中瓶颈资源生产优化研究.工业工程,2006,9(6):91-94.
    [82]李浩,沈祖志,邓明荣.订货型企业基于约束理论的订单排产优化研究.中国机械工程,2004,15(10):865-869.
    [83]刘勇,谷寒雨,席裕庚.基于约束理论的混合复杂流水线规划调度算法.计算机集成制造系统,2005,11(1):97-103.
    [84]刘文涛,柴丽俊,张群等.利用OPT确定炼钢厂的时间缓冲.冶金能源,2004,23(6):9-12.
    [85]叶涛锋.生产过程中缓冲设置的模拟方法.现代设计技术,1006-3269(2003)01-0013-03.
    [86]林魁.基于TOC的混流生产线上排产模型的研究.贵州大学硕士学位论文,2007.
    [87]斯科特.汉密尔顿.构建高效的ERP系统.北京:机械工业出版社,2004.1.
    [88]Layden, J. The evolution of scheduling logic. APS,1998,45(8):388-395.
    [89]Melnyk, S.A. Finite capacity scheduling software directory. APICS the Performance Advantage,1999,7(8):68-80.
    [90]Iranpoor, M., Ghomi, S.M.T.F., Mohamadinia, A. Earliness tardiness production planning and scheduling in flexible flow shop systems under finite planning horizon. Applied Mathematics and Computation,2007,184:950-964.
    [91]Kung, L.C., Chern, C.C. Heuristic factory planning algorithm for advanced planning and scheduling. Computers& Operations Research,2008.
    [92]Chen, K. J., Ji, P. A mixed integer programming model for advanced planning and scheduling (APS). European Journal of Operation Research,2007,181:515-522.
    [93]Chen, K. J., Ji, P. A genetic algorithm for dynamic advanced planning and scheduling (DAPS) with frozen interval. Expert Systems with Application,2007,33:1004-1010.
    [94]Spearman, M. L., Woodruff, D. L., Hopp, W. J. CONWIP:A pull alternative to kanban. International Journal of Production Research,1990,28(5):879-894.
    [95]Hopp, W. J., Spearman, M. L. Factory Physics:Foundation of Manufacturing Management, second edition.北京:清华大学出版社.
    [96]黄敏,汪定伟.CIMS下钢铁企业CONWIP生产存储控制系统.系统工程理论方法应用,1998,7(4):43-47.
    [97]Sabuncuoglu, I., Karapinar H.Y. Analysis of order review/release problems in production systems. International Journal of Production Economics,1999,62: 259-279.
    [98]Russell, G.R. and Fry, T.D. Order review/release and lot splitting in drum-buffer-rope. International Journal of Production Research,1997,35(3):827-845.
    [99]Fry, T.D., Fox, J.F, Blackstone J.H. An analysis and discussion of the optimized production technology software and its use. Production and Operations Management, 1992,1(2):229-243.
    [100]Riezebos, J., Korte, G. J., Land, M. J. Improving a practical DBR buffering approach using Workload Control. International Journal of Production Research,2003,
    1(4):699-712.
    [101]Riezebos, J., Korte, G. J., Land, M. J. Enhancing a TOC application using Workload Control Principles. University of Groningen, The Netherlands.
    [102]Henrich, P., Land, M. and Gaalman, G. Introducing the workload control concept into MTO companies:determining applicability. University of Groningen, The Netherlands.
    [103]黄刚.混流装配生产的计划排序及其执行过程管理.华中科技大学博士学位论文,2007.
    [104]Oracle Flow Maufacturing. Implementation Manual, Release 11i,2000.
    [105]Chang, T. M., Yih, Y. Generic kanban systems for dynamic environments. International Journal of Production Research,1994,32(4):889-902.
    [106]管在林,刘俊良,马力,邵新宇.多品种小批量生产环境下基于约束管理的混流制造运行控制技术研究.现代制造工程,2007,4:1-5.
    [107]Wemmerlov, U. and Hyer, N. L. Procedures for the part family/machine group identification problem in cellular manufacturing. Journal of Operations Research, 1986,6:125-147.
    [108]McAuley, J. Machine grouping for efficient production. The Production Engineer, 1972,51:53-57.
    [109]Gupta, T. Design of manufacturing cells for flexible environment considering alternative touting. Internatioanl Journal of Production Research,1993,31(6): 1259-1273.
    [110]Yin, Y. and Yasuda, K. Similarity coefficient methods applied to the cell formation problem:a taxonomy and review. International Journal of Production Economics, 2006,101:329-352.
    [111]Kusiak, A. The generalized group technology concept. International Journal of Production Research,20:561-569.
    [112]Wang, J. and Roze, C. Formation of machine cells and part families:a modified p-median model and a comparative study. Internatioanl Journal of Production Research,1997,35(5):1259-1286.
    [113]Wang, J. Formation of machine cells and part families in cellular manufacturing systems using a linear assignment algorithm. Automatica,2003,39:1607-1615.
