基于特征的复杂工件数控加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控技术的飞速发展,使得企业可加工的工件品种繁多,形状各异。工件结构趋于复杂化和整体化,工艺难度大,加工过程复杂,这给数控加工技术提出了新的挑战,如何高质量、高效率、低成本地完成复杂工件的数控加工成为了必须攻克的难题。基于特征的加工是数控加工技术发展趋势之一,有利于复杂工件数控加工的数字化、集成化和自动化。识别出复杂工件产品的典型特征是特征数控加工的基础,加工特征对于数控加工的工艺的规划、数控代码的生成,以及装夹的分析都起到了重要的作用。
     对于航空、航天、汽车制造等领域的复杂工件,需要五轴数控机床进行加工。五轴数控机床比三轴数控机床增加了两个旋转自由度,可提高复杂工件的加工精度。但在提高加工效率、加工质量的同时,也给数控加工工艺规划、刀具轨迹的生成、数控加工仿真验证技术等增加了难度。在五轴数控机床加工中,刀具根据轨迹数据进行不停地旋转和移动运动,很容易与工件加工表面、数控机床的部件碰撞,数控机床的各运动部件间也可能发生碰撞。利用数控加工仿真验证系统建立虚拟加工环境,实现五轴数控加工仿真过程,能有效检测数控程序的正确性。
     本论文在分析国内外复杂工件数控加工研究现状的基础上,针对现有研究工作的问题和局限性,结合我所承担的国家重大专项和高档数控系统的发展需求,对基于特征的复杂工件数控加工及仿真验证关键技术展开研究工作。论文主要研究内容如下:
     1.基于特征的复杂工件数控加工系统框架。本文构造了基于特征的复杂工件数控加工系统的框架,整个系统以工件特征为驱动,给出了基于特征的自动工艺规划过程,基于特征简化和恢复技术的加工工序毛坯模型的制定,描述了基于特征的数控加工编程,给出了数控加工仿真验证系统的整体设计及原型系统实现。基于特征的复杂工件数控加工系统,可自动识别出工件的特征,减少了复杂工件加工的人工干预,有利于制定合理的加工生产方案,为生产加工提供正确高效的保障,提高了复杂工件的加工质量和加工效率。
     2.复杂工件特征识别关键技术的研究。本文提出了圆角特征、倒角特征、孔特征的自动识别算法,并可以通过设定特征的阈值,控制可识别特征的范围。基于复杂工件加工的要求,提出了特征简化和恢复的算法,制定了整体简化和分步简化两种方案,可对识别后的特征进行简化及选择性恢复简化后的特征。特征的识别、简化和恢复技术可加快复杂工件工艺规划和刀具轨迹生成的效率。
     3.复杂工件数控加工实体建模方法研究。本文基于四边形网格生成算法对物体表面进行网格划分,并提出了用于关键特征保持和基于物理网格节点调整算法进行网格质量优化,对夹具、工作台等形状不发生改变的机床部件建模,该方法受实体模型复杂程度的影响较小,算法的实现复杂程度较低;基于格栅Voxel实体模型对加工过程中形状发生改变的毛坯进行实体建模,实现了边界模型向实体模型的转换算法,对实体的表面进行离散从而实现模型的绘制。建立了五轴数控机床的运动学模型,描述了坐标变化的过程及运动关系,并以AC机床为例,建立了机床的几何模型和运动学模型。
     4.复杂工件数控加工仿真验证原型系统的建立。对刀具在运动过程中形成刀具扫描体的计算方法进行了研究,刀具在五轴数控加工中形成的刀具扫描体不规则,精确求解刀具扫描体复杂,本文采用离散分解法计算刀具扫描体,降低了刀具扫描体的计算复杂度;实现了基于格栅Voxel实体建模方法的材料去除动态仿真,并可以通过调整格栅的尺寸,实现显示精度的定制;建立数控机床部件的层次方向包围盒OBB树,利用分离轴碰撞检测方法进行粗判,快速检测出不发生碰撞的物体,提出了基于四边形网格分级碰撞检测算法进行细判,该仿真验证系统不仅能够检测实时碰撞,而且可以给出机床发生碰撞的具体部位。
With the rapid development of numerical control technology, the enterprise canprocess various kinds of workpiece of different shapes. The structure of workpiecetends to become complicated and the integrated, difficult in technology and complex inprocessing, so it brings a new challenge to the CNC processing technology. How toprocess large workpiece of CNC with high-quality, high efficiency and low-cost hasbecome a more and more important theme. Feature-based machining is one of thedeveloping tendency of CNC machining technology, and it is benefitial to thedigitization, integration and automation of CNC machining for complex workpiece. Toidentify the typical characteristics of the complex workpiece of products is the basis ofthe Feature CNC machining. The characteristics of processing always plays animportant role for technology planning, CNC code generation, as well as the analysisof the clamping for the CNC machining.
