五机架冷连轧厚度控制原理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷轧板带的产品厚度精度是其一个重要的质量指标。为了消除厚度波动所产生的影响,提高冷轧产品的厚度精度,开发了厚度自动控制系统(即AGC),而AGC系统要达到其效果,必须得到高精度设定计算系统、张力调节系统,速度调节系统以及压下调节系统的支撑。
     本文通过八一钢铁公司对引进的五机架冷连轧机组的设备及电器自动控制的改造,分析了厚度控制系统的组成和功能,确定了AGC系统的设计思想。
     ①由第一架的预控、负载辊缝调节和第一机架监控来改变第一机架的轧制力,用以消除绝大部分的厚度偏差,使第三机架出口有一相对稳定的厚度,剩余的厚度精度偏差由最后两个机架消除;
     ②通过模型系统制定冷轧机组的工艺制度,计算所需工艺参数。利用实际前滑值修正动态变规格模型辊速设定值,建立动态变规格设定模型;
     ③经过对轧制策略负荷分配的实验验证,高速轧制条件下和低速条件下,轧制力模型计算值与实值之间的差距在±15%以内,这说明工艺参数模型的精度可以满足在线过程控制的的要求,该系统的计算精度、工作稳定性、操作性完全满足生产需要,代表了当前国内冷连轧厚度控制系统的先进水平。
The accuracy in gauge of the cold rolling strip is one of the most important quality index. The thickness Automatic Gauge Controller (AGC) system was developed to void the influence produced by thickness fluctuation and improve the thickness fluctuation of the cold rolling products. And the AGC system should be supported by high precision initialization calculating system, tensile adjusting system, adjusting system and cogging adjusting system.
    This article was focus on the alteration of the five stands cold rolling mill and electrical automatic control in Bayi iron and steel corporation. It analyzes the constitute and function of the thickness AGC system. The engineering philosophy of the AGC system is confirmed:
    (1)Changing rolling load of the first stand with the beforehand control, loading roll gap adjustment and first stand monitoring, which can eliminate most of the thickness deviation and get a relatively steady accuracy in gauge. The residual thickness deviation is eliminated by the last two stands.
    (2)The technics parameter of the cold rolling mill is calculated with the modeling system. The dynamic specification changing model roller speed is modified by the actual forward slip. And the dynamic specification changing model is build up.
    (3)With the experiment to the rolling load distributing, the difference between calculating value with model of rolling load and the actual value is just under 15%. The precision of the technics parameter model can fulfill the demand. This design precision system, working stability and maneuverability can fulfill the manufacture. It represent the one of the most advanced system in inland.
引文
[1] 华建新,王贞祥.全连续式冷连轧机过程控制[M].北京:冶金工业出版社,2000
    [2] Herman Wolters,SMS automation in hot strip mill[J]. MPT International,1995,3,64-71.
    [3] 陆济民等.热轧带钢连轧机组轧制规程的优化[J].上海冶金专科学校学报,1989,10(3):1-9.
    [4] Stephen Wilmotte. New Approach To Computer Setup of the Hot Strip Mill[J]. Iron and Steel Engineer, 1977,9:70-76.
    [5] 杨节.轧制过程数学模型[M].北京:冶金工业出版社,1982.
    [6] 孙一康.带钢热连轧数学模型基础[M].北京:冶金工业出版社:,1979.
    [7] 王国栋,刘相华.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [8] 熊尚武.热带粗轧机组调宽过程的实验与理论研究[D].沈阳东北大学博士学位论文,1997.
    [9] Guoji Li etal. Spread analysis in roiling by the rigid-plastic finite element method.[J]. Numerical methods in industrial forming processes, Swansea, Pineridge Press, 1982
    [10] Markward S W, Yong-Zai Lu. Integrated neural system for coating weight control of a hot dip galvanizing line[J]. Iron and Steel Engineer, 1995,11: 45-49.
    [11] Jung. J.Y, Im Y.T. Simulation of fuzzy shape control for cold-rolled strip with randomly irregular strip shape[J]. Journal of materials processing technology, 1997,63(1-3):248-253.
    [12] Yoshihiro Jimichi, et al. An expert system of automatic slab assignment for hot strip mill[J]. ISIJ International,1990,(13):1-4.
    [13] 孙晓光.热轧带钢轧机精轧机组负荷分配的协同人工智能设定模型开发[D]:沈阳东北博士学位论文,1996
    [14] Foster M. A., Marshell S.A. Modelling of a tandem cold strip rolling mill[J]. Mathematical process models in iron and steel making, Amsteerdam, 1973, Feburary:19-21.
    [15] 张进之,郑学锋,梁国平.冷连轧动态变规格设定控制模型的探讨[J].钢铁,1979,14(11):56-64.
    [16] 张树堂,刘玉荣.带钢冷连轧动态变规格数学模型[J].钢铁,1980,15(9):34-40.
    [17] 贺毓辛,郭惠久,杨节.冷连轧动态变规格变换设定模型的探讨[J].北京钢铁学院学报,1982,1:54-69.
