中厚板高精度厚度控制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的发展对中厚板厚度精度不断提出更高的要求,高精度的厚度控制技术一直是轧钢自动化研究的热点。本文以某3000mm中厚板自动化控制系统开发项目为背景,对过程控制设定系统、快速高精度的辊缝控制技术、分段厚度控制技术以及提高厚度控制精度的补偿方法等进行了研究,现场应用取得了良好的效果。主要研究内容和进展如下:
     (1)分析中厚板生产过程控制中的轧制规程计算及其数学模型,包括轧制策略的选择、分阶段的轧制规程负荷分配计算、负荷计算数学模型及模型自学习。为提高轧线自动化水平,实现全自动轧制,研究并开发了以轧制节奏控制为基础的轧制规程道次自动设定技术。
     (2)比较变加速度和恒加速度位置控制特征曲线的优缺点,以恒加速度位置控制特征曲线为背景,开发了快速高精度的EGC技术,通过在线参数自适应的方法,对曲线参数进行实时调整和优化,可以使EGC始终保持快速高精度的特性。
     (3)提出一种动态补偿液压伺服阀零漂的方法,在不降低原HGC系统的动态响应速度的基础上,大幅度提高了HGC系统的控制精度。现场应用表明,采用该技术的HGC系统定位误差可以长期保持在±2μm之内。
     (4)在使用高精度厚度计模型的基础上,开发了分段厚度控制技术。该技术将轧件沿长度方向分为细小片段,采用高精度厚度计模型,根据实测辊缝和轧制力,分道次逐段计算并存储轧件的厚度和塑性刚度,准确跟踪轧件的厚度波动和塑性刚度变化,对各片段进行单独控制,提高了轧件的同板厚差控制精度。针对变厚度轧制中的楔形段轧制,采用分段厚度控制技术,利用HGC系统位置闭环和压力闭环耦合的特性,研究了楔形段起点自动判断的方法。
     (5)结合分段厚度控制技术,针对现场应用的特点,研究了利用测厚仪反馈信号进行辊缝零点自学习的方法。
     (6)针对中厚板轧制中头尾厚度超差的现象,开发了一种新型中厚板头部厚度控制的方法,不但改善头尾厚度超差效果显著,还可以通过调整参数,减小钢板切头部分的厚度,从而提高成材率。
     本文的研究结果针对高精度的中厚板厚度控制,具有较强的实用性。所开发的控制系统已经成功应用于多套中厚板轧制生产线,为企业创造了很好的经济效益。
With the development of modern industry, the demand for plate thickness accuracy is becoming critical. The high-accuracy gauge control technologies are hot issues in rolling automation research. Under the background of automatic control system development project for 3000mm plate mill in a steel company, the study was carried out on preset system of process control, rapid and high-accuracy gap control, piecewise thickness control, compensation methods for improving thickness accuracy and so on. The research results were applied on site successfully, and the precision of thickness were satisfied. The main progress is as follows:
     (1) The rolling schedule preset models and process data tracking method were analyzed, including rolling strategy selection, rolling schedule computation by load distribution methods, load distribution mathematical models and their self-learning methods. The rolling schedule automatic setting technology was developed for the full automatic rolling control purpose, based on mill pacing control.
     (2) Comparing the position control characteristic curves with variable and constant accelerated velocity, the merits and drawbacks were pointed out. Rapid and high accuracy EGC technology was developed by on-line parameters adaptive method, based on the characteristic curve with constant accelerated velocity. EGC keeps rapid and high-accuracy characters by real-time adjusting and optimizing the curve's parameters.
     (3) A dynamic compensation method for servo valve's zero drift was developed which improves the positioning accuracy of HGC system without decreasing its dynamic response rate. Applications on site showed that HGC system kept high-accuracy with positioning error in±2μm.
     (4) Piecewise thickness control technology was put forward based on high-accuracy gaugemeter model. Work piece is divided into thin pieces along the longitudinal direction. The thickness and plastic stiffness of every piece are computed by high-accuracy gaugemeter model with measured gap and rolling force respectively. This technology tracks the thickness and plastic stiffness fluctuation of every piece and controls its thickness. Applications showed that the thickness deviations of same plate were eliminated greatly. The automatic judgement methods for the starting point of thickening and thinning wedge in variable-thickness rolling were developed, adopting piecewise thickness control technology and the coupling characteristic of the position and rolling force closed loop in HGC system.
     (5) In accordance with the features on site, adopting piecewise thickness control technology, a gap zero point self-learning method was developed by using the measurement signal from gauge meter.
