电动力绳系离轨系统的建模与动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动力绳系是近年来出现的一项新兴技术,在废弃卫星离轨、辅助轨道机动、航天器防护等方面具有广阔的应用前景。电动力绳系具有强非线性且运动过程中存在复杂的多场耦合,现有动力学模型难以满足电动力绳系方案设计、特性分析及展开控制等应用要求。为此本文围绕电动力绳系展开过程和留位状态下动力学建模、展开控制及离轨时间预估等展开研究,取得如下创新性研究成果:
     离轨时间是评价电动力绳系离轨策略优劣的一项重要指标,为实现较为精确的离轨时间预估,首先建立了考虑弯曲变形的电动力绳系柔索模型,理论分析和数学仿真表明了该柔索模型与刚性杆模型本质上的一致性,柔索模型具有更高的精度;基于所建立的柔索模型,考虑电动力绳系离轨过程中地磁场强度、环境摄动力等的变化,提出了一种轨道六要素迭代累加离轨时间预估算法;最后,采用数值计算手段,分析了系绳长度、横截面积、末端质量等不同绳系系统参数,以及不同轨道参数对离轨时间的影响,为电动力绳系离轨系统方案设计提供参考。
     在各种干扰影响下留位状态电动力绳系系统动力学特性极其复杂,为便于分析需建立其动力学模型。首先,将系绳作为有质量的柔性连续体,考虑系绳所受电动力拉力、重力梯度力、张力等影响,建立了留位状态电动力绳系非线性动力学方程,数值分析结果表明留位状态下系统表现出与两端固定的绳索相类似的振动特性;基于上述结论,研究留位状态绳系短期内振动及张力变化,将系绳简化为两端固定的绳索,并建立了该简化假设下的电动力绳系系统2D和3D振动模型,研究横向振动与纵向振动、面内振动与面外振动的耦合关系。仿真结果显示系绳参数λ与系绳的非线性动力学行为密切相关,横向振动与纵向振动可以互相激发,但不能激发面外振动,面外振动可以激发面内的纵向和横向振动;最后,为降低绳系系统振动,提出在电动力绳系离轨系统中增加阻尼器的方案,并基于上述简化模型建立了具有阻尼器的离轨系统动力学模型,仿真结果表明离轨系统振动振幅得到明显衰减,验证了阻尼器在抑制系绳振动方面的有效性。
     针对电动力绳系展开动力学与控制问题,首先利用Hamilton原理建立了包括系绳、末端质量、绕线盘摩擦以及末端球体上推力等作用下的绳系系统展开动力学方程,并分析了绳系自由展开过程中绕线盘出线、系绳振动以及末端质量的运动规律。针对匀速展开和指数展开两种模式,采用极点配置法设计了系绳张力/绕线盘摩擦力/推力器推力混合的展开控制算法,仿真结果表明展开过程中系绳张力变化平稳,微幅振荡抑制效果明显,系绳平稳快速展开,验证了上述控制算法的有效性。
The electrodynamic tether (EDT) is a new technology in recent years, and it has many potential applications in spent or dysfuctional satellites deorbiting, auxiliary orbit maneuver, and spacecrafts protecting. Due to strongly nonlinear dynamics of electrodynamic tether system and complicated multi-fields coupling problems, the dynamic models in existence do not meet the requoments of the electrodynamic tether system design, deorbiting characteristic analysis and tether deployment control. To solve such problems, this dissertation investigates the deorbiting time forecast and the dynamic modeling of EDT in deployment and stationkeeping phase. The main contents of this dissertation are as follows:
     The deorbiting time is an important indicator to evaluate the effect of EDT deorbiting system. In order to precise deorbiting time forecast, the flexible cable model of EDT system is established. The flexible cable model is used to discuss effects of flexible deformation on electromotive force and Lorentz force. Theoretical analysis and numerical simulation both indicate that the flexible cable model is the same essence with the rigid bar model, and the flexible cable model improves the veracity of deorbiting time estimate. Based on the flexible cable model, a six-orbit-parameters iterative cumulative algorithm is present to forecast the deorbiting time, in which the variation of magnetic field strength and space environmental perturbation is taken into account. By the flexible cable model, the influence of tether system parameters and orbit parameters to deorbiting time is researched, to discuss the design of electrodynamic tether system and proper satellite orbits suit for EDT deorbiting.
