光学涡旋轨道角动量及其测量的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学涡旋是一种具有螺旋型波前结构的特殊光场,是现代奇点光学的一个重要分支,近年来在光学微操纵、光学信息传输、非线性光学、激光光学、微粒波导、生物医学、原子光学和分子光学中得到广泛的研究和应用。光学涡旋一个最重要的特性是具有确定的光子轨道角动量,本论文重点对光学涡旋轨道角动量及其测量方法进行了理论和实验研究。主要内容如下:
     1.对光学涡旋进行了简要介绍,总结了光学涡旋的发展历史和研究现状,概述了光学涡旋的应用。
     2.系统总结了光学涡旋的角动量理论,对在近轴传播下和非近轴传播下的光学涡旋中光子携带的轨道角动量的大小进行了理论推导,证明了光学涡旋具有确定的轨道角动量,为深入了解光学涡旋奠定了理论基础。
     3.对近些年来发展的许多种典型的测量光学涡旋轨道角动量的方法进行了系统归纳。重点介绍了计算全息图法、光学涡旋与平面波干涉法、光学涡旋与它的共轭光干涉法、杨氏双缝干涉实验法、Mach-Zehnder干涉仪法、多孔干涉仪法来测量光学涡旋轨道角动量的原理、实验装置及实验结果。
     4.对多孔干涉仪法进行了改进,提出了一种新的测量光学涡旋轨道角动量的方法。它只需记录一幅光束通过多孔屏的远场衍射强度分布图样,然后通过一种简单的算法来提取多孔位置处的相位值,进而定量地确定光学涡旋的轨道角动量,并且在整个过程中无需涉及迭代算法。
     5.基于分析光学涡旋通过一个环形通光孔径后的远场衍射强度分布图样的逆傅立叶变换的强度分布,发现强度分布图样中亮环或暗环的数目恰好等于入射光学涡旋拓扑荷的绝对值,这就为测量光学涡旋角动量大小提供了一种新方法。它不需要复杂的相位提取过程,在测量具有大拓扑荷数值的光学涡旋等方面具有许多优势。
Optical vortices have special helical wave fronts, which have attracted great attention to their well-defined orbital angular momentum property. This kind of special optical field has been applied in many fields including optical micromanipulation, atomic optics, biomedicine, nonlinear optics, and quantum information processing. In this thesis, we explored the methods to determine the angular momentum of optical vortices. The major content and result are as follows:
     1. The properties of optical vortices are introduced concisely. The history and the main developments of the optical vortices are reviewed, and their main applications are also summarized.
     2. The angular momentum of the optical vortices under paraxial condition and non-paraxial condition are analyzed respectively, and it is demonstrated that optical vortices really have a well-defined orbital angular momentum.
     3. Different methods for determining the angular momentum of optical vortices are summarized , including the method based on computer-generated hologram , the interferometric method analyzing the interferogram between an optical vortex and a plane wave or its mirror image, the method based on Young's double-slit interference experiment setup or Mach-Zehnder interferometer. Finally, the method based on a multi-pinhole interferometer is introduced, which lays a basis for our newly proposed methods to determine the angular momentum of optical vortices.
     4. A method for measuring the orbital angular momentum of optical vortices through extracting the phase values sampled by a multi-pinhole plate is presented. It is demonstrated that the phase of an optical vortex passing through a multipinhole plate can be directly extracted from the Fourier transform of a single diffraction intensity pattern according to a simple algorithm and thus the l state or the OAM of the photons can be measured quantitatively.
     5. The spatial frequency properties of the far-field diffraction intensity pattern of an optical vortex after passing through an annular aperture are analyzed. The theoretical analysis reveals that this spatial spectrum (or the Fourier transform) consists of some bright and dark rings and the number of the rings is just equal to the absolute value of the topological charge. Based on this property, a simple method to measure the topological charge of the optical vortex through its diffraction intensity pattern after an annular aperture is demonstrated.
引文
[1] Sheldon Green eds. Fluid Vortices [M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1995.