     (6) In order to eliminate the oversize thickness at the plate head and tail, a new gauge control method for plate head was developed, which has good performance on site. The crop of cutting head was reduced greatly, by adjusting the parameters. It is benefit to finishing yield.
     The results of the study are practical for high-accuracy thickness control of plate mill. The automatic control system has been applied successfully in many plate mill lines which has achieved great economic results.
引文
1.孙本荣,王有铭,陈瑛.中厚钢板生产[M],北京:冶金工业出版社,1993.
    2.陈瑛.论宽厚钢板轧机[J],宽厚板,1995,1(1):1-10.
    3.杨固川.中厚板生产设备概述[J],轧钢,2004,21(1):38-41.
    4.孙决定.中厚板生产、技术的进步与不足[J],冶金管理,2006,(10):32-35.
    5.陈瑛.中厚板发展与技术装备进步的分析[J],冶金管理,2005,(8):46-50.
    6.吴立章.现代宽厚板厂的工艺和装备[J],宝钢技术,1999,(1):22-27.
    7.贺达伦.现代化宽厚板厂高成材率确保技术[J],宝钢技术,2000,(1):22-26.
    8.孙决定,丁世学.我国中厚板轧机产能变化及产品市场分析[J],山东冶金,2004,26(增刊):1-5.
    9.杨固川,江浩.国产3000中厚板轧机概述及技术展望[J],冶金设备,2006,(4):45-50.
    10.Kazuo S,Shigehiko M.Computer Systems for Controlling Steel Plants[J],Mitsubishi Electric ADVANCE,2000,(12)21-26.
    11.Kazuo S,Noriyoshi H.An Industrial Computer System for Iron and Steel Plants[J],Mitsubishi Electric ADVANCE,1997,(6) 11-14.
    12.Mitsunori H,Nobuchika F.A Control System for Steel Mills[J],Mitsubishi Electric ADVANCE,1997,(6)15-17.
    13.Kazunobu T,Yoshiaki N.Advanced electrical equipment for hot-rolling mills[J],Mitsubishi Electric ADVANCE,1997,(6) 2-4.
    14.于世果,李宏图.国外厚板轧机及轧制技术的发展(二)[J],轧钢,1999,12(6):29-32.
    15.张燕燕,曹建宁.厚板生产技术的发展[J],轧钢,2001,18(2):35-38.
    16.原佑司.日本厚板生产技术的进步[J],世界中厚板技术进步译文集,1999,19.
    17.王国栋,刘相华.日本中厚板生产技术的发展和现状(一)[J],轧钢,2007,24(2):1-5.
    18.王国栋,刘相华.日本中厚板生产技术的发展和现状(二)[J],轧钢,2007,24(3):1-5.
    19.王国栋,刘相华,王君.我国中厚板生产技术进步20年[J],轧钢,2004,21(6):5-9.
    20.袁伟刚.日本JFE公司高性能中厚板生产技术介绍[J],冶金管理,2006,(10):49-51.
    21.李世俊.2006年扩大国内钢材市场和实施替代进口钢材的建议[J],中国钢铁业,2006,(3):20-25.
    22.孙浩,陈启祥,刘春荣.我国中厚板生产技术改造与发展探讨[J].钢铁,2005,40(3):52-55.
    23.贺达伦,袁建光,杨敏.建设中的宝钢5m宽厚板轧机[J],轧钢,2003,20(6):36-39.
    24.陈瑛.国外中厚钢板生产技术的发展概况[J],重型机械科技,2003,(4):41-46.
    25.孙一康.带钢热连轧的模型与控制[M].北京:冶金工业出版社,2002,13-28.
    26.赵刚,杨永立.轧制过程的计算机控制系统[M],北京:冶金工业出版社,2003.
    27.王国栋,吴国良译,日本钢铁协会编.板带轧制理论与实践[M].北京:中国铁道出版社,1990,363-377.
    28.Heesen G J,Burggraaf D H.New process control system of Hoogovens hot strip mill-key to improved product quality[J],Ironmaking and Steelmaking,1991,18(3):190-195.
    29.Samways N L.Modernization at lukens steel:past,present and future[J],Iron and Steel Engineer,1987,64(8):23-29.
    30.Murphy T M,Johns R L.On-line plate mill process control computer replacement[J],Iron and Steel Engineer,1993,70(6):23.
    31.胡贤磊.中厚板轧制过程控制模型的研究[D],沈阳:东北大学,2003.
    32.矫志杰.中厚板轧机过程控制系统的开发和应用研究[D],沈阳:东北大学,2004.