     The dynamics behavior of EDT system in stationkeeping phase is very complex , resultingly the effection of a series of perturbations. The study on the dynamics character of EDT system in stationkeeping phase, which presents a continuous flexible tether model to capture the gravitational, inertial, tensile forces and electrodynamic drag in the tether, and uses Newton’s laws to derive the dynamic equations of electrodynamic tether system in stationkeeping phase. The simulation results show that the motion of electrodynamic tether in stationkeeping phase is similar to the vibration of cable with two immovable pinned-supports, in which the mid-span has the largest amplitude of vibration. According to this conclusion, the main satellite and the endmass at both ends of tether can be treated as immovable pinned-supports when the tether vibration and tension of electrodynamic tether system in impermanency is investigated. Following the above research, 2D and 3D simplified vibration models of EDT system are presented to study the relationship between vertical and longitudinal vibration, and the relationship between in-plane and out-of-plane vibration. The research results indicate that the nonlinear dynamics of EDT is associated with the tether structure parameterλ. The vertical and longitudinal response of the tether can be excited by each other, but they cannot excite out-of-plane response. The out-of-plane response can cause vertical and longitudinal response in plane. For solving the problem of little damping of EDT system, a damper is presented to add to EDT system. The effects of damping to tether dynamic characteristic is investigated. The simulation results show that the amplitudes are weakened and the vibrations are restrained when a damper is added into EDT system.
     For solving the problems of dynamics and control of EDT deployment, a continuous system differential equation model is presented to investigated dynamics of deployment of EDT system.. The dynamic model of space tether deployment provides a way to study motion laws of drum releasing tether, tether vibration and end-mass moving during the tether deployment. According to dynamic characteristics of deployment, uniform deployment and expontial deployment are adopted to control the deployment course. The deployment united control of tether tension/durm torque/thruster force is designed by pole-assignment method. The simulation results show that the deployment united control produces a very fast and stable process for the deployment of EDT system.
引文
1 D. B. Spencer, K. K. Luu, W. S. Campbell, et al. Orbital Debris Hazard Assessment Methodologies for Satellite Constellations. Journal of Spacecraft and Rockets, 2001, 38(1): 120~125
    2 D. Rex, P. Eichler. The possible long term overcrowding of LEO and the necessity and effectiveness of debris mitigation measures, Proceedings of the first European Conference on Space Debris, ESA SD-01, 1993, 607~615
    3罗刚桥.空间碎片减缓措施及其研究对策,中国空间科学技术,2001,21(6): 33~42
    4 R. L. Forward, R. P. Hoyt, C. Uphoff, Application of the Terminator TetherTM Electrodynamic Drag Technology to the Deorbit of Constellation Spacecraft, AIAA Paper 98-3491, 34th Joint Propulsion Conference, July 1998.
    5 K. E. Tsiolkovsky. Speculations of earth and sky. Moscow, Izd-vo AN SSSK, 1895: 35 (reprint in 1959).
    6 K. D. Kumar. Review of Dynamics and Control of Nonelectrodynamic Tethered Satellite Systems. Journal of Spacecraft and Rockets. 2006,43(4): 705~720
