高速客车半主动悬挂控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆半主动悬挂系统是由弹性元件、成本低于主动悬挂作动器的可控阻尼器、加上适用的阻尼控制规律构成的,能够在只消耗少量能源的情况下,达到与主动控制相近的性能,这是半主动悬挂具有吸引力的原因所在。但决定半主动悬挂能否实际应用的主要因素有两点,一是阻尼控制策略的研究,二是可控阻尼器的研制,这是本文研究的重点内容。
     本文研究了阻尼控制策略的两种实现方式:一是开关型阻尼控制规律,二是连续型阻尼控制规律。首先对主动悬挂系统阻尼控制中的天棚阻尼原理在半主动悬挂中的应用进行了研究,分析了其开关控制特性、颤振及其避免方法;根据主动悬挂控制信号的特点导出了连续阻尼控制规律。
     论文研究了基于神经网络自适应控制的半主动悬挂连续阻尼控制策略,这种阻尼控制策略能降低对阻尼器件带宽的要求,降低成本,增强半主动悬挂系统的实用性。文中还研究了把基于天棚阻尼原理的阻尼控制策略结合到该控制系统中的复合控制方法,前者能使系统始终处于最优或次优阻尼,后者则能进一步衰减低频振动,但也有增大高频响应的趋势。
     分析了悬挂控制系统的时滞对半主动悬挂系统和主动悬挂系统的不同影响。分析和仿真实验表明,半主动悬挂控制系统的时滞不影响系统的稳定性,但影响系统的响应性能;过大的系统时滞将使系统的响应加速度增大,平稳性变差,但不致使系统失稳。通过仿真实验验证了这一结论。
     为配合半主动悬挂阻尼控制策略的研究,以一种形式的阻尼器——采用磁流变液的可控阻尼器为背景,设计制作了磁流变可控阻尼器。通过特性试验,得到示功特性、速度特性,经转换得到阻尼器的阻尼力——电压(电流)模型和阻尼系数——电压(电流)模型。这样在研究中,可以采用开环控制方式或力反馈控制方式实现阻尼力的控制。
     本文在研究阻尼控制策略时,把阻尼控制策略和可控阻尼器模型这两个方面结合到系统模型中、融合在仿真实验环节中。
     通过对采用无摇枕转向架的高速客车悬挂系统横向模型的仿真实验,研究了半主动阻尼控制改善车辆运行平稳性的有效性。结果数据表明,与阻尼最优的被动悬挂相比,采用连续型阻尼控制策略,车体横向加速度响应的均方根值能降低20-25%,加速度最大值能降低约40-50%,横向平稳性指标降低约10-15%。
    
     酉南交通大学槽士研究生学位论文 第11页
     本文的研究证明,采用半主动阻尼控制策略改善高速客车的运行平稳性
    是有效的;用自适应控制器输出连续型阻尼的方法是可行的:由于半主动悬
    挂系统控制力的特殊性,使得系统时滞的影响不同于主动悬挂系统;磁流变
    可控阻尼器从原理、控制效果、响应速度等方面都是较好的,在进一步的完
    善之后,可以作为半主动悬挂可控阻尼器的一种可选器件。
Semi-active suspension system is consist of the traditional springs and controllable dampers,which has lower cost compared to the actuator in active suspension system,with suitable damping control strategy. It can attain to the performances which is nearly to active suspension system,with little consume of energy,this is the reason that the semi-active suspension system has attraction. But the application of semi-active suspension system is determined by two factors,one is the proper strategy of damping control,another is the practical controllable damper. This is the important content of this paper.
    The damping control rules have two forms,one is the on/off damping control,another is continuous damping control. The skyhook damper,which is more effective in active suspension system,is firstly researched in the paper. The on/off control performances of the skyhook damper in semi-active suspension system,the occur of chatter and its avoiding are analysis. The continuous damping rules are derived according to the feature of damping curve given by the controller in active control system.
    The continuous damping control rule using adaptive controller based on artificial neuro network(ANN) is researched. This rule has no strict demand for the bandwidth of the damper,the cost of damper is low,the practicality is good.
    This continuous rule can put the suspension system in the optimal damping state. The skyhook principle can be combined in this control rule,which can further attenuate the vibration of the car-body in lower frequency range,but the acceleration response in higher frequency range tend to be larger.
    It is also analyzed that the time delay of the control system has different influences on both active and semi-active suspension systems. Analysis and the simulation show that the time delay in semi-active system can not influence the stability of the system,but has influences on the response performances of the system. Too large system time delay will enlarge the acceleration response,the ride corfortabilty will be lower,but it can not make the system unsteady. The results of simulation has proved this conclusion.
    For the research of the damping control strategy one type of controllable
    