    [2] L.Davis. Natural Disasters[M]. New York: Facts On File Science Library, 2002.
    [3] R. J. Donnelly. Quantized vortices in Helium II[M]. New York: Cambridge University Press, 1991.
    [4] A. Sommerfeld. Optik[M]. Wiesbaden: Dieterich'sche Verlagsb., 1950. Transl.: Longmans. Theory of Optics[M]. London: Green & Co., 1964.
    [5] J. Arlt, K. Dholakia, L. Allen, M. J. Padgett. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. J. Mod. Opt., 1998, 45: 1231-1237.
    [6] M. W. Beijersbergen, L. Allen, H. Vanderveen, J. P. Woerdman. Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum[J]. Optics Commun., 1993, 96:123-132.
    [7] S. J. Van Enk and G. Nienhuis. Angular momentum in evanescent waves[J]. Opt. Commun., 1994, 112:225-234.
    [8] J. Durnin, J. J. Miceli, Jr. and J. H. Eberly. Diffraction– free beams[J]. JOSA A 1986, 3(128).
    [9] J. Durnin. Exact solutions of nondiffraction beams. I. The scarlar teory[J]. JOSA A, 1987, 4: 651-654.
    [10] J. Durnin, J. J. Miceli, J. H. Eberly, Diffraction–free beams[J]. Phy. Rev. Lett., 1987, 58: 1499-1501.
    [11] M. Born and E. Wolf. Principles of Optics, 7th ed[M]. New York: Pergamon, 1999.
    [12] V. S. Ignatovski. Diffraction by a lens of arbitrary aperture[J]. Trans. Opt. Inst. (Petrograd), 1919, 1:1–36.
    [13] W. Braunbek, and G. Laukien. Features of refraction by a semi-plane[J]. Optik 1952, 9:174-179.
    [14] B. Richards and E. Wolf. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. Lond. A, 1959, 253(1274):358-379.
    [15] A. Boivin, A., J. Dow and E. Wolf. Energy Flow in the Neighborhood of the Focus of a Coherent Beam[J]. J. Opt Soc. Am., 1967, 57:1171-1175.
    [16] Nye J F, Berry M V. Dislocations in wave trains[J]. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 1974, 336: 165-190.
    [17] G. P. Karman, M.W.Beijersbergen, A. van Duijl et al. Airy pattern reorganization and subwavelength structure in a focus[J]. J . Opt. Soc. Am. A, 1998, 15(4):884-899.
    [18] M. V. Berry. Wave dislocation reactions in non- paraxial Gaussian beams[J]. J . Mod. Opt., 1998, 45(9):1845-1858.
    [19] J. F Nye. Unfolding of higher- order wave dislocations[J]. J . Opt. Soc. Am. A, 1998, 15(5):1132-1138.
    [20] A.V. Volyar, V. G. Shvedov, T. A. Fadeeva. The structure of nonparaxial Guassian beam near the focus:Ⅱoptical votices[J]. Optics and Spectroscopy, 2001, 90(1):93-100.
    [21] A. V. Volyar, V. G. Shvedov, T. A. Fadeeva. The structure of nonparaxial Guassian beam near the focus:Ⅲstability, eigenmodes and vortices[J]. Optics and Spectroscopy, 2001, 91(2):235-245.
    [22] V. A. Pas'ko, M. S. Soskin, M. V. Vasnetsov. Transversal optical vortex[J]. Opt. Commun., 2001, 198(1-3):49-56.
    [23] M. S. Soskin, M. V. Vasnetsov. Singular optics[J]. Prog. Opt. 2001, 42:219-276
    [24] O. Bryngdahl. Image formation using self-imaging techniques[J]. J. Opt. Soc. Am. 1973, 63:416-419.
    [25] Olof Bryngdahl and Wai-Hon Lee. Shearing interferometry in polar coordinates [J]. J. Opt. Soc. Am. 1974, 64:1606-1615.