    7 W. Z. Spencer, M. P. Cartmell. Investigating the Use of Motorised Tethers for Payload Orbital Transfer. AIAA/AAS Astrodynamics Specialist Conference. Denver: USA, 2000: 582~592
    8 S. Cho. Analysis of the Orbit Motion of a General Tethered Satellite System. Docotor of Phiosophy. 1999: 1~2
    9 J. L. Anderson. Tether Technology Conference Summary. In: AIAA 26th Aerospace Sciences Meeting, 1988: 11~14
    10 A. K. Misra, V. J. Modi. A Survey on the Dynamics and Control of Tethered Satellite System. Advances in the Astronautical Sciences, 1987, 62: 667~719
    11 J. A. Carroll. Tether Applications in Space Transportation. Acta Astronautica, 1986, 13(4): 165~174
    12 G. Colombo. The Use of Tethers for Payload Orbital Transfer. Smithsonian Astrophysical Observatory, NAS8-5569, 1982
    13 A. K. Misra, V. J. Modi. Three-Dimensional Dynamics and Control of TetherConnected N-Body Systems. Acta Astronautica, 1992, 26(2): 77~84
    14 A. B. Decou. Attitude and Tether Vibration Control in Spinning Tether Triangles for Orbiting Interferometry. The Journal of the Astronautical Sciences. 1993, 41(3): 373~398
    15 K. Kokubun, H. A. Fujii. Deployment/Retrieval Control of a Tethered Subsatellite Under Effect of Tether Elasticity. Journal of Guidance, Control and Dynamics. 1996, 19(1): 84~90
    16 M. Pasca. Nonlinear Control of Tethered Satellite System Oscillations. Nonlinear Analysis Theory Methods and Applications. 1997, 30(6): 3867~3878
    17 S. Kalantzis, V. J. Modi, S. Pradhan. Dynamics and Control of Multibody Tethered Systems, Acta Astronautica, 1998, 42(9): 503~517
    18 S. Pradhan, V. J. Modi, A. K. Misra. Tether-Platform Coupled Control. Acta Astronautica, 1999, 44(5): 243~256
    19 S. Pradhan, V. J. Modi, A. K. Misra. Control of tethered satellite systems using thruster and offset strategies. Journal of Guidance, Control and Dynamics. 1996, 64(2): 175~193
    20 M. Pascal, A. Djebli, E. L. Bakkali. Laws of Deployment/Retrival in Tether Connected Satellites Systems. Elsevier Science Ltd, 1999, 2(45): 61~73
    21朱仁璋.速率控制下的空间系绳的伸展.中国空间科学技术. 1991, (4): 50~55
    22朱仁璋.绳系卫星系统的运动与控制.宇航学报. 1991, (4): 32~42
    23朱仁璋.绳系卫星系统耦合振动频率的确定.中国空间技术. 1993, (2): 15~22
    24朱仁璋.绳系卫星系统动力学、运动学与控制评述纲要.航天器工程. 1998, 7(4): 22~26
    25朱仁璋,雷达,林华宝.绳系卫星系统复杂模型研究.宇航学报.北京, 1999, 20(3): 7~12
    26于绍华.空间系留卫星系统动力学与控制.宇航学报. 1992, (2): 87~94
    27于绍华.绳系卫星系统中的周期运动.宇航学报.1997, (3): 51~58
    28于绍华,刘强.有分布质量系绳的卫星系统的动力学.宇航学报.北京, 2001, 22(3): 52~61
    29 S. H. Yu. Dynamic Model and Control of Mass-Distributed Tether SatelliteSystem. Journal of Spacecraft and Rockets. 2002, 39(2): 213~218
    30崔乃刚,齐乃明,程俊仁.绳系卫星系统系绳展开及剪断后轨道参数的计算.哈尔滨工业大学学报. 1995, 27(1): 97~100
    31崔乃刚,刘暾,林晓辉,赵辰洙.基于椭圆轨道的绳系卫星伸展及释放过程仿真研究.哈尔滨工业大学学报. 1996, 28(4): 117~122
    32崔乃刚.绳系卫星动力学与控制及应用研究.哈尔滨工业大学博士论文. 1996
    33苟兴宇,马兴瑞,邵成勋等.绳系子卫星的展开.哈尔滨工业大学学报.哈尔滨, 1998, 30(1): 11~14
    34王聪,姜兴渭,黄文虎.低轨道系绳卫星展开过程仿真分析.高技术通讯. 2000, 10(5): 84~86
    35顾晓勤,谭朝阳. Hohmann转移释放绳系卫星的方法研究.力学与实践. 1998, 20(6): 27~29
    36顾晓勤,谭朝阳.绳系卫星横向振动的控制方法.空间科学学报. 1999,19(2): 187~191
    37顾晓勤.绳系卫星释放及工作态动力学分析.空间科学学报.北京, 2002, 22(2): 154~161
    38 P. Williams. Optimal Control of Electrodynamic Tether Orbit Transfers Using Timescale Separation. Journal of Guidance, Control and Dynamics. 2010, 33(1): 88~98
    39 R. Stevens, W. Wiesel. Large Time Scale Optimal Control of an Electrodynamic Tether Satellite. Journal of Guidance, Control and Dynamics. 2008, 31(6): 1716~1727
