TiB_(2p)/Al复合材料动静态压缩性能及抗高速撞击行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航天器防护屏等抗高速撞击为研究背景,采用压力浸渗方法制备体积分数为55%的TiB_(2p)/Al复合材料,利用万能电子拉伸试验机、霍普金森压杆设备、扫描电子显微镜以及透射电子显微镜研究了温度和应变率对材料压缩力学性能和组织的影响规律,并且利用二级轻气炮和扫描电子显微镜研究了复合材料的抗高速撞击性能及撞击后材料的宏观和微观损伤行为。本文试验分为三部分:压缩试验,高速撞击试验及微观组织表征。
     常温下,应变率在10-3~1000S~(-1)范围内,流变应力随着应变率的增加而降低,表现出应变率负敏感性,应变率在1000~2000S~(-1)范围内,流变应力基本保持不变,表现出应变率不敏感性。高温下,流变应力随着应变率的增加而增大,最后趋于稳定,表现出应变率正敏感性。随着试验温度的升高,颗粒网状骨架结构对强度起主要作用,同时基体合金抑制颗粒在基体中滑动的能力不断减弱,低应变率时体现出颗粒在基体中滑动特性,高应变率时体现出颗粒网络骨架结构的承载瞬间载荷特性。应变率相同时,复合材料的强度随着温度的增加而降低,温度越高,强度降低的趋势越明显。
     室温时,经各种应变率压缩后,断口处有犁沟区、基体熔化区及裂纹。温度升高到250℃和400℃,犁沟更加明显,基体合金熔融区变大,颗粒出现破碎。550℃时,犁沟痕迹消失,裂纹变的不明显,呈现的是微小裂纹和空隙,颗粒松散不密实。常温准静态压缩后(应变率10-3S~(-1)),复合材料基体中出现大量位错,而随着温度的升高,基体内发生动态再结晶和动态再结晶晶粒的长大,而在550℃,基体内部主要发生动态回复,这使位错密度大大降低。在各试验温度下,与应变率10-3S~(-1)相比,经应变率为1S~(-1)压缩后,TiB_2颗粒内部出现位错,位错密度随着温度的增加而增大。
     高速撞击后,弹坑深度和撞击面直径随着弹丸直径的增加而增大,弹坑背部无崩落、穿孔等损伤。弹坑底部组织损伤有颗粒破碎、裂纹和疏松等缺陷。
This paper with the spacecraft shield against high speed impact as the research background, use of pressure infiltration method of preparation of the volume fraction of 55% TiB_(2p)/Al composite materials, use of universal electronic tensile testing machine,Hopkinson pressure bar equipment, scanning electron microscopy and transmission electron microscopy studies of temperature and strain rate compressive mechanical properties of materials and organizational impact of the law. And the use of two light-gas gun and scanning electron microscopy study of high-speed impact resistance of composite materials after impact performance and material behavior of the macro and micro damage. This test is divided into three parts made: compression test, high speed impact testing and microstructural characterization.
     At room temperature, strain rate in the 10-3~1000S~(-1) within the flow stress with increasing strain rate decreases, showing a negative strain rate sensitivity. When the strain rate in the 1000~2000S~(-1), the flow stress remained unchanged, showing no strain rate sensitivity. High temperature,flow stress with strain rate increases, and finally stabilized. Showed strain rate sensitivity. As the test temperature, the particle network structure plays a major role to enhance the strength, but inhibition of matrix alloy particles sliding ability diminishing, low strain rate reflect the particles in the matrix of the sliding characteristics, high strain rate reflects the network skeleton structure of the particle load-bearing characteristics. The same strain rate, the strength of composite decreases with increasing temperature, the higher the temperature, the more obvious decline in strength.
     At room temperature, the strain rate compression of the fracture at the scratches, melting zone and the matrix cracks. Temperature to 250℃and 400℃, scratches more apparent, the matrix alloy melting zone area becomes larger, particles can be observed simultaneously broken. 550℃, scratch marks disappear, crack becomes obvious, replaced by tiny cracks and gaps, and loose particles. Quasi-static compression at room temperature (strain rate 10-3S~(-1)), composite matrix a large number of dislocations, but as the temperature rises, the base occurs in vivo dynamic recrystallization and dynamic recrystallization of grains. In the 550℃, the matrix occurs mainly within the dynamic recovery. In each test temperature and strain rate of 10-3S~(-1) than by the strain rate of 1S~(-1) compressed, TiB_2 particles occur within the dislocation, dislocation density increases with temperature.
     After high speed impact, side impact crater depth and diameter with the increase of the diameter of the projectile, crater back without caving, perforation and other damage. Crater at the bottom of the organization appear to enhance breakage, cracks and defects such as loose.
