超高速碰撞下相变效应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超高速碰撞中,碰撞产生的冲击压力远大于材料的强度。在碰撞点附近的区域内,材料的行为响应特点类似于可压缩流体。对超高速碰撞而言,材料的可压缩效应甚至相变效应会在其中扮演重要的角色。
     为了探讨在超高速碰撞中相变的影响,本文在自编SPH程序中引入GRAY三相物态方程,对超高速碰撞问题进行数值模拟研究,并与常用的Tillotson物态方程进行对比分析,探讨了超高速碰撞中相变效应产生的影响。得到如下结果:
     1、在较低的碰撞速度(不发生相变)下,GRAY三相物态方程计算所得的碎片云形状参数与Tillotson物态方程给出的结果吻合,表明GRAY三相物态方程适于应用于超高速碰撞的数值模拟。
     2、对碎片云的形状、质量、速度和动量特性进行了数值研究,结果表明,在较高速度下,两个物态方程给出的结果有一些差别,分析表明,这些差异是由于超高速碰撞中相变效应引起的。
     3、在较高碰撞速度(8 km/s)下,给出了碰撞初期某些时刻的物理量分布情况,得到超高速碰撞熔化、汽化相变发生的区域,同时还获得了喷射尾罩产生的区域。
     4、探讨了Whipple防护结构的防护性能问题。分析表明,材料的相变效应和热软化效应对于防护结构的防护性能影响较大。
During hypervelocity impacting, the shock pressure is far higher than the material strength, and the material behavior is similar to the behavior of compressible liquid, in the region of impact. For hypervelocity impacting, the effect of compression, even the effect of phase transition may play an important part.
     As to discuss the effect of phase transition during hypervelocity impacting, the GRAY equation of state (EOS) was brought in the SPH program, and was applied in the simulation of hypervelocity impacting, in this paper. By comparing the results gotten from the GRAY EOS and the Tillotson EOS, some conclusions were found as follows:
     1. Under low velocities, the shape characteristics parameters of debris clouds given by the GRAY EOS accord with the corresponding results gotten by the Tillotson EOS, which shows that, the GRAY EOS is fit for being applied in numerical simulations of hypervelocity impacting.
     2. The effect of phase transition in hypervelocity impacting leads to differences between the results given by the two EOSs, which is shown by the shape, mass, velocity and momentum characteristics of debris clouds obtained from the numerical simulation with the two EOSs.
     3. The distribution of the material density, pressure, temperature and phase, and the region, where phase transition of melting and vaporizing happened, and where the ejected debris came, were offered in this paper.
     4. The protection capability of the Whipple structure is sensitive to the material phase transition and thermal softening, which is shown by the comparation of the results of the numerical simulation on the protection capability of the Whipple structure with the two EOSs.
引文
[1]都亨,张文祥,庞宝君等.空间碎片.北京:中国宇航出版社,2007.
    [2]薛富兴,杨晓燕.近地轨道和地球静止轨道碎片减缓立法问题.第四届全国空间碎片专题研讨会,南京,2007.
    [3] Schonberg W P.Characterizing secondary debris impact ejecta.Int J Impact Engng,2001,26:713~724
    [4] Schonberg W P.Modelling oblique hypervelocity impact phenomena using elementary shock physics.Int J Impact Engng,1999,23:823~834
    [5] Schonberg W P.Characterizing material states in orbital debris impacts.SPIE,2483/31
    [6] Schonberg W P.A first-principles based model characterizing the debris cloud created in a hypervelocity impact.AIAA 94-4487,1994.
    [7] Fahrenthold E P,Horban B A.An improved hybrid particle-element method for hypervelocity impact simulation.Int J Impact Engng,2001,26:169~178
    [8] Corvvonato E,Destefanis R,Faraud M.Integral model for the description of the debris cloud structure and impact.Int J Impact Engng,2001,21:115~128
    [9] Cohen L J.A debris cloud cratering model.Int J Impact Engng,1995,17:229~240
    [10]冉宪文,张若棋,徐志宏等.超高速碰撞条件下铝靶熔化临界速度的理论估算及Gruneisen参数的影响.第四届全国空间碎片专题研讨会,南京,2007.
    [11]黄建国等.等离子驱动超高速微小碎片加速研究.第四届全国空间碎片专题研讨会,南京,2007.
    [12] Crews J L,Christiansen E L.The NASA JSC hypervelocity impact test facility(HIT-F) .AIAA paper,92-1640,1992.
