基于人体损伤的工程车辆翻车保护系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程车辆指应用于矿山、建筑、水利和筑路等领域的非公路行走机械,包括工业拖拉机、装载机、挖掘机、压路机、推土机、平地机、挖掘装载机和自卸汽车等。工程车辆由于行驶地面复杂、工作环境恶劣,翻车事故难以避免。工程车辆的翻车事故一旦发生,将会对司机造成致命伤害。
     为了保障司机的生命安全,目前国际通用的方法是在工程车辆上安装翻车保护结构。国际标准对翻车保护结构的性能提出了静态实验室试验要求。然而实践证明,满足国际标准要求的翻车保护结构并不能保证翻车时司机的生命安全。工程车辆翻车是一个动态冲击过程,在这个过程中,造成司机伤亡的原因主要有以下几点:1)保护结构和地面撞击太大,导致加速度过大,人体伤害指数超过人体耐冲击域值;2)碰撞中回弹剧烈,导致人与车内物体反复碰撞,恶化司机伤害程度;3)司机室变形太大,司机被挤压,难以施救,使司机重伤死亡。司机的损伤程度取决于和地面接触碰撞系统的柔度、司机和车体间的约束以及保护结构的强度和刚度。符合国际标准要求的翻车保护结构仅能够避免第3种情况。此外,满足标准要求的翻车保护结构不能给司机提供足够的缓冲。
     本文结合国家自然科学基金项目:“非公路车辆翻车安全技术研究”(No.50775095)和国家"863"项目:“工程车辆安全性数字化试验平台”(No.2007AA04Z126),采用可视化计算机模拟和物理样机试验方法,对翻车后人体的损伤程度进行预测和评估,对新型缓冲吸能翻车保护结构进行了数值模拟和试验研究。
     在国内外工程车辆翻车保护结构设计、汽车碰撞安全、机车碰撞安全研究成果基础上,综合运用多体系统动力学、大变形非线性有限单元法、碰撞生物力学、测试及传感技术及材料学等多学科知识,以司机—车辆—地面环境构成的系统为研究对象,以人体损伤程度为评价指标,建立了工程车辆翻车事故模拟的虚拟样机。进行了典型工程车辆在规定坡道和地面条件下倾翻过程的数值模拟,对人体响应、结构吸能、结构强度刚度以及缓冲时间等进行全面仿真,提取人体响应及车体各部分受力和动态响应,得到车体参数、座椅参数、安全带约束形式、地面参数以及翻车保护装置吸能和支撑方式对人体损伤的影响,对人体损伤情况进行评价。
     在工程车辆翻车过程动态仿真和试验的基础上,结合翻车保护结构国际标准规定的实验室试验性能要求,提出一种基于人体损伤的翻车保护结构设计方法。该设计方法从司机保护的角度出发,以事故再现的方式来分析车辆翻车事故中,司机与车辆的运动状态和损伤状况,并以此为依据进行翻车保护系统安全性设计。
     提出了由缓冲吸能元件和金属框架结构组成的新型保护结构概念。在传统框架式翻车保护结构上安装缓冲吸能元件既能够吸收大量滚翻产生的动能,又能够减少翻车保护结构自身的变形量,从而解决了刚度要求和吸能要求的矛盾,并且缓冲吸能元件可以大幅削弱保护结构与地面第一次碰撞造成加速度峰值。从能量吸收、最大碰撞载荷和结构轻量设计的角度出发,将孔缺陷引导变形的薄壁直方管引入翻车保护结构设计。依据优化理论和代理模型,将有限元分析,试验设计、响应面法以及遗传算法多种手段相结合,对孔缺陷引导变形的薄壁直方管进行多目标抗撞性优化分析,得到翻车保护结构的最优的设计参数。
     本文研究成果将目前国际标准对翻车保护结构的性能要求由静态实验室试验提高到动态翻车人体损伤要求,将目前国际标准对保护结构、安全带等单独考核试验提高到将人-机-环境一体化试验,发展了工程车辆安全设计方法,对于保障工程车辆司机生命安全、提高我国在工程车辆市场竞争能力均有重要意义。
Engineering vehicles refer to off-highway mobile machinery applied in mines, architecture, water conservancy, road construction and other fields, including industrial tractors, loaders, excavators, rollers, bulldozers and dump trucks, etc.. Since the road surfaces are complex and the working environment is harsh, engineering vehicles are susceptible to rollover accidents, and once rollover happens, the engineering vehicle will inflict fatal damage to the operator.