    
    
    damper,magnetico-rheological(MR) damper,was constructed and tested,the damping force and displacement characteristic curves,the damping force and velocity characteristic curves are obtained,so that the damping force and voltage(current) model,or the damping coefficient and voltage(current) model can be further obtained. Damping force can be controlled in one of the two ways,open loop control or force feedback control.
    During research,in this paper,both damping control strategy and the damper modeling are combined in the same system model,and the simulation model. During the simulation of the secondary lateral suspensions for the high speed passenger vehicle with no-bolster bogie,the effective using semi-active control to improve the ride comfort are studied. The results of simulation show that,compared to the passive suspension system with optimal damping,using continuous damping control rules,the RMS values of lateral response acceleration car body can be reduced 20% to 25%,maximum values( 3er ) of lateral acceleration can be reduced 40% to 50%,the ride comfort index can be reduced 10% to 15%.
    The research in this paper has proved that,it is effective using semi-active damping control to improve the ride comfort for the high speed passenger vehicle . It is feasible using adaptive controller to output the continuous damping. Because of the speciality of the controlling force of semi-active suspension system,the system time delay has no influences on the system stability. The MR-damper is good on the principle,on control effect,on response characteristics,etc.,after further improvements it can be used as a selectable controllable damper for semi-active suspension system.
引文
[1] 丁文镜.减振理论.清华大学出版社,1988,07,286-319
    [2] 何渝生.汽车控制理论及基础.重庆大学出版社,1995,01,48-57,60-62
    [3] 王福天.车辆系统动力学.北京:中国铁道出版社,1996,4:110-113
    [4] 方同.工程随机振动.国防工业出版社,1995,
    [5] Vijay K.Garg,Rao V.Dukkipati著.铁道车辆系统动力学.沈利人译,沈志云校对.西南交通大学出版社,1998,9
    [6] [瑞典]K.J.奥斯特隆姆,B.威顿马克.自适应控制.李清泉等译.科学出版社,1992
    [7] 韩曾晋编著.自适应控制.清华大学出版社,1995
    [8] 符曦编著.系统最优化及控制.机械工业出版社,1995,9:512-522,348-349
    [9] 舒迪前编著.预测控制系统及其应用.机械工业出版社,1996,3
    [10] 王永骥,涂健.神经元网络控制.机械工业出版社,1998,2
    [11] 易继锴 侯媛彬.智能控制技术.北京工业大学出版社,1999,9
    [12] 徐丽娜编著.神经网络控制.哈尔滨工业大学出版社,1999,5:42-122
    [13] 靳蕃,范俊波主编.神经网络理论与应用研究.西南交通大学出版社,1996,10
    [14] 史忠科.神经网络控制理论.西北工业大学出版社,2000,10:68-110
    [15] 何玉彬,李新忠.神经网络控制技术及其应用.科学出版社,2000,11
    [16] 艾武,李承.电路与磁路.华中理工大学出版社,1999,4216-221
    [17] 戴焕云.车辆主动控制的鲁棒控制.西南交通大学博士学位论文.1995.1:1-18
    [18] 张开林.机车车辆横向平稳性的主动控制研究.西南交通大学博士学位论文.1997.1:1-18
    [19] Hamilton J M. Computer optimized adaptive suspension technology. IEEE Transaction on Industrial Electronics, 1995; (4): 335-363
    [20] Abdel Hady M B A, et al. Active suspension control algorithms for a four wheel vehicle model. VSD, 1992; 21(2): 144-158
    