    [26] W. H. Lee. Computer-generated holograms: techniques and applications[J]. Progress in Optics, 1978, 16(3):119-232.
    [27] J. M. Vaughan and D. V. Willetts. Interference properties of a light beam having a helical wave surface[J]. Opt. Commun., 1979, 30:263.
    [28] N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii and V. V. Shkunov. Study of the dislocation density of the wave front of light fields with a speckle structure[J]. Sov. Phys. JETP Lett., 1981, 33:195.
    [29] N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, V. V. Shkunov and B. Ya. Zel’dovich. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation[J]. J. Opt. Soc. Am., 1983, 73:525.
    [30] I.Freund, N.Shvartsman, and V. Freilikher. Optical Dislocation networks in highly randommedia[J]. Opt. Comm., 1993, 101:247-264.
    [31] M. Harris. Light-field fluctuations in space and time[J]. Contemp. Phys., 1995, 36:215-233.
    [32] P. Cullet, L. Gill and F. Rocca. Optical vortices[J]. Opt. Commun., 1989, 73:403-408.
    [33] G. L. Oppo, L. Gil, G. D'Alessandro and W. J. Firth. Optical vortices in lasers[C]. ECOOSA-90-Quantum-Optics, 1991, 191-4.
    [34] K. Staliunas. Dynamics of optical vortices in a laser beam[J]. Opt.Commun., 1992, 90:123-127.
    [35] G. A. Swartzlander, Jr. and C. T. Law. Optical vortex solitons observed in Kerr nonlinear media[J]. Phy. Rev. Lett., 1992, 69: 2503-2506.
    [36] A.W.Snyder, L. Poladian, and D.J. Mitchell. Stable black self-guided beams of circular symmetry in a bulk Kerr medium[J]. Opt. Lett., 1992, 17:789-791.
    [37] Jason W. Fleischer, Mordechal Segev, Nikolaos K. Efremidis and Demetrios N. Christodoulides. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices[J]. Nature, 2003, 422.
    [38] Dragomir N. Neshev, Tristram J. Alexander, Elena A. Ostrovskaya, Yuri S. Kivshar. Observation of discrete vortex solitons in optically induced photonic lattices[J]. Phy. Rev. Lett., 2004, 92: 123903-123906.
    [39] L. Allen, M. W. Beijersbergen, R. J. Spreeuw and J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phy. Rev. A., 1992, 45(11):8185-8189.
    [40] S. M. Barnett and L. Allen. Orbital angular momentum and nonparaxial light beams[J]. Opt. Commun., 1994, 110:679-688.
    [41] H. He, M. E. J. Friese, N. R. Heckenberg and H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Phys. Rev. Lett., 1995, 75:826-829.
    [42] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Opt. Lett., 1997 22(1): 52-54.
    [43] N. B. Simpson, L. Allen, M. J. Padgett. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. Journal of Modern Optics, 1996, 43: 2485 -2491.
    [44] K.T. Gahagan and G. A. Swartzlander Jr. Trapping of Low-index Microparticles in an Optical Vortex[J]. J. Opt. Soc .Am. B, 1998, 15:524-534.
    [45] K.T. Gahagan and G. A. Swartzlander Jr. Optical Vortex Trapping of Particles[J]. Opt. Lett., 1996, 21:827-829.
    [46] K. T. Gahagan, et al. Trapping of low-index microparticles in an optical vortex[J]. J. Opt. Soc. Am B, 1998, 15(2):524-534.
    [47] K. T. Gahagan, G. A. Swartzlander. Simultaneous trapping of low-index and high-index microparticles observed with an optical vortex trap[J]. J. Opt. Soc. Am. B, 1999, 16(4):533-537.
    [48] N. B. Simpson NB, McGloin D, Dholakia K, Allen L, Padgett MJ. Optical tweezers with increased axial trapping efficiency[J]. Journal of Modern Optics, 1998, 45: 1943-1949.