    [114]黎小平.考虑负荷实际分布的分时段CRP改进算法.成组技术与生产现代化,
    2007,24(2):29-32.
    [115]庄严明,何建敏.MRPⅡ/ERP能力计划的一种改进方法.中国管理科学,2002,10(5):62-68.
    [116]Gunther Kruse, APS Update, Supply Chain Analytics Limited,2001
    [117]ILOG Solutions. ILOG, http://www.ilog.com/solutions.
    [118]http://www.i2.com/solutions.
    [119]格哈特·克诺尔迈尔,彼得·默滕斯,亚历山大·泽埃尔.供应链管理与SAP系统实现[M].SAP中国研究院译.北京:机械工业出版社,2004.
    [120]http://www. asprova. com/sc/asprova/index.html.
    [121]http://www.itapass.org/supplier/html/?269.html.
    [122]Factory Planner. Release Notes, Version 5.1.1, June 2001, i2 Technologies, Inc.
    [123]王玉荣、孔祥云编译《约束理论的理论核心——九条管理原则》
    [124]曹振新,张士杰.基于约束理论的制造单元瓶颈分析及对策.机械设计与制造,2004,4:109-111.
    [125]Moss, H. K., Yu, W. B. Toward the estimation of bottleneck shiftiness in a manufacturing operation. Production and Inventory Management Journal,2000,40 (2):53-58.
    [126]Lutz, C. M., Davis, K. R. Minghe Sun. Determining buffer location and size in production lines using tabu search. European Journal of Operational Research,1998, 106:301-316.
    [127]Jeong, K. C. and Kim, Y. D. Heuristics for selecting machines and determining buffer capacities in assembly system. Computers& Industrial Engineering,2000,38: 341-360.
    [128]Huang, M. G., Chang, P. L., Chou, Y. C. Buffer allocation in flow-shop-type production systems with general arrival and service patterns. Computers& Operations Research,2002,29:103-121.
    [129]Webster, S., Azizoglu, M. Dynamic programming algorithms for scheduling parallel machines with family setup times. Computer& Operations Research,2001, 28:127-137.
    [130]Tahar, D. N., Yalaoui, F., Chu, C. B. etc. A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times. International Journal of Production Economics,2006,99:63-73.
    [131]Shim, S. O. and Kim, Y. D. A branch and bound algorithm for an identical parallel machine scheduling problems with a job splitting property. Computers& Operations Research, In Press.
    [132]Silva, C., Magalhaes, J. M. Heuristic lot size scheduling on unrelated parallel machines with applications in the textile industry. Computers& Industrial Engineering,2006,50:76-89.
    [133]Taner, M. R., Hodgson, T. J., King. R.E., etc. Satisfying due-dates in a job ship with sequence-dependent family set-ups. International Journal of Production Research, 2003,41(17):4153-4169.
    [134]Monch, L., Driebel, L. A distributed shifting bottleneck heuristic for complex job shops. Computer& Industrial Engineering,2005,49:363-380.
    [135]Chen, Y.C. A bottleneck-based group scheduling procedure for job-shop cells. Journal of the Chinese Institute of International Engineerings,2001,18(5):1-12.
    [136]Meyr, H. Simultaneous lotsizing and scheduling on parallel machines. European Journal of Operational Research,2002,139:277-292.
    [137]Jou, C. C. A genetic algorithm with sub-indexed partitioning genes and its application to production scheduling of parallel machines. Computer& Industrial Engineering,2005,48:39-54.
    [138]Tucci, M., Rinaldi, R. From theory to application:tabu search in textile production scheduling. Production Planning& Control,1999,10(4):365-374.
    [139]Laoboonlur, P. Production scheduling in knitted fabric dyeing and finishing:a case study. Ph.D Dissertation, North Carolina State University.2004.
    [140]Hodgson, T. J., Cormier, D., Weintraub, A. J., and Zozom, Jr. A. Note. Satisfying Due Dates in Large Job Shops. Management Science,1998,44(10):1442-1446.
    [141]Jackson, J. R. Scheduling a Production Line to Minimize Maximum Tardiness. Research Report 43, Management Sci. Res. Project, UCLA, Los Angeles, CA,1955.
    [142]Askin, R. G, Goldberg, J.B. Design and analysis of lean production system. John Wiley& Sons. Inc,2002.
    [143]Hopp, W. and M. Spearman. Throughput of a constant work in process manufacturing line subject to failures. International Journal of Production Research, 1991,29(3):635-655.
    [144]Chase, R., Aquilano, N. Production and Operations Management:Manufacturing and Services. Irwin, Homewood. IL,1995.
    [145]Spencer, M. Using "The Goal" in an MRP. Production and Inventory Management Journal, Fourth Quarter 1991,32(4):22-27.
    [146]Schragenheim, E., Ronen, B. Buffer management:A diagnostic tool for production control. Production and Inventory Management Journal,1991,32(2):74-79.
    [147]Umble, M. and Umble, E. J. Utilizing buffer management to improve performance in a healthcare environment. European Journal of Operation Research,2006,174: 1090-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700