     We need five-axis CNC machine tools to produce some complex workpiece. Thefive-axis CNC machining not only improves the quality of processing, but also brings atough challenge for the tool path planning and CNC machining geometric simulation.Therefore, the more complex the shape of the workpiece becomes, the morecomplicated the NC code will be. During the producing process of five-axis CNCmachining, as the tool rotates and moves continuously, it can lead to collision. CNCMachining Process Simulation System Verification System can create a virtualprocessing environment, so the five-axis CNC machining simulation process can berealized in order to detect the correctness of the CNC program effectively.
     While analyzing the present situation of CNC processing of complex workpiecehome and abroad, and focusing on the problems and limitations existing in the researchwork, combined with my commitment to the major national projects and thedevelopment needs of the high-grade digital system, I studies the CNC machining ofthe complex workpiece based on the characteristics and simulation verification keytechnologies. The specific content includes several parts as follows:
     1. The design of the CNC machining system of the complex workpiece based onthe features. The paper presents CNC machining system of the complex workpiecebased on the features, and identifies the characteristics automatically. The entire systemuses the features of workpiece as driven, and this paper presents the automaticplanning process based on the characteristics, processes a stock model based oncharacteristics of simplified and recover technical, describes the programming systemof NC machining based on the features, and establishes NC machining simulation system.
     2.Research on key technologies for feature recognition of complex workpiece.The paper presents the recognition algorithms for the blend, chamfer and hole features,and the algorithms control feature size by setting threshold value. Based on therequirement of the machining of complex workpiece, the paper presents featuresimplification and recovery algorithms, develops overall simplification and simplifiestwo scenarios after achieving recognition features to simplify and streamline aselective restore. Feature recognition, simplification, and recovery of process planningfor complex workpiece and tool path generation has played a very important role.
     3.Research on NC machining method of solid modeling of complex workpiece.The paper presents quadrilateral mesh generation algorithm and mesh qualityoptimization algorithm which is used in keeping key features and is based on physicalnetwork mesh node adjustment, and making models for machine workpiece that doesnot have shape change, such as fixture, and table. The effect of entity model complexdegree on the method is small and the algorithm of implementation complex degree islow. The paper presents grid Voxel entity model on stock for modeling. In processing,shape change of stock entity makes model occurs and the conversion algorithm ofboundary model to entity model has implemented on the real surface of drawn fordiscrete-time model. The paper establishes a five-axis CNC machine kinematics model,describes the process of change of coordinates and movement, and takes AC machineas an example, and establishes a geometric model and kinematic modeling of machinetools.
     4. Establishment of simulation system of NC machining of complex workpiece. Thepaper makes research on the tool in movement process and in the formed tool swept ofcalculation method because the accurate solution method is complex and cannot meetreal-time sexual of requirements. The paper presents decomposition method toapproximate solution calculation; the method of material based on the grid Voxel entityis implementated to remove dynamic simulation, and the precision of displayed can berealized by adjusting the size of mesh; the paper establishes NC machine workpiece oflevel direction surrounded box OBB tree by using separation axis collision detectionmethod for rough sentence, and proposed a hierarchical collision detection algorithmbased on quadrangle grid through outsourcing so it can not only detect collisions in realtime of the simulation system, and can give specific workpiece where machine collisionoccurs.
引文
[1]王守敬,数控加工模拟仿真研究,2009,长春理工大学.
    [2] Li, B. and J. Liu, Detail feature recognition and decomposition in solid model.Computer-Aided Design,2002.34(5):405-414.
    [3]李宝福,刘谨,几何边界元的细微度和几何模型的细微特征分解.机械工程学报,2001.37(9):44-48.