    [49] K. Dholakia, J. Soneson, E. M. Wright. Optical dipole traps and atomic waveguides based on Bessel light beams[J]. Phys. Rev. A, 2001, 63(063602).
    [50] S. A. Tatarkova, A. E. Carruthers, K. Dholakia. One-dimensional optically bound arrays of microscopic particles[J]. Phys. Rev. Lett., 2002, 89(283901).
    [51] A. Berzanskis, A. Matijosius, A. Piskarkas, V. Smilgevicius, and A. Stabinis. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Opt. Comm., 1997, 140:273-276.
    [52] G. Molina-Terriza, J. Recolons, L. Tomer. The curious arithmetic of optical vortices[J]. Opt. Lett., 2000, 25:1135-1137.
    [53] I. D. Maleev and G. A. Swartzlander Jr. Composite optical vortices[J], J. Opt. Soc. Am.B, 2003, 20:1169-1176.
    [54] Pu J, Zhang H and Nemoto S. Spectral shifts and spectral swimhes of partially coherent light passing through all aperture[J]. Opt. Commun., 1999, 162:57-63.
    [55] G. Gbur, T.D. Visser and E. Wolf. Anomalous behavior of spectra near phase singularities of focused waves[J]. Phys. Rev. Lett., 2002, 88(013901).
    [56] Sergey A. Ponomarenko and Emil Wolf. Spectral anomalies in a Fraunhofer diffraction pattern[J]. Opt. Lett., 2002, 27:1211-1213.
    [57] Galina V. Bogatyryova, Christina V. Fel’de, Peter V. Polyanskii, Sergey A. Ponomarenko, Marat S. Soskin, and Emil Wolf. Partially coherent vortex beams with a separable phase[J]. Opt. Lett., 2003, 28: 878-880.
    [58] H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf. Phase singularities of the coherence functions in Young’s interference pattern[J]. Opt. Lett., 2003, 28: 968-970.
    [59] David G. Fischer and Taco D. Visser. Spatial correlation properties of focused partially coherent light[J]. J. Opt. Soc. Am. A, 2004, 21:2097-2102.
    [60] D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr. Spatial correlation singularity of a vortex field[J]. Phys. Rev. Lett., 2004, 92, 143905.
    [61] Ivan D. Maleev, David M. Palacios, Arvind S. Marathay, and Grover A. Swartzlander, Jr. Spatial correlation vortices in partially coherent light: theory[J]. J. Opt. Soc. Am. B, 2004, 21:1895-1900.
    [62] Schmitz C H J, Uhrig K, Spatz J P, et al. Tuning the orbital angular momentum in optical vortex beams[J]. Optics Express, 2006, 14(15): 6604-6612.
    [63] Jennifer E. Curtis and David G. Grier. Modulated optical vortices[J]. Opt. Lett., 2003, 28: 872-874,.
    [64] Jennifer E. Curtis, David G. Grier. Structure of optical vortices[J]. Physical Review Letters, 2003, 90, 133901.
    [65] Jennifer E. Curtis, Brian A. Koss, and David G. Grier. Dynamic Holographic Optical Tweezers[J]. Opt. Commun., 2002, 207: 169-175.
    [66] Matthew Pelton, Kosta Ladavac, and David G. Grier. Transport and fractionation in periodic potential-energy landscapes. Phy. Rev. E, 2004, 70(031108).
    [67] Gong-Xiang Wei, Lei-Lei Lu and Cheng-Shan Guo. Generation of optical vortex array based on the fractional Talbot effect[J]. Optics Communications, 2009, 282(14):2665-2669.
    [68] Cheng-Shan Guo, Ya-Nan Yu and Zheng-ping Hong. Optical sorting using an array of optical vortices with fractional topological charge[J]. Optics Communications, 2010, 283(9):1889-1893.
    [69] C.T.Law, X.Zhang, and G.A. Swartzlander Jr. Waveguiding properties of optical vortex solitons[J]. Opt. Lett., 2000, 25, 55-57.