    
    [21] Hac A. Optimal linear preview control of active vehicle suspension. VSD, 1992; 21 (3):167-195
    [22] Hac A. Design of disturbance decoupled observer for bilinear system. Jounal of Dynamics, Measurement and control, 1992; 4: 556-562
    [23] Karnopp D C. Design principles for vibration control systems using semi-active dampers. Jounal of Dynamics, Measurement and control, 1991; 112(9): 448-455
    [24] Redifield R C. Performance of low-bandwidth semi-active damping concepts for suspension control. Vehicle System Dynamics(VSD), 1991; 20(5): 245-268
    [25] Fodor M, Redifield R C. Experiment verification for resistance control, semi-active damping. VSD, 1996; 26(2): 143-159
    [26] Yi K, Hedric J K. Dynamic tyre force control. Jounal of Dynamics, Measurement and control, 1993; 9: 465-474
    [27] Hwang S, Heo S, et al. Vehicle. Vehicle dynamic analysis and evaluation of continuously controlled semi-active suspensions using hardware-in-the loop simulation. VSD, 1997; 27: 423-434
    [28] Emura J, Kakizaki S, et al. Development of the semi-active suspension system based on the skyhook damper theory. SAE Transactions, Section6, 1994; 1110-1119
    [29] D. KARNOPP, M. J. CROSBY, R. A. HARWOOD, Vibration Control Using Semi-Active Force Generators, ASME Journal of Engineering for Industry, May, 1974 619-626
    [30] P. J. Th. Venhovens, A. C. M van der Knaap and H. B. Pacejka: Semi-Active Attitude and Vibration Control, VSD, 1993, 220
    [31] A. J. Truscott and P. E. wellstead: Adaptive Ride Control in Active suspension system, VSD 1995, 24(3)197-230
    [32] P. J. Th. Venhovens: Development and Implementation of Adaptive Semi-Active Suspension Control, VSD 1994, 23(4)211-235
    [33] H. E. TSENG AND J. K. HEDRICK:Semi-Active Control Laws-Optimal and Suboptimal, VSD 1994, 23(7)545-569
    
    
    [34] Malcolm. C. Smith:Achievable Dynamics Response for Automotive Active Suspension, VSD 1995, 24(1) 1-33
    [35] R.G. Langlois and R.J. Anderson:Preview Control Algorithms for Active Suspension of an Off-Road vehicle, VSD 1995,24(1)65-97
    [36] Hyuk KIM and YONG-SAN YOON:semi-Active Suspension with Preview using a Frequency-shaped Performance Index, VSD 1995, 24 (10)
    [37] I. Ballo:Power Requirement of Active Viberation Control System, VSD 1995, 24 (9) 683-694
    [38] F.H. Besinger, D. Cebon and D.J. Coe: Force Control of a semi-Active Damper, VSD 1995, 24 (9)695-723
    [39] P.-A. Hansson:Control algorithms for Active Cab Suspension on Agricultural Tractors, VSD 1996, 25 (6) 431-461
    [40] A.G. Thompson and P.M. CHAPLIN:Force Control in Electrohydraulic Active Suspensions, VSD 1996, 25(3) 185-202
    [41] Y. Nakaji, S. Satoh, T. Kimura, T. Hamabe, Y. Akatsu and H. Kawazoe: Development of an Active Control Engine Muntt System, VSD 1999, 32 (2-3) 185-198
    [42] EPSEVED. M. ELBEHEIRY, DEAN C. KARNOPP, MOHAMED E. ELARABY, AHMED M. ABDELRAAOUF: Suboptimal Control Design of Active and passive Suspensions Based on a Full Car Model, VSD, 1996, 26 (3) 197-222
    [43] M. VALASEK, M. NOVAK, Z. SIKA and O. VACULIN: Extended Ground-Hook- New Concept of Semi Active Control of Truck's suspension, VSD, 1997, 27(5-6) 289-303
    [44] KYONGSU YI and BYUNG SUK SONG: Observer Design for Semi-Active Suspensions Control, VSD, 1999, 32(2-3) 129-148
    [45] D.N.L. HORTON and D.A. Crolla: Theoretical analysis of Semi-Active Suspension Fitted to an Off-road Vehicle, VSD, 1986, 15 (6) 351-372
    [46] Dean Karnopp: Theoretical Limitations in Active Vehicle Suspensions, VSD, 1986, 15 (1) 41-54
    [47] A.G. Thompson and B.R. Davis: Optimal Linear ActiveSuspension System with Derivative Constraints and Output Feedback Control, VSD, 1988, 17(4)179-192
    