    [4] Sashikumar V, Milind S, Blend Recognition Algorithm and Applications.Proceeding of ACM Solid Modeling.2001:99-108.
    [5] Sashikumar V, Milind S, Vinay K, A Graph-based Frameworkfor Feature Recognition. Proceeding of ACM Solid Modeling.2001:194-205.
    [6] Sashikumar V, Milind S, Reconstruction of Feature Volumes and FeatureSuppression. Proceeding of ACM Solid Modeling.2002:60-71.
    [7] Sashikumar V, Milind S, Rahul R, Removal of Blends from BoundaryRepresentation Models. Proceeding of ACM Solid Modeling.2002:83-94.
    [8] Zhu, H. and C. Menq, B-Rep model simplification by automatic fillet/roundsuppressing for efficient automatic feature recognition. Computer-Aided Design,2002.34(2):109-123.
    [9]刘云华,陈立平,钟毅芳,圆角特征识别研究.工程图学学报,2004(01):15-19.
    [10]刘晓平,基于面边图的圆角特征识别与抑制.工程图学学报,2006.27(3):55-60.
    [11]崔秀芬,高曙明,周广平,一种高效的过渡特征识别与抑制算法.计算机集成制造系统,2004.10(001):77-82.
    [12]崔秀芬,过渡特征识别与抑制方法研究,2004,浙江大学.
    [13]曾定文,谢文宝,回转类零件特征模型及特征识别方法研究.计算机学报,1994.17(6):630-633.
    [14] Qu X., and Stucker B., Circular hole recognition for STL-based toolpathgeneration. Rapid Prototyping Journal,2005.11(3):132-139.
    [15] Joshi N., and Dutta D., Feature simplification techniques for freeform surfacemodels. Journal of Computing and Information Science in Engineering,2003.3:177.
    [16] Yau H.T. and Tsou L.S., Efficient NC simulation for multi-axis solid machiningwith a universal APT cutter. Journal of Computing and Information Science inEngineering,2009.9:021001.
    [17]盛亮,廖文和,数控加工物理仿真关键技术的初探.系统仿真学报,2003.15(005):631-633.
    [18]张臣,数控铣削加工物理仿真关键技术研究,2006,南京航空航天大学.
    [19]郑赟,张林鍹,肖田元,虚拟加工及其关键技术研究.科技导报,2007.25(4):25-30.
    [20]侯增选,田荣鑫,基于压缩Voxel模型的五坐标数控加工仿真新方法.计算机工程与应用,2006.42(20):25-28.
    [21] Hou Z.X., et al. A new compressed voxel-based method for swept volumemodeling of drum cutter and its application. in Computer-Aided IndustrialDesign and Conceptual Design,2006. CAIDCD '06.7th International Conferenceon.2006.
    [22]盛亮,基于实体的数控加工仿真关键技术的研究与实现[D],2005,南京:南京航空航天大学.
    [23]王占礼,面向虚拟制造的数控加工仿真技术研究[D],2007,长春:吉林大学.
    [24] Chappel I.T., The use of vectors to simulate material removed by numericallycontrolled milling. Computer-Aided Design,1983.15(3):156-158.
    [25] Voelcker H.B., Hunt W.A., Society of Automotive, The Role of SolidModelling in Machining-process Modelling and NC Verification1981: Society ofAutomotive Engineers.
    [26] Van Hook, Real-time shaded NC milling display. ACM SIGGRAPH ComputerGraphics,1986.20(4):15-20.
    [27] Paulo H.S.U. and Wantai Y., Realtime3D simulation of3-axis milling usingisometric projection [J]. Computer-Aided Design,1993.25(4):215-224.
    [28] Lee S.K., and Ko S.L., Development of simulation system for machining processusing enhanced Z map model. Journal of Materials Processing Technology,2002.130:608-617.
    [29] Wang W. and Wang K.K., Geometric Modeling for Swept Volume of MovingSolids. Computer Graphics and Applications, IEEE,1986.6(12):8-17.
    [30] Trung Thanh P., Yong Hyun K., Sung Lim K., Development of a Software forEffective Cutting Simulation using Advanced Octree Algorithm. inComputational Science and its Applications,2007. ICCSA2007. InternationalConference on.2007.
