用户名: 密码: 验证码:
大型工业机器人操作臂机构设计与运动控制仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为工业机器人家族的一员,工业用大型机器人被广泛应用于汽车制造、造纸、食品、玻璃生产等行业。交流伺服具有响应快、精度高、调速性能好等优点,被广泛应用于工业机器人中。然而由于大型机器人操作臂的负载、自重较大,运动过程中巨大的偏重力矩与耦合力矩对驱动系统提出了很高的要求,给交流伺服系统在大型机器人中的应用带来了困难。针对此点,本文从机构设计、轨迹规划及控制三方面出发对工业用大型机器人操作臂进行展开研究。
     操作臂机构设计方面,为了增加操作臂运动的灵活性,以最大工作空间为优化目标对操作臂臂长参数进行了优化;为了减少偏重力矩的影响,设计了肩关节的偏重力矩平衡机构;为了降低驱动系统负载、提高系统刚度、减小振动,设计了带有局部闭环肘关节的配重机构及腕关节驱动机构;并对操作臂的主要零件进行了有限元受力分析。
     操作臂轨迹规划方面,为了充分利用永磁同步电机的过载能力,降低所需电机的额定转矩,以操作臂运动过程中的功率最大值及方差构造目标函数;为了保证运动的平稳性,采用五次插值曲线作为离散点间的插值曲线,利用矩阵对约束方程组进行求解,大大简化了大量约束条件下插值曲线系数的求解问题,并利用遗传算法完成轨迹参数的优化;为了验证文中轨迹规划的有效性,建立Adams仿真平台,并进行对比仿真实验,结果表明:与普通的五次插值法相比,采用文中方法所得到的轨迹,运动过程中各驱动系统功率幅值减小明显,达到了通过轨迹规划减小驱动系统负担的目的。
     操作臂控制方面,建立了三相永磁同步电机控制模型;以基于确定轨迹运动的大型操作臂作为研究对象,采用根据位置指令查表的方法对运动过程中的扰动量进行前馈补偿,并建立了前馈控制系统的电流环、速度环控制模型;为了验证文中前馈控制方法的有效性,以Adams软件中操作臂模型为被控对象,搭建了Matlab-Adams联合仿真平台,并与普通PID控制进行比较仿真,仿真结果表明,采用文中的前馈控制方案可以完成对确定轨迹的操作臂控制,并且控制效果明显好于普通PID控制。
As an important member in industrial robot family, large industrial manipulator was widely used in automobile manufacturing, paper making, food, glass production industries; benefited for fast response, high precision and speed control performance, AC servo was widely used in industrial robots, but because great load and deadweight existed in the moving process, a huge gravity and coupling torque propose a high demand for the AC servo system, at the same time, difficulties are made for AC servo applicated in manipulator. On this point, this paper takes a expanded study on large-scale industrial manipulator with four degrees of freedom, by the aspects of structural design, trajectory planning, and control strategy.
     In manipulator structure design aspect, the structure with local closed loop was adopted; in order to increasing the flexibility in the moving process, took the maximum of working space as the optimal target; in order to releasing the impact of gravity torque, the balance mechanism for shoulder joint and counter balance mechanism for elbow joint had been designed; and the stress analysis of main parts were also accomplished by the finite element software.
     In manipulator trajectory planning design aspect, in order to reduce the burden of motor drive system in large torque output condition, according to the relationship between motor back-EMF voltage equation and output torque in voltage equitation, established the optimal function by maximum power and variance objective function in the moving progress; To ensure the smooth character in the movement, using the five order interpolated curve as the curve between discrete points, and using matrix to solve the constraint equations, greatly simplifies the solving progress on interpolation curve parameters under lots of motion constrained conditions, and take advantages of genetic algorithm to complete trajectory parameters optimization; In order to verify the validity of the text in the trajectory planning, Adams virtual prototyping simulation platform was established, by comparing simulation, the results showed that compared to the ordinary planning trajectory, the drive system power amplitude of five interpolation which was obtained by the study, had a significantly reduced, reached the purposes of releasing drive system burden by trajectory planning.