    40 J. Pelaez, Y. N. Andres. Dynamic Stability of Electrodynamic Tethers in Inclined Elliptical Orbits. Journal of Guidance, Control and Dynamics. 2005, 28(4): 611~622
    41 I. E. Vas, T. J. Kelly, E. A. Scarl. Space Station Reboost with Electrodynamic Tethers. Journal of Spacecraft and Rockets. 2000, 37(2): 154~164
    42 H. A. Fujii, T. Watanabe, T. Kusagaya, et al. Dynamics of a Flexible Space Tether Equipped with a Crawler Mass. Journal of Guidance, Control and Dynamics. 2008, 21(2): 436~439
    43 P. Williams. Deployment/Retrieval Optimization for Flexible Tethered Satellite System. Nonlinear Dynamics.2007, 52(1-2):159~179
    44 M. Krupa, W. Poth, et al. Modelling, Dynamics and Control of Tethered Satellite Systems. Nonlinear Dynamics, 2006, (43): 73~96
    45 K. K. Mankala, S. K. Agrawal. Equilibrium to Equilbrium Maneuver of Flexible Electrodynamic Tethers in Equatorial Orbits. AIAA Guidance, Navigation and Control Conference and Exhibit, Rhode Island, Providence, Aug 16-19, 2004, AIAA-2004-5342
    46 K. K. Mankala, S. K. Agrawal. Dynamic Modeling and Simulation of Satellite Tethered Systems. Journal of Vibration and Acoustics. 2005, 127(2): 144~156
    47 A. A. Burov, H. Troger. The Relative Equilibria of an Orbital Pendulum Suspended on a Tether. Journal of Applied Mathematics and Mechanics. 2000, 64(5): 723~728
    48 A. K. Misra. Equilibrium Configurations of Tethered Three-Body Systems and their Stability. Proceedings of the 2001 AAS/AIAA Space Flight Mechanics Meeting. 2001, 108: 1757~1772
    49 H. Kojima, M. Iwasaki, H. A. Fujii, et al. Nonlinear Control of Librational Motion of Tethered Satellites in Elliptic Orbits. Journal of Guidance, Control and Dynamics, 2004, 27(2): 229~339
    50 P. Williams, C. Blanksbya, P. Trivailoa, H. A. Fujiib. In-Plane Payload Capture Using Tethers. Acta Astronautica, 2005, (57): 772~787
    51 K. K. Mankala, S. K. Agrawal. A Boundary Controller Based on Linear Infinite Dimensional System for Station Keeping of a Tethered Satellite System. Proceedings of the 2006 American Control Conference, 2006: 793~798
    52 M. Krupa,W. Poth, et al. Modeling, Dynamics and Control of Tethered Satellite System. Nonlinear Dynamics, 2006, (43):73~96
    53 C. Qualls, D. A. Cicci. Preliminary Orbit Determination of a Tethered Satellite. Elsevier, 2006, 462~471
    54 P. Williams. Tether Capture and Momentum Exchange from Hyperbolic Orbits. Journal of Spacecraft and Rockets. 2010, 47(1): 205~209
    55黄奕勇,杨乐平.改进的绳系卫星系统距离速率控制律.上海航天. 2007, (3): 30~33
    56黄奕勇,杨乐平.新型绳系交会对接方案.上海航天. 2008, (2):47~51
    57文浩,金栋平,胡海岩.基于微分包含的绳系卫星时间最优释放控制.力学学报. 2008, 40(1): 135~140
    58 H. Wen, D. P. Jin, H. Y. Hu. Optimal Feedback Control of the Deployment of a Tethered Subsatellite Subject to Perturbations. Nonlinear Dynamics. 2008, 51(4): 501~514
    59顾晓勤.圆及椭圆轨道释放绳系子星的方法研究.空间科学学报. 2002, 22(3): 282~288
    60由磊磊.绳系卫星系统交会对接的应用于设计.航天器环境工程. 2007, 24(1): 37~41
    61刘莹莹,周军.近距离绳系卫星动力学与释放方法研究.系统仿真学报. 2008, 20(20): 5642~5645
    62崔本廷.空间绳系的控制与应用.国防科学技术大学硕士论文. 2006
    63陈辉.用系绳进行空间捕捉的最优控制研究.南京航空航天大学硕士论文. 2008
    64 R. P. Hoyt, R. L. Forward. The Terminator TetherTM: Autonomous Deorbit of LEO Spacecraft for Space Debris Mitigation. 38th Aerospace Sciences Meeting & Exhibit, Reno, Nevada. January 2000. AIAA-00-0329
    65 R. Forward, R. Hoyt and Chayncey Uphoff. Application of the Terminator Tether Electrodynamic Drag Technology to the Deorbit of Constellation Spacecraft. AIAA 1998-3491:1~19
    66 R. P. Hoyt. Stabilization of Electrodynamic Tethers. 38th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 2002. AIAA-2002-4045