    [31] Wang W. and K. Wang, Geometric modeling for swept volume of moving solids.Computer Graphics and Applications, IEEE,1986.6(12):8-17.
    [32] Blackmore D., Leu M.C., Wang LP, The sweep-envelope differential equationalgorithm and its application to NC machining verification. Computer-AidedDesign,1997.29(9):629-637.
    [33] Blackmore D., Leu M.C., Shih F., Analysis and modelling of deformed sweptvolumes. Computer-Aided Design,1994.26(4):315-326.
    [34] Guoping Wang, Jiaguang Sun, Xuanji Hua, The sweep-envelope differentialequation algorithm for general deformed swept volumes. Computer AidedGeometric Design,2000.17(5):399-418.
    [35] Abdel-Malek K., and Yeh H.J., Geometric representation of the swept volumeusing Jacobian rank-deficiency conditions. Computer-Aided Design,1997.29(6):p.457-468.
    [36] Yang J. and Abdel-Malek K., Approximate swept volumes of NURBS surfaces orsolids. Computer Aided Geometric Design,2005.22(1):1-26.
    [37] Maeng S.R., et al., A Z-map update method for linearly moving tools.Computer-Aided Design,2003.35(11):995-1009.
    [38] Chung Y.C., et al., Modeling the surface swept by a generalized cutter for NCverification. Computer-Aided Design,1998.30(8):587-594.
    [39] Bohez E.L.J., Minh N.T.H., et al, The stencil buffer sweep plane algorithm for5-axis CNC tool path verification. Computer-Aided Design,2003.35(12):1129-1142.
    [40] Roth D., Bedi S., et al, Surface swept by a toroidal cutter during5-axismachining. Computer-Aided Design,2001.33(1):57-63.
    [41] Mann S. and Bedi S., Generalization of the imprint method to general surfaces ofrevolution for NC machining. Computer-Aided Design,2002.34(5):373-378.
    [42] Chiou C.J. and Lee Y.S., Swept surface determination for five-axis numericalcontrol machining. International Journal of Machine Tools and Manufacture,2002.42(14):1497-1507.
    [43] Chiou C.J. and Lee Y.S., A shape-generating approach for multi-axis machiningbuffer models. Computer-Aided Design,1999.31(12):761-776.
    [44] Weinert K., Du S., et al, Swept volume generation for the simulation ofmachining processes. International Journal of Machine Tools and Manufacture,2004.44(6):617-628.
    [45]韩向利,袁哲俊,直线与刀具扫描体求交算法及其应用研究.计算机辅助设计与图形学学报,1997.9(002):123-129.
    [46]王增强,侯增选,基于压缩体素模型的球头刀空间扫描体构造新方法及其应用.制造业自动化,2006.28(10):21-24.
    [47]李吉平,刘华明,复杂曲面加工精度检验中曲面法矢与刀具扫描体求交算法的研究.计算机辅助设计与图形学学报,2000.12(12):931-935.
    [48]吴峰,于东等,数控机床实时碰撞检测算法的研究与实现.组合机床与自动化加工技术,2012(12):49-52.
    [49]高春晓,刘玉树,碰撞检测技术综述.计算机工程与应用,2002.38(005):9-11.
    [50]唐勇,冯立颖,吕梦雅,基于轴向包围盒碰撞检测算法的改进.系统仿真学报,2009(1):157-160.
    [51]宋强,宋玲芝,康凤举等,包围盒碰撞检测算法应用研究.计算机工程与应用,2009.45(24).
    [52]冯明,飞机结构件典型加工特征刀轨生成算法的研究与实现,2007,南京航空航天大学.
    [53]陈善国,黄正东,铸造零件毛坯模型生成方法研究.机床与液压,2008.36(4):232-235.
    [54]张英杰,面向自动数控编程的零件加工特征建模技术.西安交通大学学报,2008.42(003):281-285.
    [55]陈光明,基于数控加工的工艺设计原则及方法研究.制造业自动化,2005.27(9):54-59.
    [56]王小辉,乔立红,基于特征的数控加工工艺的决策支持.成组技术与生产现代化,2005.22(1):39-42.