    [70]刘义东,高春清,高明伟,李丰.利用光束的轨道角动量实现高密度数据存储的机理研究[J].物理学报,2007,56(2).
    [71] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas'ko, S. M. Barnett, and S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt. Express, 2004, 12(22).
    [72] Z. Bouchal, R. Celechovsky. Mixed vortex states of light as information carriers[J]. New J. Phys., 2004, 6(131).
    [73] R. Celechovsky, Z. Boucha. Generation of variable mixed vortex fields by a single static hologram[J]. Journal of Modern Optics, 2006, 53(4):473-480.
    [74] Wu Jingzhi. Encoding information as light’s orbital angular momentum for optical communications[J]. Opt. Eng., 2007, 46(019701).
    [75]苏志锟,王发强,路轶群,金锐博,梁瑞生,刘颂豪.基于光子轨道角动量的密码通信方案研究[J].物理学报,2008,57(5).
    [76] JH Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proc. R. Soc. Lond., 1909, 82: 560-567.
    [77] R. E. Beth. Mechanical detection and measurement of the angular momentum of light[J]. Phys. Rev., 1936, 50:115-125.
    [78] L. Allen, M.J. Padgetta, and M. Babiker. The orbital angular momentum of light[J]. Progress in Optics, 1999, XXXIX: 291-372.
    [79] G. Weihs and A. Zeilinger. Entanglement of the orbital angular momentum states of photon[J]. Nature, 2001, 412:313-316.
    [80] A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. McDuff, C. O. Weiss, Chr. Tamm. Interferometric Measurements of Phase Singularities in the Output of a Visible Laser[J]. Journal of Modern Optics, 1991, 38(12):2531-2541.
    [81] M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan. Laser modes with helical wave fronts[J]. Phys. Rev. A, 1994, 49(3119).
    [82] H. I. Sztul , R. R. Alfano. Double-slit interference with Laguerre-Gaussian beams[J]. Opt. Lett., 2006, 31(7): 999-1001.
    [83] Chen Ziyang, Zhang Guowen, Rao Lianzhou, Pu Jixiong. Determining the Orbital Angular Momentum of Vortex Beam by Young's Double-Slit Interference Experiment[J]. Chinese Journal of Lasers, 2008, 35(7).
    [84] Zhaoying Wang, Zhang Zhang and Qiang Lin. A novel method to determine the helical phase structure of Laguerre–Gaussian beams[J]. J. Opt. A: Pure Appl. Opt., 2009, 11(085702).
    [85] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial. Measuring the Orbital Angular Momentum of a Single Photon[J], Phys. Rev. Lett., 2002, 88(257901).
    [86] J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, Interferometric Methods to Measure Orbital and Spin, or the Total Angular Momentum of a Single Photon[J]. Phys. Rev. Lett., 2004, 92(013601).
    [87] G. C. G. Berkhout and M. W. Beijersbergen. Method for Probing the Orbital Angular Momentum of Optical Vortices in Electromagnetic Waves from Astronomical Objects[J]. Phys. Rev. Lett., 2008, 101(100801).
    [88] Cheng-Shan Guo, Shu-Juan Yue and Gong-Xiang Wei. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23).
    [89] J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Hodgson. High Resolution 3D X-Ray Diffraction Microscopy[J]. Phys. Rev. Lett., 2002, 89(088303).
    [90] C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schoder, and C. Riekel. Coherent X-Ray Diffraction Imaging with Nanofocused Illumination[J]. Phys. Rev. Lett., 2008, 101(090801).
    [91] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara. Atomic resolution imaging of a single double-wall carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624):1419-1421.
    [92] B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt, and A. Zeilinger. Matter-Wave Interferometer for Large Molecules[J]. Phys. Rev. Lett., 2002, 88(100404).
    [93] Cheng-Shan Guo, Lei-Lei Lu, and Hui-Tian Wang. Characterizing topological charge of optical vortices by using an annular aperture[J]. Opt. Lett., 2009, 34(23): 3686-3688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700