    67 K. K. Mankala, S. K. Agrawal. Equilibrium-to-Equilibrium Maneuvers Of Flexible Electrodynamic Tethers in Equatorial Orbits. Journal of Spacecraft and Rockets, 2006:651~658
    68 E. C. Lorenzini, G. E. Gullahorn, M. L. Cosmo. Dynamic and Control of SEDSAT Tethered Multi-Probe for Thermosphere Research Flight Data Analysis of SEDS-II Satellite. Final Report, 1995
    69 E. C. Lorenzini, G. E. Gullahorn, M. L. Cosmo, etc. Analytical Investigation of the Dynamics of Tethered Constellations in Earth Orbit (Phase II). Final Report, 1994
    70 K. Sorensen. Conceptual design and analysis of an MXER tether boost station. In: Proceedings of 37th AIAA/ASME/SAE/ASEE joint propulsion conferenceand exhibit, 2001,AIAA 2001- 3915.
    71 K. Sorensen. Momentum exchange electrodynamic reboost tether. Technology assessment group final report. In: Space propulsion technologies program July 24, 2003. NASA Marshall Space Flight Center, Huntsville, AL 35812.
    72 J. A. Bonometti, K. F. Sorensen, J. W. Dankanich, K. L. Frame. 2006 status of the MXER tether development. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA, AIAA 2006-4521.
    73 K. Sorensen. Hyperbolic injection issues for MXER tethers. In: Proceedings of the 39th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 2003, AIAA 2003-5221.
    74 K. Sorensen. Conceptual design and analysis of an MXER boost station. In: Proceedings of the 37th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, 2001, AIAA 2001-3915.
    75 Y. Ishige, S. Kawamoto, S. Kibe. Study on Electrodynamic Tether System for Space Debris Removal. Acta Astronautica. 2004, 55 :917~929
    76 H. A. Fujii, T. Watanabe, W. Taira, etc. An Analysis of Vibration and Wave-Absorbing Control of Tether System. AIAA 2001-4003
    77 Y. Yamaigiwa, E. Hiragi, T. Kishimoto. Dynamic Behavior of Electrodynamic Tether Deorbit System on Elliptical Orbit and its Control by Lorentz Force. Aerospace science and Technology. 2005, 9:366~373
    78 J. G. Izquierdo, H. Rozemeijer, S. Muncheberg. The Tether System Experiment. ESA Bulletin 102, 2000:139~143
    79 H. Klinkrad, P. Beltrami, S. Hauptmann, etc. The ESA Space Debris Mitigation Handbook 2002. Advances in Space Research, 2004, 34: 1251~1259
    80 A. S. Wijnans, B. T. C. Zandbergen, M. Kruijff, etc. Bare Electrodynamic Tape Tether Experiment Onboard the DELFI~1 Unibersity Satellite. Proceedings of the ESA International Symposium on Europe in Space, Toulouse, Italy, 2004: 239~246
    81 G. Vannaroni, M. Dobrowolny, F. DE Venuto. Deorbiting with Electrodynamic Tethers: Comparison between Different Tether Configurations. Space Debris, 2001: 159~172
    82 L. Anselmo, C. Pardini. The Survivability of Space Tether Systems in Orbit around the Earth. Acta Astronautica, 2005, 56(3): 391~396
    83 L. Iess, C. Bruno, C. Ulibieri, etc. Satellite De-orbiting by means of Electrodynamic Tethers PartⅠ: General Concepts and requirements. Acta Aztronautic, 2002, 50(7): 399~406
    84 L. Iess, C. Bruno, C. Ulibieri, etc. Satellite De-orbiting by means of Electrodynamic Tethers PartⅡ: System Confuguration and Performance. Acta Astronautic, 2002, 50(7): 407~416
    85 J. Corsi, L. Iess. Stability and Control of Electrodynamic Tethers for De-orbiting Applications. Acta Astronautic, 2001, 48(5-18): 491~501
    86 L. Somenzi, L. Iess, J. Pela′ez. Linear stability analyis of flexible electrodynamic tethers. In: Proceedings of the AAS 2003 [AAS 03- 539].