     To protect the life safety of the operator, the current international method is to install a rollover protection structure (ROPS) on engineering vehicles, and the international standards have stipulated static lab test requirements in view of ROPS performance. However, facts have shown that the ROPS that meet the requirements of international standards cannot protect the operator's life safety upon rollover. The rollover of engineering vehicles is a dynamic impact process, during which the operator gets hurt due to the following reasons:1) Severe collision between the ROPS and the ground leads to high acceleration and a human body injury index beyond the threshold value of human body impact resistance; 2) Violent rebound in the collision results in repeated clashes between the operator and objects inside the vehicle, and aggravates the operator's injury; 3) Dramatic deformation of the operator's cab squeezes the operator and makes it hard for rescue, and thus causes severe injury or even death. The severity of the operator's injury depends on the flexibility of the system contacting and colliding the ground, the restraint between the operator and the vehicle body as well as the strength and stiffness of ROPS. The ROPS satisfying the requirements of international standards can only avoid the third case and are unable to provide sufficient buffering for the operator.
     In this paper, visual computer simulation and physical prototype test method have been adopted in combination with the project of National Natural Science Foundation program "Roll-over safety technology for off-road vehicle" (No.50775095) and the national "863" program "Digital design platform of safety for Roll-over and Falling-object of off-road vehicles (No.2007AA04Z126) to predict and evaluate the operator's injury after rollover, and to carry out numerical simulation and experimental study on a new type of buffer energy-absorption ROPS.
     Based on the findings of domestic and foreign researches on ROPS designs for engineering vehicles, car crash safety, motorcycle crash safety, a virtual prototype with the system of operator-vehicle-ground environment as the research object, body injure degree as evaluation index has been established to simulate rollover accidents of engineering vehicles by using multi-disciplinary knowledge including multi-body system dynamics, large deformation nonlinear finite element method, impact injury biomechanics, testing and sensor echnology and material science.Numerical simulation of the rollover process in the given (?)amps and ground conditions for typical engineering vehicle has been conducted; comprehensive simulation has been performed on human body response, energy absorption of the structure, strength and stiffness of the structure, buffer time and so on. Thus human body response, force exerted on various parts of the vehicle body and dynamic response have been extracted, and such parameters as parameters of vehicle body and seat, restraint form of seat belt, ground parameters, the influence of energy absorption and support mode ROPS on human body injury to evaluate human body injury have also been obtained.
     Based on the dynamic simulations and experiments of the rollover process of engineering vehicles and in combination with the lab test performance requirements in international standards for ROPS, the author has put forward a ROPS design method with the focus on human body injury. This design method starts from the perspective of protecting the operator and analyzes the movement of the operator and vehicle and their injury and damage in the way of accident reconstruction, on the basis of which safety design of rollover protection system has been conducted.
     In this paper, a new concept of protection structure has been proposed, which consists of buffer energy-absorption device and metal frame structure. The installation of buffer energy-absorption device on the traditional frame-type ROPS can not only absorb the kinetic energy generated by many rollovers, but also reduce deformation of ROPS itself, and thus solves the contradiction between the stiffness requirement and energy absorption requirement; besides, the buffer energy-absorption device can significantly weaken the peak value of acceleration due to the first collision between the protection structure and the ground. From the perspective of energy absorption, maximum collision load and structure light-weight design, thin-wall straight square pipes with hole-defect induced deformation are introduced into the ROPS design. According to the optimization theory and surrogate model, multi-objective anti-collision optimization analysis has been carried out on the thin-wall straight square pipe with hole-defect induced deformation by combining several means, namely, finite element analysis, experiment design, response surface method, genetic algorithm, and the optimal design parameters of ROPS have been obtained.