    [13]柳森,李毅,黄洁等.用于验证数值仿真的Whipple屏超高速撞击试验结果.宇航学报,2005,26(4):505~508
    [14] Chhabildas L C,Kmetyk L N,Reinhart W D,et al.Enhanced hypervelocity launchercapabilities to 16 km/s.Int.J.Impact Engng.,1995,17:183~194
    [15]王桂吉,孙承纬,蒋吉昊等.磁驱动金属飞片速度理论近似解析.高压物理学报.2008,22(2):137-141
    [16] Ken Okada,Kunihiko Wakabayashi,et a1.Experimental technique for launching miniature flying plates using laser pulses.International Journal of Impact Engineering,2003,29:49-502
    [17] Richard C.Weingart,Electric gun:applications and potential.UCRL- 52000802,1980:28~37
    [18] Piekutowski A J.Debris Clouds Produced by the Hypervelocity Impact of Nonspherical Projectiles.Int J of Impact Engng,2001,26:613~624
    [19] Piekutowski A J.Holes Produced in Thin Aluminum Sheets by the Hypervelocity Impact of Aluminum Spheres.Int J of Impact Engng,1999,23:711~722
    [20] Bashurov V V,Bebenin G V,Belov G V,et al. Experimental modeling and numerical simulation of high- and hypervelocity space debris impact to spacecraft shield protection.Int J Impact Engng,1997,20:69~78
    [21] Orphal D L.Highly oblique impact and penetration of thin targets by steel spheres.Int J Impact Engng,1999,23:687~698
    [22] Palmieri D,Faraud M,Destefanis R,et al.Whipple shield ballistic limit at impact velocities higher than 7 km/s.Int J Impact Engng,2001,26:579~590
    [23] Cour-palais B G.The shape effect of non-spherical projectiles in hypervelocity impacts.Int J Impact Engng,2001,26:129~143
    [24] Medina D F,Chen J K.Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method.Composites:Part A,2000,31:853~860
    [25]贾光辉,黄海,胡震东.超高速撞击数值仿真结果分析.爆炸与冲击,2005,25(1):47~53
    [26] Hiermaier S,K?nke D,Stilp A J,et al.Computaional simulation of the hypervelocity impact of Al-spheres on thin plates of different materials.Int J Impact Engn,1997,20:363~374
    [27] Groenenboom P H L.Numerical simulation of 2D and 3D hypervelocity impact using the SPH option in PAM-SHOCK.Int J Impact Engng,1997,20:309~323
    [28] Hertel E S,Mcintosh R L,Patterson B C.A comparison of phase change phenomena in CTH experimental data.Int J Impact Engng,1995,17:399~408
    [29] Faraud M,Destefanis R,Palmieri D,et al.SPH simulations of debris impacts using two different computer codes.Int J Impact Engng,1999,23:249~260
    [30]张伟,庞宝君,贾斌等.弹丸超高速撞击防护屏碎片云数值模拟.高压物理学报,2004,18(1):47~52
    [31]张伟,马文来,管公顺等.非球弹丸超高速撞击航天器防护结构数值模拟.爆炸与冲击,2007,27(3):240~245
    [32] Petschek A G,Libersky L D.Cylindrical Smoothed Particle Hydrodynamics.JComput Phys,1993,109:76~80
    [33]汤文辉,张若棋.物态方程理论及计算概论(第二版).北京:高等教育出版社,2008.
    [34]徐金中.基于SPH方法的空间碎片超高速碰撞特性及其防护结构设计研究:学位论文.长沙:国防科学技术大学,2008.
    [35] Randles P W,Libersky L D.Smoothed Particle Hydrodynamics:Some recent improvement and applications.Comput Methods Appl Mech Engrg,1996,139:375~408
    [36]王裴,秦承森,张树道等.SPH方法对金属表面微射流的数值模拟.高压物理学报,2004,18(2):149~156
    [37]李长生等.金属塑性加工过程无网格数值模拟方法.沈阳:东北大学出版社,2004.
    [38] Lucy L.A numerical approach to testing the fission hypothesis.Astron J,1977,82(12):1013~1024
    [39] Gingold R A,Monaghan J J.Smooth particle hydrodynamics:theory and applications to non spherical stars.Mon Not Roy Astron Soc,1977,181:375~389
    [40]徐志宏.光滑粒子流体动力学方法的改进及其应用:学位论文.长沙:国防科学技术大学,2006.
    [41] Monaghan J J,Gingo1d R A.Shock simulation by the particle method SPH.J Comput Phys,1983,52(2):374~389
    [42] Monaghan J J.SPH and riemann so1vers.J Comput Phys,1997,136:298~307
    [43] Parshikov A N,Medin S A,Loukashenko I I,et al.Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities.Int J Impact Engng,2000,24:779~796
    [44] Campbell P M.Some new algorithms for boundary value problems in smooth particle hydrodynamics.Technical Report DNA-TR-88-286,Mission Research Corporation,1989.