    87 M. Khadija. Results of the STEP-AIRSEDS Electrodynamic Tether Deployment simulations. AIAA 2002-1119
    88 J. PELAEZ. On the Dynamics of the Deployment of a Tether From an Orbiter-I Basic Equations. Pergamon Acta Astronautica, 1995, 36(2): 113~122
    89 J. PELAEZ. On the Dynamics of the Deployment of A Tether From an Orbiter-II Exponential Deployment. Pergamon Acta Astronautica, 1995, 36(6): 313~335
    90 A. N. Danilin, T. V. Grishanina, F. N. Shklyarchuk, etc. Dynamics of a Space Vehicle with Elastic Deploying Tether. Pergamon computers and Structures, 1999, 72: 141~147
    91 Carmen Pardini, Toshiya Hanada, Paula H. Krisko. Benefits and risks of using electro-dynamic tethers to de-orbit spacecraft. Acta Astronautica 2009, 64: 571~588
    92 R. Hoyt, R. Forward. Performance of the TerminatorTM for autonomous deorbit of LEO spacecraft, in Tether 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, , June 1999, LosAngeles, CA, AIAA99-2839: 20~24.
    93 R. P. Hoyt, R. L. Forward. The Terminator TetherTM: Autonomous Deorbit of LEO Spacecraft for Space Debris Mitigation. 38th Aerospace Sciences Meeting & Exhibit, Reno, Nevada. January 2000. AIAA-00-0329
    94 R. P. Hoyt, P. Smith. The Remora RemoverTM: A Zero-Debris Method forOn-Demand Disposal of Unwanted LEO Spacecraft. IEEE Aerospace Conference Proceedings. 2000, 4: 239~246
    95 J. Blandino, N. Gatsonis, M. Cappelli, et al. Overview of Electric Propulsion Research in U.S.Academia. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2003, Huntsville, Alabama. AIAA 2003-4442
    96 R. G. Sturmfels. Design of Space Tethers for Meteoroid and Orbital Debris Impact Survivability. 39th Aerospace Sciences Meeting & Exhibit, 2001. AIAA 2001-1140
    97 J. V. Noord, R. Sturmfels. Electrodynamic Tether Optimization for the STEP-AIRSEDS Mission. 37th AIEE/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, 2001. AIAA 2001-3980
    98 N. Rothwell, R. Sturmfels. An Actively Controlled Tether Deployer for the STEP-AIRSEDS Mission Capable of Multiple Deployments and Retrievals.
    40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 2002. AIAA 2002-1120
    99 M. Khadija. Results of the STEP-AIRSEDS Electrodynamic Tether Deployment Simulations. 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 2002. AIAA 2002-1119
    100 A. Santangelo, J. Taylor, R. Sturmfels. Evolution, Technologies and Direction of the ASTOR/STEP-AIRSEDS Electrodynamic Tether. 41st Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 2003. AIAA 2003-143
    101 R. P. Hoyt. Stabilization of Electrodynamic Tethers. 38th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 2002. AIAA 2002-4045
    102 R. P. Hoyt. TheμTorque Momentum-Exchange Tether Experiment. AIP Conference Proceedings, 2002, 608(1): 299~304
    103 R. Hoyt, J. Slostad, R. Twiggs. The Multi-Application Survivable Tether (MAST) Experiment. AIAA 2003-5219
    104 R. L. Forward. Retrieve Tether Survival Probability. 38th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 2002. AIAA 2002-4047
    105 H. Tahara, H. Nishio, T. Onishi. Basic Study of Electron Collection by a Bare-Tether satellite. Vacuum. 2004, 73(3-4): 455~460