    
    [48] Mohamed M. Elmadany:Stochastic Optimal Control of Highway Tractors with Active Suspensions, VSD, 1988, 17(4)211-229
    [49] B.R. Davis and A.G. Thompson: Optimal Linear Active Suspension with Integral Constraint, VSD, 1988, 17 (6) 357-366
    [50] A.G. Thompson R. Davis: Optimal Linear Active Suspensions with Viberation Absorbers and Integral Output Feedback Control, VSD, 1989, 18 (6) 321-344
    [51] A.G. Thompson: Optimal and Suboptimal Linear Active Suspens for Road Vehicle, VSD, 1984, 13 (2) 61-72
    [52] Donald L. Margolis and Mehrnaz Goshtasbpour: The Chatter of semi-Active On-off Suspensions and its Cure, VSD, 1984, 13(3) 129-144
    [53] Dean Karnopp: Permanent magnet Linear Mortors used as Variable Mechanical Dampers for Vehicle Suspensions, VSD, 1989, 18 (4) 187-200
    [54] R.C. Redfield and D.C. Karnopp: Optimal Performance of Variable Component Suspensions, VSD, 1988, 17(5) 231-253
    [55] Dean Karnopp: Active Damping in Road Vehicle Suspension Systems, VSD 1983, 12 (6) 291-316
    [56] D.L. Margolis : Semi-Active Control of Wheel Hop in Ground Vehicle, VSD, 1983, 12 (6) 317-330
    [57] Donald L. Margolis : The Response of Active and Semi-Active Suspensions to Realistic Feedback Signals, VSD, 82, 11(5-6)
    [58] J.K. Hedrick : Railway Vehicle Active Suspensions, VSD, 1981, 10(3) 267-283
    [59] A.G. Thompson: An Active Suspension with Optimal Linear State Feedback, VSD, 1976,5(4) 187-203
    [60] F.H. BESINGER, D. CEBON and D.J. COLE Force Control of a Semi-Active Damper, VSD, 1995, 24 (3) 695-723
    [61] 孙建民,孙凤英.汽车悬架系统的发展及控制技术研究现状.黑龙江工程学院学报.2001,01
    
    
    [62] 杨文正,刘影.电子控制汽车悬架综述.车辆与动力技术.1998,04
    [63] 齐云芝.车辆悬挂系统研究的现状和未来.车辆与动力技术.1998,03
    [64] 喻凡,郭孔辉.自适应悬架对车辆性能改进的潜力.中国机械工程.1998,06
    [65] 余强,郑慕侨.汽车悬架控制技术的发展.汽车技术.1994,09
    [66] 李军,成思源,卢海峰.汽车主动悬架控制方法的现状与发展.渝州大学学报(自然科学版).1999,04
    [67] 王国丽,顾亮,孙逢春.车辆主动悬架技术的现状和发展趋势.兵工学报.2000,S1
    [68] 张庙康,胡海岩.车辆悬架振动控制系统研究的进展.振动、测试、诊断.1997,03
    [69] 孙建民,陈玉强.现代控制理论在汽车悬架控制中的应用现状.汽车研究与开发.2000,05
    [70] 傅志方,张志谊,华宏星.半主动悬架控制的 H~∞方法.振动工程学报.1999,01
    [71] 张志谊,傅志方,华宏星.悬架的半主动控制.上海交通大学学报.1999,03
    [72] 冯志鹏,张益群,冯志鸿.主动悬架系统随机次优控制.昆明理工大学学报.2001,01
    [73] 林逸,陈家瑞,刘明科,郭九大.键合图理论在汽车纵向角振动主动控制中的应用.汽车技术1994,11
    [74] 庄继德,陈善华,张宝生.可切换半主动悬架的一种自适应控制策略.中国公路学报.1998,03
    [75] 顾亮,顾志强.车辆悬架行驶平顺性全状态反馈主动控制.车辆与动力技术.1998,02
    [76] 刘少军,李艳.基于1/2车辆模型的主动悬架预见控制方法研究.信息与控制.2000,01
    [77] 高跃奎.最优控制理论在车辆主动悬架中的应用.重型汽车.2000,04
    [78] 刘少军,钟掘,郭淑娟,末松良一.最优预见控制设计及在汽车主动悬架控制中的应用.中南工业大学学报(自然科学版).1997,02
    [79] 钟绍华,刘旺玉,刘建国.主动悬架及控制理论的研究.武汉汽车工业大学学报.1999,05
    [80] 王江,柳俊中,王先来,王洪礼.变结构控制在汽车主动悬架中的应用.电机与控制学报.2000,01
    