     The research findings of this dissertation improve the performance requirements for ROPS in current international standards from static lab tests to human body injury in dynamic rollover, and improve the individual assessment test on protection structures and seat belts, etc. stipulated by current international standards to the integrated test of human-vehicle-environment, which develops the safety design method for engineering vehicles and is of great importance to guaranteeing the operators' life safety of engineering vehicles and improving the competitiveness of China in engineering vehicle market.
引文
[1]于英,田晋跃,吴润才等.非公路车辆安全保护技术的研究[J].中国安全科学学报,2004,14(6):60-62
    [2]张承航,黄宗益,李兴华等.轮式装载机安全设计[J].筑路机械与施工机械化,2003,20(1):1-3
    [3]韩学松.2009年中国工程机械主要设备保有量浅析[J].今日工程机械,2010,09:60-63
    [4]赵丁选,张子达,刘昕辉等.铰接工程车辆稳定性的固有模态[J].中国公路学报,1995,8(3):76-79
    [5]葛庆湘译.工程机械安全驾驶室(ROPS)滚翻试验结果[J].国外工程机械,1981,04:17-19,29
    [6]国家生产安全监督管理局.事故查寻[EB/OL]. [2010-11-20].http://media.chinasafety.gov.cn: 8090/iSystem/shigumain.jsp
    [7]ISO3471:Earth-moving machinery-Roll-over protective structures-Laboratory tests and performance requirements[S],2008
    [8]沈玉凤.工程车辆ROPS/FOPS弹塑性临界状态研究[J].山东工程学院学报,2002,16(3):18-21
    [9]王继新,李国忠,王国强.工程机械驾驶室设计与安全技术[M].北京:化学工业出版社,2010
    [10]Bengt Springfeldt. Rollover of tractors-international experiences[J]. Safety Science,1996,24(2): 95-110
    [11]Moberg H A. Tractor safety cabs, test methods, and experiences gained during ordinary farm work in Sweden[R]. National Swedish Testing Institute for Agricultural Machinery,1974
    [12]Organization for Economic Co-operation and Development. Method of Testing Safety Cabs and Frames on Agricultural Tractors with Pneumatic Tyres[R]. Division for Technical Action-DAA/T/451 (1st Revision) Paris, March 1,1966
    [13]Agricultural Machinery and Implements Industry Standards Committee. British Standard Specification for the Safety Requirements and Testing of Safety Cabs and Safety Frames for Agricultural Wheeled Tractors. British Standard No.4063,1966
    [14]Staab J E. Development of ROPS criteria for construction and industrial vehicles[C]. SAE paper, 710693
    [15]SAE J397:Deflection Limiting Volume—Protective Structures Laboratory Evaluation
    [16]SAE J1040:Performance Criteria for Rollover Protective Structures for Construction, Earthmoving, Forestry, and Mining machines
    [17]ISO3471:Earth-moving machinery—Roll-over protective structures—Laboratory tests and performance requirements,1994
    [18]A D Stockton, D H O'Neill, C J Hampson. Methods for optimising the effectiveness of roll-over protective systems. HSE BOOKS,2002
    [19]I Takahiro Noguchi Tatsushi Itoh. Production Technology of ROPS Cab[C/OL]. [2010-11-20]. http://www.komatsu.com/CompanyInfo/profile/report/pdf/161-E-03.pdf