引文
[1]孙宏金.三大体系建设应对“太空垃圾”.中国航天报,2010-10-22(004).
    [2] P.P.C.Haanappel. The Law and Policy of Air Space and Outer Space. Kluwer Law International,2003:4-5.
    [3]张伟,庞宝君,邹经湘,张泽华.航天器微流星和空间碎片的防护方案.哈尔滨:哈尔滨工业大学学报,1999,(02):2-3.
    [4] COUR PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding. Int. J Impact Engineering,1990,10(10):135-146 .
    [5]钱伟长.穿甲力学.北京:国防工业出版社,1984:83-131.
    [6] Brvik T, Langseth M, Hopperstad O S. Ballistic penetration of steel plates. International Journal of Impact Engineering,1999:855-886 .
    [7]罗守靖.复合材料液态挤压.北京:冶金出版社,2002:13-30.
    [8]蒋宇梅,颜金华.颗粒增强铝基复合材料研究与应用进展.中国科技信息,2009,(20):1-4.
    [9] Nussbaum AI. Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996,54(05):6-22.
    [10]韩蕾,周伯昭,陈磊.轨道碎片—太空中的“垃圾”,2005,(02):1-5.
    [11]霍江涛,秦大国,祁先锋.空间碎片概况研究.装备指挥技术学院学报, 2007,18(05):1-5.
    [12]祁先锋.空间碎片观测综述[J].中国航天,2005,(07):1-3.
    [13] http://baike.baidu.com/view/705410.htm.
    [14]张伟,庞宝君,张泽华.航天器微流星体及空间碎片防护结构性能分析.哈尔滨工业大学学报,2002,34(05):1-4.
    [15]郑建东.空间碎片防护研究取得突破性进展.航天器环境工程,2010,(2):1-3.
    [16]李怡勇,李智,沈怀荣,李璜,刁华飞.美俄卫星撞击碎片分析.装备指挥技术学院学报,2009,20(2):1-3.
    [17] Bo Shouxing. On the Legal Regulation of the Outer Space Activitives-A Viewpoint from the Collisions of Russian and American Satellites. Journal of Beijing University of Aeronautics and Astronautics, 2010,(04):5-6.
    [18] Wang H J,Jina ZH,Miyamotob Y. Effect of Al2O3 on Mechanical Properties of Ti3SiC2/Al2O3Composite[J] . Ceramics International,2002:931-934 .
    [19] NASA Johnson Space Center. Handbook for Designing MMOD Protection.NASA/TM-2009-214785,June 2009:5-7.
    [20]万玲凤,张庆明,黄风雷.空间碎片防护结构优化设计理论模型.中国安全科学学报,1998,(02):1-2.
    [21] CHRISTIANSEN.E.L. Design and performance equation for advanced meteoroid and debris shields[J]. Int J Impact Engineering, 1993,14:145-156.
    [22]郑建东.空间碎片防护研究取得突破性进展.航天器环境工程,2010,(02):1-2.
    [23] Tjong S C,Ma Z Y,Li R K Y. The dynamic mechanical response of Al2O3 and TiB2 particulate reinforced aluminum matrix composites produced by insitu reaction. Materials Letters, 1999,38(38):39-44 .
    [24] YANG Taolin,CHEN Yue. Development in the Research on Particle-reinforced Metal Matrix Composites. Foundry Technology, 2006,(08):3-4.
    [25] Xie Ruoze,Zhang Fangju. Experimental investigation into dynamic compressive mechanical properties of LY12 at high strain rates and high temperatures. Journal of Aerospace Power, 2009, 04):1-3.
    [26]谭柱华,庞宝君,盖秉政.颗粒增强金属基复合材料SiCp/2024Al动态压缩力学性能实验研究.工程力学,2009,26(08):1-3.
    [27]王扬卫,于晓东,王富耻,马壮,韩国峰. Si3N4p/Al复合材料动态压缩性能研究.特种铸造及有色合金,2009,29(01):1-3.
    [28]武高辉,朱德智,陈国钦,姜龙涛.高体积分数TiB2/Al复合材料的动态压缩性能.稀有金属材料与工程,2010,(02):1-3.
    [29]许晓静,陈康敏,戴峰泽,蔡兰. SiCp增强2024铝基复合材料超塑性的研究.金属学报,2002,(05):1-3.
    [30] M A Meyers. Synamic Behavior of Materials. John Wiley&Sons New York,1994:1-3.
    [31]向军辉,肖汉宁. TiB2材料的研究现状及其应用.陶瓷工程,1996,(04):1-3.