    
    [81] 陈志林,金达锋,马国新,黄兴惠,赵六奇.基于变结构与PID联合控制策略的车身高度控制仿真.清华大学学报(自然科学版).1999,08
    [82] 刘宏伟,陈燕虹,林逸,王逊.汽车主动悬架系统状态反馈控制技术研究.汽车技术.2000,08
    [83] 陈志林,金达锋,赵六奇.汽车主动悬架系统的渐近稳定自适应控制.清华大学学报(自然科学版).1997,12
    [84] 罗禹贡,李克强,徐中明,贺岩松,李毛,袁志勇.轻型车悬架动态优化设计及其应用.汽车研究与开发.1997,03
    [85] 韩西,李润方,钟厉.汽车半主动悬架系统的动态优化方法研究.机械科学与技术.1998,05
    [86] 段志信,冯志勇,于翔.多种工况下汽车悬挂参数优化.内蒙古工业大学学报(自然科学版).1998,03
    [87] 张竟先,江浩,余卓平.汽车可变阻尼悬架系统的数值仿真分析.上海铁道大学学报.2000,6
    [88] 王洪礼,石磊,刘文革,孙景.汽车悬架系统非线性振动的主动控制.机械强度.2000,03
    [89] 乔维高.汽车主动悬架系统线性控制应用.重型汽车.2000,02
    [90] 赵和平,黄宏成,李鸿光,张建武.汽车非线性悬架动态特性研究.系统仿真学报.2001,05
    [91] 赵和平,黄宏成,习纲,张建武.非线性弹簧汽车悬架动态特性研究.机械强度.2001,02
    [92] 门永新,庄继德.汽车姿态的离散性半主动控制.吉林工业大学学报.1996,04
    [93] 邢向丰,李凤兰,权龙,周文.汽车液压主动悬架的PID控制.太原理工大学学报.2000,3
    [94] 陆正刚.铁道车辆主动、半主动空气弹簧悬挂系统的研究.铁道学报.2001,01
    [95] 李霆.多轮车辆悬挂系统的半主动控制.华北工学院学报.1996,01
    [96] 韩西,钟厉.汽车悬架系统阻尼半主动控制研究.重庆交通学院学报.1997,03
    [97] 郑昭明,胡百鸣,陈上仿,罗冬梅.三级阻尼半主动悬架的最优控制.武汉科技大学学报(自然科学版).1996,03
    
    
    [98] 陈无畏,张启群.汽车半主动悬架的性能分析.重型汽车.1995,04
    [99] 肖武,宋晓琳.模糊控制汽车主动悬架系统的鲁棒性分析.客车技术与研究.1999,04
    [100] 陈士安,刘红光,陆森林,刘志强,郝泽军.汽车主动悬架四自由度模糊控制系统研究.江苏理工大学学报.2001,01
    [101] 宋晓琳,赵丕云.用于汽车主动悬架的模糊控制器的研究.湖南大学学报(自然科学版).2000,02
    [102] 余强,魏朗,陈荫三.主动悬架系统的连续模糊控制.汽车技术.1999,01
    [103] 方锡邦,陈无畏,吴乐,王启瑞,范迪彬,李智超.模糊控制技术及其在汽车半主动悬架中应用.机械工程学报.1999,03
    [104] 李德超,陈龙,薛念文,周孔亢.自适应模糊控制半主动悬架.江苏理工大学学报.2001,02
    [104] 李伟,何渝生.汽车主动悬架一种控制方法的研究.重庆交通学院学报.1997,01
    [105] 周晓文,张洪欣.一种实用的半主动悬架的控制规律研究.同济大学学报(自然科学版).1997,04
    [106] 张庙康,翁建生,胡海岩.一种新型油气弹簧悬架的理论分析和实验研究.振动.测试与诊断.1999,04
    [107] 黄兴惠,金达锋,赵六奇,孙振华.基于频率成型性能指针的主动悬架控制策略的研究.清华大学学报(自然科学版).1998,08
    [108] 寇国瑗,徐正飞.现代汽车主动悬架的微机控制系统.汽车研究与开发.1998,03
    [109] 李静,初亮,鲁和安,李幼德.CA6440 轻型客车可调阻尼悬架控制与试验.吉林工业大学自然科学学报.2001,03
    [110] 陈无畏,方锡邦,王启瑞,范迪彬,李智超.车辆半主动悬架系统的分析设计及试验研究.农业机械学报.1999,06
    [111] 李亿祥,王超,张福生,刘晓斌.汽车主动悬架建模试验.太原重型机械学院学报.2001,02
    [112] 王世明,王孙安,李天石.半主动悬架的试验研究.仪器仪表学报.2001,02
    [113] 沈钢.面向对象的机车车辆动力学仿真建模研究.铁道学报.1998,4
    