    33.李军生.带钢热连轧二级自动化系统的应用[J],冶金设备,2000,(4):56-58.
    34.李毅杰,胡建芳,孟庆元,等.实时多任务操作系统在窄带钢热连轧机的应用[J],北京科技大学学报,1995,17(2):154-158.
    35.孙一康.适用于轧钢过程的计算机控制系统[J],中国工程科学,2000,2(1):73-76.
    36.何纯玉,吴迪,王君,等.中厚板轧制过程计算机控制系统结构的研制[J],东北大学学报(自然科学版),2006,27(2):173-176.
    37.刘玠,孙一康.带钢热连轧计算机控制[M],北京:机械工业出版社,1997.
    38.张进之.轧钢技术和装备国产化问题的分析与实现[J],冶金信息,2000,(6):22-27.
    39.王军生,赵启林,矫志杰,等.益昌1220mm冷轧机组控制模型软件的开发[J],轧钢,2001,18(4):14-17.
    40.矫志杰,赵启林,王军生,等.宝钢益昌冷轧机过程控制系统[J],冶金自动化,2004,28(3):34-36.
    41.杨景明.IGC650HCW冷带轧机控制系统关键技术研究[D],秦皇岛:燕山大学,2000.
    42.王秀梅,王国栋,刘相华.综合神经网络在热连轧机组轧制力预报中的应用[J],钢铁研究学报,1998,10(4):72.
    43.Lu C,Wang X M,Liu X H,et al.Application of ANN in combination with mathematical models in prediction of rolling load of the finishing stands in HSM[J],Proceedings of the 7th International Conference on Steel Rolling,1998,Chiba,Japan:206.
    44.王秀梅,王国栋,刘相华.人工神经网络和数学模型在热连轧机组轧制力预报中的综合应用[J],钢铁,1999,34(3):37.
    45.王秀梅,吕程,王国栋,等.轧制力预报中的神经网络和数学模型[J],东北大学学报(自然科学版),1999,20(3):319.
    46.Wang X M,Zhang X F,Wang G D,et al.Fuzzy neural network in predicting rolling load in hot strip mill[C].EPMESC Ⅶ Computational Methods in Engineering and Science,Elsevier,New Zealand,1999:837.
    47.王秀梅,王国栋,刘相华,等.热连轧中轧制力模型系数回归的新方法[J],东北大学学报(自然科学版),1999,20(5):522.
    48.胡贤磊,王昭东,干解民,等.结合模型自学习的BP神经元网络的轧制力预报[J],东北大学学报(自然科学版),2002,23(11):1089.
    49.Aistleitner K,Mattersdorfer L G,et al.Neural network for identification of roll eccentricity in rolling mills[J].Journal of Materials Processing Technology,1996,60:387.
    50.#12
    51.#12
    52.#12
    53.#12
    54.周旭东,李连诗,王先进,等.人工神经网络板形板厚综合控制[J],轧钢,1995,12(2):16.
    55.Liu Z Y,Wang G D,Gao W.Prediction of the mechanical properties of hot-rolled C-Mn steels using artificial neural networks[J].Journal of Materials Processing Technology,1996;57(2):332.
    56.刘振宇,王昭东,王国栋,等.应用神经网络预测热轧C-Mn钢力学性能[J],钢铁研究学报,1995;7(4):61.
    57.#12
    58.张殿华,韩蕊繁,张其生,等.板带热连轧精轧机微张力模糊智能控制[J],钢铁,2005,40(10):42-47.
    59.#12
    60.王秀梅,王国栋,刘相华.模糊控制在带钢轧制中的应用[J],钢铁研究,1999,3(108):42-45.
    61.#12
    62.Sasaka S,Kozaki Y,Chida Y,et al.Fully automated bar mill pacing control system incorporating artificial intelligence[J].ISIJ International.1990,30(2):161.
    63.#12
    64.#12
    65.Stirling.D,Seving.S.Combined simulation and knowledge-based control of a stainless steel rolling mill[J].Expert System with Application,1991,3:353.
    66.#12
    67.Wang.D.D,Tieu.K,et al.Evolutionary optimization of rolling schedule for the setup of a tandem cold rolling mill[C],Proceedings of the 7th International Conference on Steel Rolling,Chiba,Japan,1998:9,139.
    68.吕程,朱洪涛,王国栋,等.利用遗传算法优化板坯立轧短行程控制曲线[J],钢铁研究学报,1998,10(5):19.