    106 Y. Ishige, S. Kawamoto, S. Kibe. Study on Electrodynamic Tether System for Space Debris Removal. Acta Astronautica, 2004, 55: 917~929
    107闫双月,杨建民,刘建忠,张化照.绳系终止系统在LEO轨道航天器离轨方面的应用.导弹与航天运载技术. 2005, 5: 57~61
    108潘冠群,许滨,张珩.空间电动绳系推进的动力学建模与分析.力学与实践. 2007,29(1):17~22
    109邹勇波.电动系绳离轨装置的设计与分析.航天器环境工程. 2008,25(3):291~297
    110胡长伟,孔宪仁.接触电阻对电动力缆绳离轨特性的影响.宇航学报. 2008,29(1):366~369
    111李然,许滨,张珩.空间电动绳系推进中导电系绳动态特性分析.振动与冲击. 2008, 27(6):36~41
    112文浩,金栋平,胡海岩.倾斜轨道电动力绳系卫星回收控制.力学学报. 2008, 40(3):375~380
    113王维,宝音贺西,李俊峰.绳系卫星的动态释放变轨.清华大学学报(自然科学版). 2009,48(8):1351~1354
    114钟睿,徐世杰.基于退步控制方法的绳系卫星回收张力控制.北京航空航天大学学报. 2010,36(1):26~30
    115刘文佳.电动力缆绳离轨特性研究.哈尔滨工业大学工学硕士论文.哈尔滨,2006
    116 M. L. Cosmo, E. C. Lorenzini. Tethers In Space Handbook. 3th ed. Smithsonian Astrophysical Observatory, Cambridge M A. 1997, 1~116
    117 M. Dobrowolny, N. H. Stone. A Technical Overview of TSS-1: The First Tethered Satellite Mission, 1994: 1~12
    118 N. H. Stone, C. Bonifazai. The TSS-1R Mission: Overview and Scientific Context. Geophysical Research Letters, 1998, 25(4): 409~412
    119 E. C. Lorenzini, S. B. Bortolami, C. C. Rupp, F. Angrilli. Control and Flight Performance of Tethered Satellite Small Expendable Deployment System-2. Journal of Guidance, Control and Dynamics. 1996, 19(5): 1148~1156
    120 W. J. Barnds, S. L. Coffey, et al. Results of the Tips Tethered Satellite Experiment. Joint AAS/AISS Astrodynamics Conference, 1997
    121 J. Pearson, J. Carroll, et al. Overview of the Electrodynamic Delivery Express. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibie,2003, AIAA 2003-4790
    122 M. Kruijff,. The Yong Engineer’s Satellite. Flight Result and Critical Analysis of a Super Fast Hand on Project, IAF-99-P.1.04
    123 I. Antonios, Vavouliotis, et al. Structural Analysis of E. S. A Young Engineers Satellite 2 Ejection System. 5th GRACM International Congress on Computational Mechanics, 2005
    124 M. Kruijff, J. Erik. YES2, the Second Yong Engineer’s Satellite-A Tethered Inherently Safe Re-entry Capsule. 53rd International Astronomical Congress, 2002
    125 M. Kruijff, E. J Heide, W. J. Ockels. Data Analysis of a Tethered SpaceMail Experiment. Journal of Spacecraft and Rockets. 2009, 46(6): 1272~1287
    126肖亚伦.航空航天运动的建模——飞行动力学的理论基础.北京航空航天大学出版社, 2003: 75~102
    127王亶文. IGRF在地磁场研究中的应用.地球物理学进展. 2005, 20(2): 558~561
    128赵敏华,石萌,曾雨莲等.基于地磁定轨和扩维卡尔曼滤波的导航算法.西安交通大学学报. 2004, 38(2): 1315~1318
    129 R. L. Forward, R. P. Hoyt. Failsafe multiline hoytether lifetimes, AIAA 95-2890
    130 J. A. Vaughn, M. M. Finckenor, R. R. Kamenetzky, et al. Polymeric coatings for electro- dynamic tethers, AIAA 2000-3614
    131 M. M. Finckenr, J. A. Vaughn, E. Watts. Changes in polymeric tether properties due to atomic oxygen, AIAA 2004-322
    132 V. M. Agüero, R. C. Adamo. Space applications of Spindt cathode field emission arrays,6th Spacecraft Charging Technology Conference, 2000-09-01
    133郭宁,顾佐,邱家稳.空心阴极在空间技术中的应用.真空, 2005, 42(5):32~36
    134 K. K. Mankala, S. K.. Agrawal. Equilibrium to Equilibrium maneuvers of rigid electrodynamic tethers. Journal of Guidance, Control, and Dynamics, May/June 2005, 28(3): 541~545.