     In manipulator control aspect, established a three-phase permanent magnet synchronous motor(PMSM) control model; take the large manipulator which working in a invariable trajectory as the study object, by look-up table method according to the position instruction, feedforward compensation was adopted to the conquer disturbance in the movement, established the current loop, velocity loop control model for feedforward control system; in order to verify the validity of feed-forward control method in the paper, adopted Adams virtual prototype model as the control object, and established Matlab-Adams combine simulation platform, carried out the comparison of simulation with ordinary PID control, the results illustrate that the control of large manipulator which working in a invariable trajectory can be done by the method in the paper, what is more, the control effect is manifest better than the normal PID control .
引文
1曾孔庚.工业机器人技术发展趋势.机器人技术与应用. 2006, (05): 10~13
    2孙立宁.机器人技术国内外发展状况.国内外机电一体化技术, 2002, 5(4):31~41
    3陈佩云,金茂菁,曲忠萍.我国工业机器人发展现状.机器人技术与应用. 2001, (1):2~4
    4黄声华,吴芳.永磁交流伺服系统国内外发展概况.微特电机. 2008, (5):52~56
    5陈荣.交流永磁同步伺服系统的现状与发展.电气时代. 2005, (9):104~107
    6刘远江.中国工业机器人发展访谈.机器人技术与应用. 2006, (5):1~6
    7王金友.中国工业机器人还有机会吗.机器人技术与应用. 2005, (2):6~7
    8张杨林.国内工业机器人市场及发展趋势.大众科技. 2006, (6):191~192
    9马光,申桂英.工业机器人的现状及发展趋势.组合机床与自动化加工技术. 2002, (3):48~50
    10于书香. KUKA在不断创新中发展.焊接与切割. 2008, (12):21
    11北京西杰优胜管理公司.国内机器人工业还需努力.现代零部件. 2009, (2):50~52
    12周渭,渡边健藏.近年来国外仪器与测量技术发展趋势.仪器仪表学报. 2005, 26(7): 764~770
    13熊有伦,丁汉,刘恩沧.机器人学.机械工程出版社. 1993:20~23, 40~80, 131~135
    14 Lin C S, Chang P R, Luh J Y S. Formulation and Optimization Cubic Polynomial Joint Trajectories for Industrial Robots. IEEE Transactions on Automatic Control. 1983, 28(12):1066~1074
    15 Kim B K. An Efficient Minimum-time Robot Path Planning under Realistic Conditions. In Proc of 1984 American Control Conference San Deigo. 1984:296~303
    16 Lu S H, Kumar P R. Distributed. Scheduling Based on Due Dates and Buffer Priorities. IEEE Transactions on Automatic Control, 1991, 36(12):1406~1416
    17袁辉、阎保定、王宇炎.基于遗传算法的多关节焊接机器人轨迹规划,河南科技大学学报2003, 24(4):86~88
    18 Mohamed B Trabia. Planning Near-length Collision Free Paths for Robots. IEEE Trans Syst Man Cybern. 1993, 23 (5):1481~1488
    19 Liang, Sun Z Q, Mu C D. Optimal Motion Planning Passing through Kinematic Singularities for Robot Arms .IROS 2006. Beijing: IEEE Press. 2006: 4349~4351
    20郎理民,钟庆莲,苏业助.黄金分割法在水位-流量关系单值计算中的应用.人民长江. 2009, 40(16):19~24
    21李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望.邢台职业技术学院学报. 2009, 26(5):44~46
    22陈玉东,刘红波.模型参考自适应控制、模糊控制及PID控制的综合应用.自动化仪表. 1998, 13(2):20~22
    23窦儒振.高性能永磁交流伺服系统及其新型控制策略的研究.天津大学博士学位论文. 2002:7~8.