    [45] Libersky L D,Petscheck A G.Smoothed particle hydrodynamics with strength of materials In:Trease H.Fritts J.CrowleyW.et al.eds Proceedings of The Next Free Lagrange Conference.NY:Springer-Verlag.1991,395:248~257
    [46] Oger G,Doring M,et al.An improved SPH method:Towards higher order convergence.J Comput Phys,2007,225(2):1472~1492
    [47] Swegle J W,Hicks D L,Attaway S W.Smoothed particle hydrodynamicsstability analysis.J Comput Phys,1995,116:123~134
    [48] Attaway S W,Heinstein M W and Swegle J W.Coupling of smooth particle hydrodynamics with the finite element method.Nucl Engng Design,1994,150:199~205
    [49] Johnson G R,Petersen E H,and Stryk R A.Incorportation of an SPH option in the EPIC code for a wide range of high velocity impact computations.Int J Impact Engng,1993,14:385~394
    [50] Chen J K,Allahdadi F A,Carney T C.High velocity impact of graphite/epoxy composite 1aminates.Compos Sci technol,1997,57:1369~1379
    [51]张锁春.光滑质点流体动力学(SPH)方法.计算物理,1996,13(4):385~397
    [52]徐志宏,汤文辉,张若棋.改进的接触算法及其在光滑粒子流体动力学中的应用.国防科技大学学报,2006,28:32~36
    [53]丁桦,龙丽平,伍彦峰.SPH方法在模拟线弹性波传播中的运用.计算力学学报,2005,22:320~325
    [54]张刚明,王肖均,胡秀章等.高速碰撞数值计算中的光滑粒子法.计算物理,2003,20:247~254
    [55]宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法.爆炸与冲击,2003,23(1):56~60
    [56]韩旭,杨刚,龙述尧.SPH方法在两相流动问题中的典型应用.湖南大学学报(自然科学版),2007,34(1):28~32
    [57]杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸.工程力学,2008,25(4):204~213
    [58]毛益明,汤文辉.自由表面流动问题的SPH方法数值模拟.解放军理工大学学报(自然科学版),2001,2(5):92~94
    [59]汤文辉,毛益明.Rayleigh-Taylor不稳定性的SPH模拟.国防科技大学学报,2004,26(1):21~23
    [60]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理,1997,14(2):155~166
    [61]韩旭等.光滑粒子流体动力学—一种无网格粒子法.长沙:湖南大学出版社,2005.
    [62]张刚明.光滑粒子法及其在冲击动力学中的应用:学位论文.合肥:中国科技大学,2002.
    [63] Wang Z Q,Lu Y,Hao H,et al.A full coupled numerical analysis approach for buried structures subjected to subsurface blast.Computers and Structures,2005,83:339~356
    [64] Hernquist L,Katz N.TREESPH:a unification of SPH with the hierarchical tree method.Astrophys J Suppl Ser,1989,70:419~446
    [65] Bonet J,Rodríguez-Paz M X.Hamiltonian formulation of the variable-h SPH equations.J Comput Phys,2005,209:541~558
    [66] Benz W.Smoothed particle hydrodynamics:a review.Les:NATO Workshop,1989.
    [67] Johnson G R,Stryk R A,Beissel S R.SPH for high velocity impact computations.Comput Methods Appl Mech Engrg,1996,139:347~373
    [68] Campell J,Vignjevic R,Libersky L.A contact algorithm for smoothed particle hydrodynamics.Comput Methods Appl Mech Engrg,2000,184:49~65
    [69] von Neumann J,Richtmyer R D.A method for the numerical calculation of hydrodynamics shocks.Journal of Applied Physics,1950,21:232~247
    [70] Monaghan J J,Gingold R A.Shock simulation by the particle method of SPH.J Comput Phys,1983,52:374~381
    [71] Balsara D S.von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms.J Comput Phys,1995,121:357~372
    [72] Owen J M.A tensor artificial viscosity for SPH.J Comput Phys,2004,201:601~629
    [73] Noh W F.Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux.J Comput Phys,1987,72:78~120
    [74] Heat conduction with discontinuous conductivity.Applied Mathematics Reports and Preprints,Monash university,1995.
    [75] Royce E B.GRAY,a three-phase equation of state for metals.Lawrence Livermore Lab.Report,UCRL-51121,1971.
    [76] Grover R.Liquid metal equation of state based on scaling.J Chem Phys,1971,55:3435~3441
    [77] Young D A,Alder B J.Critical point of metals from the van der Waals model. Phys Rev,1971,A3:364~371
    [78]张庆明,黄风雷.超高速碰撞动力学引论.北京:科学出版社,2000.
    [79] Kalinski M.Hypervelocity impact analysis of international space station Whipple and enhanced stuffed Whipple shields.Naval Postgraduate School,Monterey,Master’s thesis,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700