    135 K. K. Mankala, S. K. Agrawal. Dynamic modeling and simulation of satellite tethered systems, Proceedings of DETC’03, September 2003, Chicago, USA
    136 B. West, B. Gilchrist. Life Extension and Orbit Maneuvering Strategies forSmall Satellites in Low Earth Orbit Using Electrodynamic Tethers., 39th Aerospace Sciences Meeting & Exhibit, January 2000, Reno NV. ,AIAA 2001-1139
    137 T. Onishi, M. Martinez-Sanchez, D. L. Cooke, et al. Effect of Magnetic Field on Current Collection to a Bare Tether in LEO. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, 7-10 July 2002. AIAA 2002-4051: 1~9
    138 G. Bae, E. Sim, and J. B. Barlow. Dynamics of a tethered satellite system. Advances in the Astronautical Sciences, 1993,82(2):1297~1310
    139 J. V. Breakwell and J. W. Gearhart. Pumping a tethered configuration to boost its orbit around an oblate planet. Journal of the Astronautical Sciences, 1987, 35(1): 19~39
    140 J. Pelaez, O. Lopez-Rebollal, M. Lara, and E. Ahedo. Dynamic stability of a bare tether as a deorbiting device. In Advances in the Astronautical Sciences, 2002, 112(2): 1257~1274
    141 K. D. Kumar and T. Yasaka. Rotating formation flying of three satellites using tethers. Journal of Spacecraft and Rockets, 2004, 41(6): 973~985
    142 A. K. Banerjee. Dynamics of tethered payloads with deployment rate control. Journal of Guidance, Control and Dynamics, 1990, 13(4): 759~762
    143 M. Greene and D. A. Glawtney. Preliminary investigation of dynamic control of a single tethered satellite system using a tether crawler. In Proceedings of the Annual Southeastern Symposium on System Theory, Tallahassee, FL, USA, 1989:173~177.
    144 E. Kim and S. R. Vadali. Modeling issues related to retrieval of flexible tethered satellite systems. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1169~1176
    145 D. K. Le. Modeling of a tethered two-body system in space. Simulation Series, 1986, 16(2): 86~97
    146 M. Pasca, M. Pignataro, and A. Luongo. Three-dimensional vibrations of tethered satellite systems. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 312~320
    147 K. K. Mankala, Satellite Tether System: Dynamic Modeling and Control. Ph.D. dissertation, University of Delaware, Newark, USA, 2006.
    148 H. M. Irvine, T. K. Caughey. The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London A, 1974, 341: 299~315.
    149 A. Luongo, G. Rega, F. Vestroni. Monofrequent oscillations of a nonlinear model of a suspended cable. Journal of Sound and Vibration, 1982, 82(2): 247~259.
    150金栋平,胡海岩.横向流体激励下绳索动力学分析.振动工程学报, 2000, 13(3): 340~345.
    151 D. P. Jin, H. Y. Hu. Stretch and rotaion motion of a suspended cable subject to transverse fluid excitation. Applied Mathmatics and Mechaincs, 2001, 22(8): 940~946.
    152 H. Y. Hu, D. P. Jin. Nolinear dynamics of a suspended travelling cable subject to transverse fluid excitation. Journal of Sound and Vibration, 2001, 239(3): 515~529.
    153 A. A. Tjavaras, Q. Zhu, Y. Liu, et al. The mechainics of highly extensuble cables. Journal of Sound and Vibration, 1998, 213(4): 709~737.
    154 N. Srinil, G. Rega, Somchai Chucheepsakul. Three-dimensional non-linear coupling and dynamic tension in the large-amplitude free vibrations of arbitrarily sagged cables. Journal of Sound and Vibration, 269(2004): 823~852
    155 S. Chucheepsakul, N. Srinil, P. Petchpeart. A variational approach for three-dimensional model of extensible marine cables with specified top tension. Applied Mathematical Modelling, 27(2003): 781~803.
    156 G. Rega. Nonlinear dynamics of suspended cables, partⅠ:modeling and analysis; partⅡ:deterministic phenomena, ASME Applied Mechanics Reviews 57(2004): 443~514.
    157 N. Srinil, G. Rega. The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. International Journal of Non-Linear Mechanics, 42(2007): 180~195.
    158 N. Srinil, G. Rega. Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. Journal of Sound and Vibration, 310(2008): 230~242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700