    
    [114] 伍先俊,江征风,刘小英.用MATLAB解决汽车悬架的主动控制问题.计算机仿真.2000,02
    [115] 张开林,米彩盈.铁道车辆主动减振控制系统的开发.铁道车辆.1998,09
    [116] 郭迎清.航空发动机神经网络自适应控制研究.航空动力学报.2001,01
    [117] 闵华清,杨进,周万隆,徐贵刚.神经网络控制系统的仿真研究.武汉化工学院学报.1996,04
    [118] 管霖,程时杰,陈德树.适用于控制型神经网络的快速学习算法.华中理工大学学报.1995,04
    [119] 赵六奇,易庆红.车辆悬架与减振器阻尼的匹配研究.车辆与动力技术.1994,01
    [120] 庄继德,陈善华,张宝生,门永新.实际两级可控式减振器参数对控制效果的影响.吉林工业大学自然科学学报.1997,04
    [121] 李智超,耿艳萍,陈朝阳,王启瑞,陈无畏.一种可调阻尼减振器的设计与试验.合肥工业大学学报(自然科学版).1998,03
    [122] 章一鸣,林野,一种新型车辆悬挂系统的探讨—阻尼最优控制的半主动悬挂系统.汽车工程.1988,03:30-39
    [123] 潘世荣,胡水华,张军.刚度——阻尼自动调节式汽车座椅是架系统的研究。重型汽车.1996,01
    1124] 林野.半主动悬挂的振动传递特性及其潜在的优越性.铁道车辆.1985,10:13-18
    [125] 章一鸣,曾志华,金达峰.车辆悬挂阻尼的微机控制.汽车工程.1990,02:58-65
    [126] 翁建生,胡海岩.磁流变阻尼器的实验建模.振动工程学报.2000,04:616-620
    [127] 陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报,1999,2:138-141
    [128] 刘奇,张平,王东亚,黄元龙.磁流变体(MRF)材料的制备及性能研究.功能材料.2001,3
    [129] 廖昌荣,余淼,杨建春,陈伟民,黄尚廉.汽车磁流变减振器设计中值得注意的若干技术问题.汽车技术.2001,05
    [130] 张文丰,翁建生,胡海岩.时滞对车辆悬架“天棚”阻尼控制的影响.振动工程学报.1999,04
    
    
    [131] Palkovics L, Venhovens P J Th. Investigation on stability and possible chaotic motions in the controlled suspension system. VSD, 1992,21(5):269-296
    [132] Antonio MORAN and Masao NAGAI Optimal Active Control of Nonlinear Vehicle Suspensions Using Neural Networks, JSME International Journal, 1994,37(4),707-718
    [133] T. Shiotsuka, A. Nagamatsu and K. Yohsida:Adaptive Control of 4WS System by using Neural Network, Vehicle System Dynamics (VSD), 1993,22
    [134] Hoeslscher R, Huang Z. Das komfortorientierts semiaktive daempfungssystem. Wallentowitz H. ed. Fortschritte Der Fahrzeugtechnik Aktive Fahrweekstechnik, 1991,10:20-34
    [135] Fukushima N, Fukuyama K. Nissan hydraulic active suspension. Wallentowitz H. ed. Fortschritte Der Fahrzeugtechnik Aktive Fahrweekstechnik, 1991,10:192-210
    [136] Karnopp D. Active damping in road vehicle suspension system. VSD, 1983,12:291-298
    [137] Karnopp D. Active and semi-active vibration isolation. Journal of Mechanical Design Transactions of the ASME, 1995,117B(6):177-185
    [138] Hu Haiyan. Semi-active vibration absorber with adjustble clearance. Transaction of Nanjing University of Aeronautics and Astronautics, 1996,13(2):135-141
    [139] Hac A, Youn I, Chen H. Control of suspension for vehicles with flexible bodies: part Ⅱ semi-active suspensions transportation systems. ASME, Dynamic Systems and Control Division, 1994, (DSC54):93-113
    [140] Thompson A G, Davis B R. Technical note on the lotus suspension patents. VSD, 1991,6:381-383
    [141] Schramm W, Landesfeind K, Kallenbach R. Ein Hochleistungskonzept zur aktive fahrwerkregelung mit reduziertem energiededarf. ATZ Automobiltechnische Z, 1992, 1994 (7/8):392-403
    