    [32] J.W.Kaczmar, K.Pietrzak, W.Wosiski. The production and application of metal matrix composite materials. Journal of Materials Processing Technology, 2000,106:54-68.
    [33]张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料.北京:国防工业出版社,2001:1027-1049.
    [34]段祝平,孙琦清,杨大光,田兰桥,褚瑶.高应变率下金属动力学性能的实验与理论研究—一维杆的实验方法及其应用. Hopkinson杆实验技术研讨会会议论文集,2007:1-3.
    [35]宋力,胡时胜. SHPB测试中的均匀性问题及恒应变率.爆炸与冲击,2005,(03):1-3.
    [36]郭伟国,李玉龙,索涛.应力波基础简明教程.西安:西北工业大学出版社,2007:120-154.
    [37]王祝堂. 2024型铝合金的热处理.金属世界,2009,(02):1-3.
    [38]许晓静,陈康敏,戴峰泽,蔡兰. SiCp增强2024铝基复合材料超塑性的研究.金属学报,2002,38(05):1-3.
    [39]蔡红,胡改萍. LY12硬铝合金的热处理工艺与组织和性能.热处理, 2009,24(05):1-3.
    [40] S.I.Hong,G.T.Gray III,j.j.lewandowski. Dynamic Dynamic Deformation and Fracture Rehavior of Al-Zn-Mg-Gu Alloy Matix Composites Reinforced with 20vol.% SiC. Acta Mater, 1993,41:2337-4507.
    [41]孙晓光. TiB2/Al复合材料的显微组织及室温拉伸性能的研究.哈尔滨:哈尔滨工业大学硕士学位论文,2008:30-34.
    [42]朱德志.铝基复合材料在高速粒子撞击作用下的损伤行为.哈尔滨:哈尔滨工业大学博士学位论文,2009:60-64.
    [43]顾景诚.铝合金的再结晶.轻合金加工技术,1982,9(10):1-3.
    [44] NormanAF,Hyde K,Costello F,Thompson S,Birley S,Prangnell PB.Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings:for improvements in fusion welding. Materials Science and Engineering A, 2003, 354(1/2):188-198.
    [45] Yang.Y.P,Dong.P,Zhang,J.Tian. Hot cracking mitigateon technique for welding high strength aluminum alloy. welding Journal, 2000, (1):9-17 .
    [46] Huang Guangjie,Wang Lingyun. Effect of Heat Treatment Process on Structure and Properties of 2024 Aluminum Alloy. Journal of Chongqing University, 2000, (04):1-3.
    [47] Campbell J,Vignjevic R,Libersky LD. A contact algorithm for smoothed particle hydrodynamics. ComputMeth Appl Mech Engng, 2000, 184:49-65.
    [48] REIMERDES H G,STECHER K H. LAMBERT M.Ballistic Limit Equations for the COLUMBUS Doublebumper Shield Concept[ A] . Proceedings of the First European Conference on space debris[C] . Darmstadt: ESASD-01, 1993.
    [49]曾学军.气体物理靶试验与测量技术.北京:国防工业出版社,2009:20-43.
    [50]石家仪,朱耀,庞宝君,武高辉. Vol40%SiCp/2024Al复合材料的动态力学性能.第十五届全国复合材料学术会议论文集:下册,2008:1-3.
    [51]陈秋华,胡明,张继堂.原位自生Al2O32TiC/Al复合材料高温压缩变形行为的研究.材料工程,2009:1-3.
    [52]魏宏艳,杨胜春,沈真,周建锋,沈截,王俭.复合材料压缩试验方法的对比分析与研究.第十五届全国复合材料学术会议论文集:下册,2008:790-794.
    [53] Marc Andre Meyers,张庆明,刘彦,黄风雷,吕中杰,译.材料的动力学行为.北京:国防工业出版社,2006:342-420.
    [54] G.Bao and Z.Lin. High Strain Rate Deformation in Particle Reinforced Metal Matrix Composites. Acta mater, 1996,44(03):1011-1019.
    [55]长崎诚三,平林真,刘安生,译.二元合金状态图集.北京:冶金工业出版社,2004:35-37.
    [56]崔振铎,刘华山.金属材料及热处理.长沙:中南大学出版社,2010:14-24.
    [57]姚启钧.金属力学性能试验常用数据手册.北京:机械工业出版社,1994:24-29.
    [58] Bruce Dvorak. Hypervelocity Impact Testing of the Pressurized Mating Adapters for the International Space Station. International Journal of Impact Engineering, 1999:215-224.
    [59]赵敏. TiB2P/Al复合材料的微观组织与自润滑机理研究.哈尔滨:哈尔滨工业大学博士学位论文,2005:49-50 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700