    [18] 王国栋.建议一个连轧张力微分方程[J].金属学报,1984,20(2):47-52.
    [19] 张进之.连轧张力公式[J].金属学报,1978,14(6):127-138.
    [20] 张树堂,刘玉荣.变断面张力微分方程与冷连轧动态数学模拟数学模型[J].金属学报,1981,17(4):206-212.
    
    
    [21] Makoto Fukuda. Advanced Set-Up and Control System for Dofasco's Tandem Cold Mill[J]. IEEE 7803-1993-1/94 1994:2005-2012.
    [22] Kazuma Gumi. New gauge control system for tandem cold mill[J]. Iron and Steel Engineer, 1994, 2:42-46.
    [23] H.Kijima, K.Kenmochi, I. Yarita. Improvement of the accuracy in thickness during flying gauge change in tandem cold mills[J]. La Revue de Metallurgie-CIT,1998, Juillet-Aout :911-918.
    [24] P.Bobig,R.Borsi. Innovation in hot rolling equipment for modem high performance mills[J]. La Revue de Metallurgie-CIT,1998 ,Janvier:749-756.
    [25] 王国栋.板形控制和板形理论[M].北京:冶金工业出版社,1986.
    [26] 姜明东等译.高精度板带材轧制理论与实践.北京:冶金工出版社,2002.
    [27] 杨荃等.应用变接触长度支承辊提高板形综合调控能力[J].钢铁,1995,30(2):48-51.
    [28] G.H.Song,S.I.Kim. Technology of reducing the off-gauge length for welding and flying gauge change zone in TCM[J]. CAMP-ISIJ,1996,9:330.
    [29] 汪祥能.现代带钢连轧机控制[M].东北大学出版社,1996
    [30] 唐谋凤.现代带钢冷连轧机的自动化[M].冶金工作出版社,1995
    [31] Bryant. Automation of tandem mill[J]. The metals society publication,London,1973
    [32] Jang J.S.R. Rule extraction using generalized neural networks[J]. Proc 4th IFSA World Congress. 1991:82-86.
    [33] Jang J.S.R. ANFIS: adaptive-neteork-based fuzzy inference system[J]. IEEE Trans. Syst,Man and Cybem.1993,23:665-685
    [34] 张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [35] 孙增圻.智能控制理论与技术[M].北京:清华大学出版社.1997
    [36] Lin C.T, Lee C.S.G. Neural network based fuzzy logic control and decision system[J]. IEEE Trans. Computer.1991,40:1320-1336.
    [37] Sugeno M, Kang G.T. Structure Identification of Fuzzy Model[J]. Fuzzy Sets and Systems, 1988,28:15-33.
    [38] Astrom K.J. Wittenmark B. Computer controller system: theory and design[M]. Englewood Cliffs: Prentice Hall, 1984
    [39] 诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995
    [40] 王军生等.冷连轧过程控制在线负荷分配及修正计算[J].东北大学学报,2001,22(4):427-431.
    [41] K. Chiang, et al, Development and Application of Pass Design Models At IPSCO's Steckel
    
    Hot Strip Mill[J]. 33RD MWSP CONE PROC., ISS-AIME, Vol. ⅩⅪⅩ, 1992,65-77.
    [42] Macalister. Modelling and adaptive techniques for rolling mill automation[J]. Iron and Steel 1989,12:38-46.
    [43] 华建新.宝钢2030mm冷连轧机的自学习[J].冶金自动化,1991,15(4):35-38.
    [44] 王军生等.益昌1220mm冷轧机组控制模型软件的开发[J].轧钢,2001,.18(4)14-17.
    [45] 赵志业.金属塑性变形与轧制理论[M].北京:冶金工业出版社,1980.
    [46] 李庆尧,杨弘鸣.带钢冷连轧机过程控制计算机及应用软件设计[M].北京:冶金工业出版社,1980.
    [47] 宋美娟等.热连轧窄带钢自适应控制在线确定增益系数的研究[J].钢铁研究,1996,9:15-18.
    [48] 贺毓辛.冷轧板带生产[M].北京:冶金工作出版社,1992.
    [49] 张进之.压力A G C系统参数方程及变刚度轧机分析[J].冶金自动化,1984,8(1):24-31.
    [50] 陈振宇.热、冷连轧机A G C系统的仿真研究[J].冶金自动化,1980,4(4):1-7.
    [51] 张进之.压力A G C数学模型改进[J].冶金自动化,198,6(3):15-20.
    [52] 王君,张殿华,王国栋.厚度计型和动态设定型A G C的统一性证明[J].控制与决策,2000,15(3):333-335.
    [53] saitoM,Tanimotos,TsukamotoH,etal.高精度轧板厚度控制[A].I F A C第八届世界大会钢铁自动化论文集[C].1982,52-59.
    [54] 王立平,刘建昌,王贞祥,等.热连轧机厚度设定与控制系统分析[J].控制与决策,1994,9(2):115-120.
    [55] 东北大学.宝钢益昌冷连轧机组过程控制模型系统分析说明.内部文件.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700