    69.赵云涛,王京,宋勇,等.蚁群算法在中厚板液压伺服系统中的应用研究[J],机床与液压,2008,36(8):266-269.
    70.矫志杰,胡贤磊,赵忠,等.中厚板轧机设定计算功能的在线实施[J],东北大学学报(自然科学版),2005,26(7):644-647.
    71.王昕,王平.冷轧带钢厚度控制及智能技术应用前景研究[J],鞍钢技术,2007(3):9-11.
    72.王君,张殿华,李建平,等.中厚板轧机液压辊缝控制系统研究及其PLC实现[J],东北大学学报(自然科学版),2001,22(8):435-438.
    73.丁修堃.轧制过程自动化[M],北京:冶金工业出版社,2005.
    74.丁修堃,张殿华,王贞祥.高精度板带钢厚度控制的理论与实践[M],北京:冶金工业出版社,2009.
    75.胡贤磊,矫志杰,邱红雷,等.综合等负荷函数法在中厚板规程分配中的应用[J],钢铁研究学报,2003,15(2):24-26.
    76.胡贤磊,邱红雷,赵忠,等.多阶段压下规程分配方法在控温轧制中的应用[J],轧钢,2004,21(5):5-7.
    77.江潇,胡贤磊,刘相华,等.综合等负荷函数法在双机架粗轧负荷分配中的应用[J],东北大学学报(自然科学版),2007,28(2):221-224.
    78.祝夫文,胡贤磊,赵忠,等.中厚板生产的高精度轧制力短期自学习[J],东北大学学报(自然科学版),2008,29(7):189.
    79.祝夫文,胡贤磊,赵忠,等.中厚板生产中无测厚仪下的自适应轧制模型[J],钢铁,2008,43(4):57-60
    80.#12
    81.#12
    82.Saito Y,Enami T,Tanaka T.The mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill[J],Transactions ISIJ, 1985,25:1146.
    83.张进之,白埃民.提高中厚板轧机压力预报精度的途径[J].钢铁,1990,25(5):28.
    84.孙本荣,赵佩祥,朱荣林,等.控制轧制中板变形抗力的研究[J].钢铁,1986,21(4):30.
    85.周纪华,管克智,刘文仲,等.热连轧机轧制压力数学模型[J],钢铁,1992,27(8):45.
    86.Hoogen A J,Heesen G J,Hollander F.New approach to predict roll forces in a hot strip mill for small lot sized rolling schedules[C],The 4th roiling steel conference,B6.1-B6.11.
    87.胡贤磊,矫志杰,邱红雷,等.中厚板精轧轧制规程的负荷协调分配法及其动态调整[J],钢铁,2003,38(4):34-37.
    88.周娜,张殿华,杨红,等.中厚板生产过程中轧件自动跟踪系统[J],控制工程,2005,15(4):292-294.
    89.矫志杰,杨红,何纯玉,等.首钢中厚板轧机的轧件跟踪[J],冶金自动化,2004,29(4):44-46.
    90.Jiao Zhijie,Hu Xianlei,Zhao Zhong,et al.Mill pacing control for multiple-plate rolling[C],Second International Conference on Advanced structural Steels,2004:1070-1073.
    91.矫志杰,何纯玉,牛文勇,等.中厚板轧机全自动轧钢控制功能的在线实现[J],东北大学学报(自然科学版),2005,26(8):751-754.
    92.於春月,矫志杰,王君.中厚板交叉轧制节奏控制预计算的数学方法[J],控制工程,2004,11(6):494-496.
    93.胡贤磊,赵忠,矫志杰,等.中厚板厚度的在线软测量方法[J],钢铁研究学报,2006,18(7):55-58.
    94.赵刚,杨永立.轧制过程的计算机控制系统[M],北京:冶金工业出版社,2002.
    95.胡贤磊,王昭东,刘相华,等.轧辊弹性变形对中厚板辊缝设定的影响.[J],东北大学学报(自然科学版),2003,24(3):284-287.
    96.彭敬红,邹正铮.可逆轧机速度控制及压APC控制实践[J],电气传动自动化,2004,26(6):47-49.
    97.张殿华,王金章.PLC控制的具有间隙消除功能的APC系统[J],电气传动,1991,2:38-43.
    98.胡贤磊,刘文田,王君,等.中厚板轧机无回缩变精度快速辊缝设定法[J],钢铁研究学报,2005.17(4):36-39.
    99.Snyder R D,Koehlerb A B,Keith Ordc J.Forecasting for inventory control with exponential smoothing[J],International Journal of Forecasting,2002,18:5-18.