    [57]姚磊,刘战强,周善征等,基于特征的刀具选配系统的研究与开发.工具技术,2006.40(3):53-56.
    [58]王增强,任军学,田荣鑫,整体叶盘制造毛坯设计原则与设计方法研究.新技术新工艺,2007(2):35-38.
    [59]秦慧斌,吴淑芳,基于毛坯模型的自动工艺规划.中国制造业信息化,2005.34(7).
    [60]王增强,任军学,田荣鑫,整体叶盘制造毛坯设计原则与设计方法研究.新技术新工艺,2007(2):35-38.
    [61]胡俊志,飞机结构件槽腔特征数控编程技术的研究与实现,2008,南京航空航天大学.
    [62]姜晓峰,数控加工仿真关键技术研究.南京航空航天大学学报,1999.
    [63]伍铁军,数控加工仿真关键技术研究与软件开发,2001,南京:南京航空航天大学.
    [64]金永霞,陈正鸣,改进的圆角特征识别与抑制方法.计算机应用,2009(008):2038-2042.
    [65]高曙明,自动特征识别技术综述.计算机学报,1998.21(003):281-288.
    [66] Henderson M R. Extration of feature information from three dimensional CADdata. Purdue University, West Lafayette, USA,1984
    [67]詹海生,李广鑫,马志欣,基于ACIS的几何造型技术与系统开发2002:清华大学出版社.
    [68]赵玉林,高阶C-Bézier曲线曲面性质研究及其应用,2005,南京航空航天大学.
    [69]徐进,任意复杂曲面曲线零件曲率半径的图解法.现代机械,2003(4):12-13.
    [70]刘余,王青建,图论的源流及其应用.大连教育学院学报,2007.23(3):24-26.
    [71]蒋建,孙蕊,图论模型的建立及转化方法.郑州航空工业管理学院学报:社会科学版,2006.25(002):207-208.
    [72]周良,孙正兴,面向集成的孔特性CAPP方法.组合机床与自动化加工技术,1997(9):37-41.
    [73] Karunakaran K., et al., Octree-based NC simulation system for optimization offeed rate in milling using instantaneous force model. The International Journal ofAdvanced Manufacturing Technology,2010.46(5):465-490.
    [74] Frieder G, Gordon D., Reynolds R.A., Back-to-front display of voxel basedobjects. Computer Graphics and Applications, IEEE,1985.5(1):52-60.
    [75]罗堃,三角片离散法实现数控铣床加工仿真.计算机辅助设计与图形学学报,2001.13(011):1024-1028.
    [76]关振群,宋超,有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报,2003.15(1):1-14.
    [77]江顺亮,余都,三角形四边形混合网格上的数据后处理方法.南昌大学学报:工科版,2009.31(3):238-243.
    [78]雷永刚,卫原平,阮雪檎.三维有限元网格自动生成典型方法与发展方向.计算机科学与技术,1999.8(2):311-313
    [79]王明强,朱永梅,刘文欣,有限元网格划分方法应用研究.机械设计与制造,2004(001):22-24.
    [80]吕军,王忠金,有限元六面体网格的典型生成方法及发展趋势.哈尔滨工业大学学报,2001.33(4):485-490.
    [81]李士军,郝艳华,约束方程的分区网格划分法.华侨大学学报:自然科学版,2006.27(002):170-173.
    [82]徐明毅,陈胜宏,张勇传,三维有限元网格的面切割自动生成方法.西北水力发电,2004.19(4):1-4.
    [83] Jense GJ, Voxel-based methods for CAD. Computer-Aided Design,1989.21(8):528-533.
    [84]张雷,开放式控制器HMI及3D刀轨显示系统的研究和实现,2006,中国科学院研究生院(沈阳计算技术研究所).
    [85]杨小兵,虚拟机床建模研究.机械工程师,2003(012):29-30.
    [86] He Yao-xiong, Zhou Yun-fei, Z. Ji., A generalized post processing algorithm tocompensate geometric errors of multi-axis is NC machine tools with arbitraryconfiguration. Journal ofApplied Sciences,2002.20(1):84-89.
    [87]李吉平,杜江,彭健钧,基于精度可控几何模型的CRT工业机器人运动仿真.组合机床与自动化加工技术,2010(009):67-69.