    
    [142] Kohaupt L, Moll W. Aktive radaufhaengung. ATZ Automobiltechnische Z, 1991,93(3):150-158
    [143] Hu H X, Lob N K, Cheok K C. Frequency -shaping optimal parameteric LQ control with application. Signal Processing and System Control Factory Automation IECON Proceedings. 1990.142-147
    [144] Ray, Laura R, Robust linear-optimal control laws for active suspension systems. Advanced Automotive Technologies, ASME, Design Engineering Division, 1991,40:291-302
    [145] Krtolica R, Hrovat D. Optimal active suspension control based on a half-car modal: an analitil solusion. IEEE Tansactions on Automotive Technologies, ASME, Design Engineering Division, 1991,40:375-390
    [146] Hirata T, Takahashi R. H//Infinity control of railroad vehicle active suspension. In:Proceedings of the IEEE Conference on Decision and Control, 1993.2937-2924
    [147] Yamashita M, Fujimori K, Hayakawa K et al. Application of h// infinitive control to active suspension systems. Automatics, 1994,30(11):1717-1729
    [148] Araki Y. Preview control of active suspension using disturbance information of frontal Wheel. Tansactions of the JSME, Part C, 1994,60(578):3404-3409
    [149] Fujioka T, Mochizuki T. Optimalpreview control of an active suspension system for railway vehicles. Tansactions of the JSME, Part C, 1995,61(581):65-70
    [150] Sunwoo M, Choek Ka C. Investigation of adaptive control approches for vehicle active suspension systems. In: Proceedings of the American Control Conference, 1991.1542-1547
    [151] Vallurupalli S, Osman M O M, Dukkipatti R V Adaptive control of an active suspension. Transportation Systems, 1992 ASME, Dynamic Systems and Control Division, 1992,44:89-96
    [152] Alleyne A, Hedrick J K. Nonlinear adaptive controlof active suspension. IEEE Tansaction on Control Systems Technology,1995,3(1):94-101
    
    
    [153] Albeti V. Moeglichkeiten der adaptive fahrwerksdaepfung im kraftfahrzeug. ATZ Automobiltechnische Z, 1991, 93(5): 282-293
    [154] Briggs D M, Choek Ka C. Game-playing fuzzy logic controller for semi-active suspensions. In:Proceedings American Control Conference IEEE, 1993, (93):301-305
    [155] Ro Paul I, Kim H. Active suspension system using fuzzy logic control. In: Proceedings American Control Conference IEEE, 1993, (93):2252-2253
    [156] Yoshimura T. Active suspension of vehicle system using fuzzy logic. International Journal of Systems Science, 1996,2:215-219
    [157] Hashiyama T, Behrendt S, Furuhashi T et al. Fuzzy controller foe semi-active suspension system generated through genetic algorithms. In: Proceedings of the IEEE International Conference on systems, Man and Cybernetics Parts, 1995.4361-4366
    [158] Moran A, Nagai M. Optimalactive control of nonlinear vehicle suspensions using neural networks. JSME International Journal, Series C:Dynamics, Control, RoboticsDesign and Manufacturing, 1994,37(4):707-718
    [159] Shiotsuka T, Egami M, Nagamatsu A et al. Design and control of dynamic compensator-type controller using neural networks. Transactions of the Japan Society of Mechanical Engineers, Part C, 1994,60(572):1296-1302
    [160] Wislow, W.M.,U.S. Patent, No. 2417850,1947
    [161] Rabinow, J.,The Magnetic Fluid Clutch ,ATEE Tran. Vol. 67, 1948, P1308-1315
    [162] 由川透.JR东日本公司的新干线.东日本旅客铁道株式会社(中日铁路协作项目的实际业务人员协商技术信息交流会-资料)
    [163] 顾永泉.流体动密封.石油大学出版社,1989,10
    [164] Martin Teichmann,摆式车体车辆的SF600型走型装置,铁路工程师,1999,01:9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700