    24吴振顺.自适应控制理论与应用.哈尔滨工业大学出版社. 2005:3~5
    25 F. Briz, J.A.Cancelas, A.Diez. Speed Measurement Using Rotary Encoders for High Performance AC Drives. IEEE International Conference on Industrial Electronics, 1994:538~542
    26 S. Ichikawa, M. Tomita, S. Doki. Sensorless Control of Permanent-Magnet Synchronous Motors Using Online Parameter Identification Based on System Identification Theory. Industrial Electronics, IEEE Transactions on 2006, 53(2):363~372
    27林光春,熊先云,徐礼拒.带闭链的五自由度工业机器人动力学解析模型.机械科学与技术. 2002, 21(5):767~770
    28危晓飞. 6-DOF混合链机器人全域性能分析及优化研究.南京理工大学硕士学位论文. 2007:6~10
    29 Michalewicz Z, Janikow C Z. Handling Constraints in Genetic Algorithms. Proc of the 4th Int Conf on Genetic Algorithms. 1991:151~157
    30 Singh S, Leu M C. Optimal Trajectory Generation for Robotic Manipulators Using Dynamic Programming. ASME Journal of Dynamic Systems, Measurement and Control. 1987, 109: 88 ~ 96
    31刘淑春,许纪倩.工业机器人工作空间极其灵活性.北京科技大学学报. 1989, 11(2): 142~147
    32雷英杰,张善文,李旭武,等. Matalb遗传算法工具箱及应用.西安电子科技大学出版社. 2005: 3~8, 95~105
    33黄龙,康建,陈宁新.工业机器人气缸活塞平衡系统的优化设计.机器人. 1990, 12(3):30~35
    34张晋西.机器人动力平衡辅助设计.机电工程技术. 2003,32(3):41~42
    35 Osyczka. An Optimal Design of a Relief Mechanism of Industrial Robot. Proc 15th ISIR. 1985:439~444
    36朱遂武,孙杏初.工业机器人平衡系统的研究.北京航空航天大学学报. 1995, 21(2):120~123
    37 Mahalingan S, Sharon A M. The Optimal Balancing of Robotic Manipulator. Proc of IEEE International Conference.1986:828~835
    38张永贵,黄玉美,程祥,等.基于动力学的机器人手臂上零部件安装位置优化.农业机械学报. 2006, 37(3):109~112
    39杨国良.工业机器人动力学仿真及有限元分析.华中科技大学硕士学位论文. 2005:42~48
    40寇宝泉,程树康.交流伺服电机及其控制.机械工业出版社. 2008:102~110
    41孙秀萍.机器人手臂轨迹规划的研究.内蒙古师范大学学报. 2009, 38(2):175~177
    42 Bobrow J E, Dubowsky S, Gibson JS. Time-Optimal Control of Robotic Manipulators along Special Paths. International Journal of Robotics Research. 1985, 4(3):3~17
    43 Kunio Miyashita, Tadashi Lakehashi. Features of A Magnetic Rotary Encoder. IEEE Transactions on magnetics. 1987, 23(5):2182~2184
    44李增刚. Adams入门详解与实例.国防工业出版社. 2006:20~40,125~132
    45杜志江,张博,孙立宁.基于虚拟样机的双足机器人运动仿真研究.系统仿真学报. 2007, 19(19): 4454~ 4456.
    46 Takahashi. A New Quick-response and High-efficiency Control Strategy of an Induction Motor. IEEE Trans and Application.1986, 22(5):820~827
    47 Oskar Wallmark. Sensorless Control of Salient PMSM Drives in the Transition Region. IEEE, Transactions on Industrial Electronics. 2006, 53(4):1179~1187.
    48 Calogero Cavallaro. Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE Transactions on Industrial Electronics. 2005, 52(4):1153~1160.
    49张毅,薛美盛,王伟.带前馈的PID控制回路的控制器性能评估.化工自动化及仪表. 2008, 35(1):20~23
    50 Y. X. Su, C. H. Zheng, B. Y. Duan. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics, 2005, 52(3):814~823
    51 Seok-Beom Lee. Closed-Loop Estimation of Permanent Magnet Synchronous Motor Parameters by PI Controller Gain Tuning. IEEE Transactions on Energy Conversations. 2006, 21(4):863~870.
    52 Shinji Shinnaka. New Sensorless Vector Control Using Minimum-Order Flux State Observer in a Stationary Reference Frame for Permanent-Magnet Synchronous Motors. IEEE, Transactions on Industrial Electronics. 2006, 53 (2):388~398
    53 Vargas-Villamil F D, Rivera D E. Multilayer Optimization and Scheduling Using Model Predictive Control. Application to Reentrant Semiconductor Manufacturing Lines. Computers and Chemical Engineering. 2000, 24: 2009~2021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700