    [88]段春辉,五轴联动数控机床通用后置处理系统研制,2007,西南交通大学.
    [89] He W. and Bin H., Simulation model for CNC machining of sculptured surfaceallowing different levels of detail. The International Journal of AdvancedManufacturing Technology,2007.33(11):1173-1179.
    [90] ZHENG Liao-mo, LIN Hu, et al, Design of the A generic Kinematics Model ofFive-axis Machine Tools. Journal of Chinese Computer Systems,2010.31(10):1965-1969.
    [91]郑飂默,林浒等,五轴机床通用运动学模型的设计.小型微型计算机系统,2010(10):1965-1969.
    [92]郑飂默,林浒等,五轴数控系统旋转轴快速平滑插补控制策略.机械工程学报,2011.47(9): p.105-111.
    [93]余斌,刘荣忠,基于OpenGL的数控加工仿真系统的研究与开发,2002,成都:四川大学.
    [94]徐芝琦,扫描体造型技术研究,2008,浙江大学.
    [95]张雪莲,潘铁强,汪建平等,虚拟数控车削加工过程仿真与表面粗糙度预测.组合机床与自动化加工技术,2009(6):82-83.
    [96] Shao Z., Guo R., et al, Accurate Modeling Method for Generalized Tool SweptVolume in5-axis NC Machining Simulation. Journal of Software,2011.6(10):2056-2063.
    [97] Guo R., Zhang S., Peng J.. A Fast Calculation Algorithm for the EnvelopeSurface in Multi-Axis NC Machining.2009. IEEE.
    [98] Roth D., Bedi S., et al, Surface swept by a toroidal cutter during5-axismachining. Computer-Aided Design,2001.33(1):57-63.
    [99]方向,彭群生,多轴数控加工中刀具扫掠面的计算.计算机辅助设计与图形学学报,2000.12(8):609-613.
    [100] Ye T. and Xiong C. H., Geometric parameter optimization in multi-axismachining. Computer-Aided Design,2008.
    [101] Podshivalov L., and Fischer A., Modeling an envelope generated by3Dvolumetric NC tool motion. The International Journal of AdvancedManufacturing Technology,2008.38(9):949-957.
    [102] Rossignac J., Kim J. J., et al, Boundary of the volume swept by a free-form solidin screw motion. Computer-Aided Design,2007.39(9):745-755.
    [103] Rossignac, J., et al., Boundary of the volume swept by a free-form solid in screwmotion. Computer-Aided Design,2007.39(9):745-755.
    [104] Weihang, Z., Virtual sculpting and polyhedral machining planning system withhaptic interface,2003, North Carolina State University: United States--NorthCarolina.
    [105] Yuksek, K., et al. A New Contour Reconstruction Approach from Dexel Data inVirtual Sculpting. in Geometric Modeling and Imaging,2008. GMAI2008.3rdInternational Conference on.2008p.
    [106] Hauth S., Murtezaoglu Y., and Linsen L., Extended linked voxel structure forpoint-to-mesh distance computation and its application to NC collision detection.Computer-Aided Design,2009.41(12): p.896-906.
    [107]余湛悦,提高数控加工仿真速度和效果的关键技术研究.计算机辅助设计与图形学学报,2004.16(5):642-647.
    [108] Tang T.D., Bohez E.L.J., Koomsap, The sweep plane algorithm for globalcollision detection with workpiece geometry update for five-axis NC machining.Computer-Aided Design,2007.39(11):1012-1024.
    [109]康文利,周学辉,虚拟装配快速碰撞干涉检验算法的研究.机械工程与自动化,2010(004):53-55.
    [110]赵瑾,数控加工仿真中的碰撞干涉检查与精度验证,2005,南京:南京航空航天大学.
    [111]陈学文,丑武胜,刘静华等,基于包围盒的碰撞检测算法研究.计算机工程与应用,2005.41(5):46-50.
    [112] Gottschalk S., Collision queries using oriented bounding boxes,2000, TheUniversity of North Carolina.
    [113]江顺亮,万志国,周国发,注塑流动与传热分析的四边形单元控制体积法.计算力学学报,2008.25(003):359-363.
    [114]李吉平,刘华明,基于空间分层索引模型的数控加工碰撞检测法.制造技术与机床,1999(011):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700