    100.Billah B,King M L,Snyder R D,et al.Exponential smoothing model selection for forecasting [J],International Journal of Forecasting,2006,22(2):239-247.
    101.金晓刚.轧机液压控制系统开发[J],宝钢技术,2003,6:44-48.
    102.卢立新.舵机电液伺服系统零偏、零漂分析[J],机电设备,2005,22(2):30-32.
    103.张忠远.计算机控制电液位置伺服系统的设计与仿真[J],皖西学院学报,2007,23(5):32-34.
    104.刘宝权.冷轧机液压AGC系统动态模拟[J],鞍钢技术,2006,2:26-29.
    105.黄浩.热轧液压的动态模型的研究[J],武汉科技大学学报(自然科学版),2005,28(3):241-243.
    106.白埃民,周和敏.轧机与轧制条件对AGC稳定性和厚控的影响[J],轧钢,2001,18(6):11-13.
    107.张进之.动态设定型变刚度厚控方法(DAGC)推广应用[J],冶金设备,2007,4:1-5.
    108.王君,王国栋.压力AGC模型综述[J],钢铁研究,2001,1(1):54-57.
    109.王廷溥.金属塑性加工学[M],北京:冶金工业出版社,1988.
    110.#12
    111.T Osamu,K Takeshi,A Keniti.Development of high performance steel plates in terms of reliability and economy of steel structure[J],Kawasaki Steel Giho,2000,32(3):198-204.
    112.K Fumimaru,M Kazuyuki,O Tadashi,et al.Steel plates for bridge use and their application technologies[J],JFE Technical Report,2004,(2):85-90.
    113.S Shinichi,M Ryuji,O Tadashi,et al.Steel products for shipbuilding[J],JFE Technical Report,2004,(2):41-48.
    114.廖建国.厚钢板开发的现状及今后的发展趋势[J],宽厚板,2004,10(4):41-47.
    115.王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,(23)2:1-5.
    116.Y Fukumoto,M Nagai.Steel bridges:new steels and innovative erection methods[J],Prog.Struct.Engng Mater,2000,(2):34-40.
    117.R.Hubo,G.Garrigues,F.Schroter,J.Flahaut.Les toles fortes pour les ouvrages d'art[J],La Revue de Metallurgie-CIT,Juin 2001,613-621.
    118.考纳斯,匹赫勒,帕泽,等.捷克VITKOVICE公司3.5m中厚板轧机的改造[J],钢铁,2000,35(2):32-37.
    119.杜平.纵向变厚度扁平材轧制理论与控制策略研究[D],沈阳:东北大学,2008.
    120.[美]V.B.金兹伯格著,姜明东,王国栋等译.高精度板带材轧制理论与实践[M],北京:冶金工业出版社,2002.
    121.胡贤磊,邱红雷,刘相华,等.中厚板弹跳曲线零点漂移对轧制力自适应的影响[J],钢铁研究学报,2003,15(1):42,52.
    122.孙一康.带钢热连轧数学模型基础[M].北京:冶金工业出版社,1979.
    123.#12
    124.邱洪雷.中厚板轧机板形与板凸度控制技术的研究[D],沈阳:东北大学,2005.
    125.罗先德.简述我国中厚板成材率现状与进步[J],轧钢,1999,16(1):42.
    126.杨海江.中厚板成材率影响因素的分析及对策[J],宽厚板,1988,4(6):1.
    127.胡贤磊,赵忠,刘相华,等.中厚板头尾厚度出超差原因分析[J].钢铁,2007,42(4):50.
    128.Takashi ODA,Naoki SATOU,Toshiki YABUTA.Adaptive Hot Technology for Strip Mill Thickness Control of Finisher Set-up on Hot Strip Mill[J],ISIJ International,1995,35(1):42.
    129.#12
    130.邱红雷,胡贤磊,赵忠,等.中厚板轧制过程中的辊缝设定模型及其应用[J],钢铁,2004,39(12):36.
    131.孙复森,刘先礼,耿庆波,等.绝对AGC技术在中厚板生产中的应用[J],轧钢,2001,18(5):9-11.
    132.杨利坡,刘宏民,彭艳,等。热连轧轧辊瞬态温度场研究[J],钢铁,2005,40(10):38-41.
    133.孙涛,杜平,刘相华,等.一种新型中厚板头部厚度控制方法[J],钢铁,2008,43(10):47-50.
    134.鲍伯祥,陆章杰,王世宁.西门子TDC编程及应用指南[M],北京:北京航空航天大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700