    [20]Swan S A. Rollover protective structure (ROPS) performance criteria for large mobile mining equipment[R], Information Circular 9209, US, Bureau of Mines,1988
    [21]Brown C E, Olson D L, Woods T W. Structural modelling of ROPS under dynamic loading[C]. SAE paper,740798,1974
    [22]Srivastava A K, Rehkugler G E, Masmore B J. Similitude modelling applied to ROPS testing[C], ASAE paper,24(4), July 1978
    [23]Srivastava A K, Rehkugler G E, Masemore B J. Similitude modeling of ROPS overturn tests[C]. ASAE paper,1976,12:45-53
    [24]Clark B J, Thambiratnam D P, Perera N J. Analytical and experimental Investigation of the behaviour of a rollover protective structure[J]. Institution of Structural Engineers,2006,84(1): 29-34
    [25]Hopler P D, Stewart W O. Design and Installation of ROPS for army retrofit program[C]. SAE Paper 730752,1973
    [26]杨力夫,张家励,付潍坊等.轮式装载机安全保护装置设计的探讨[J].吉林工业大学学报,1995,25(1):89-95
    [27]贡凯军.翻车和落物保护装置(ROPS&FOPS)性能试验和非线性设计理论研究[D].长春:吉林工业大学,1995
    [28]薛念文.驾驶室结构安全强度分析[J].农业工珵学报,1994,10(3):70-73
    [29]陈燎.工程机械安全框架立柱的非对称弯曲强度研究[J].江苏理工大学学报(自然科学版),2001,22(2):42-45
    [30]沈玉凤,程治保.ROPS/FOPS弹塑性变形计算方法的研究[J].山东工程学院学报,2000,14(3):21-25
    [31]Fabbri A, Ward S. Validation of a finite element program for the design of rollover protective framed structures (ROPS) for Agricultural tractors[J]. Biosystems Engineering,2002,83(3)
    [32]Hunckler C J, Purdy R J, Austin R D. Non-linear analysis of the Terex scraper rollover protective cab [C]. SAE Paper 850788,1985
    [33]Rikard Svard. Factors Affecting the Finite Element Simulation of a ROPS Test of a Volvo Cab[D]. Sweden:Linkoping University,2007
    [34]王继新,王国强,刘小光.小型装载机翻车保护结构性能非线性仿真与试验[J].中国机械工程,2006,17(13):1328-1328,1420
    [35]冯素丽.工程车辆落物和倾翻保护结构性能计算机仿真及试验研究[D].长春:吉林大学,2007
    [36]于向军,王继新,杨永海等.压路机安全驾驶室ROPS非线性数值模拟与试验[J].吉林大学学报(工学版),2008,38(S2):134-138
    [37]王继新,王国强,刘小光等.ZL80G装载机倾翻保护结构侧向加载塑性极限特性[J].吉林大学学报(工学版),2006,36(06):903-907
    [38]葛树文,崔国华,马若丁.基于能量吸收控制的工程车辆倾翻保护结构设计方法[J].煤炭学报,2008,33(01):111-115
    [39]Kenichi Yamagata, Daisuke Tsumura. Introducing a Simulation of a Cab Protecting Operator during Rolling over of a Hydraulic Excavator[J]. Komatsu Tech Rep,2007,52(2):2-7
    [40]Thambiratnam D P, F ASCE, Clark B J, et al. Performance of a rollover protective structure for a bulldozer[J]. Journal of Engineering Mechanics,2009,135(1):31-40
    [41]徐惠贤,张立意,高晔.装载机翻车和落物保护装置的有限元分析[J].矿山机械,2004,03:25-27
    [42]杜文靖,王国强,冯素丽,葛树文.土方机械倾翻保护结构计算机仿真及试验[J].中国工程机械学报,2006,4(01):21-25
    [43]冯素丽,王国强,杜文靖,葛树文.液压挖掘机保护结构计算机仿真与实验[J]中国工程机械学报.2006,4(01):16-20
    [44]王继新.工程车辆倾翻保护结构设计方法与试验研究[D].长春:吉林大学,2006
    [45]Kim T H, Reid S R. Multiaxial softening hinge model for tubular vehicle roll-over protective structures[J]. Mechanical Sciences,43,2001
    [46]Kim T H, Thin-walled frameworks as vehicle roll-over protective structures (ROPS)[D], UMIST, April 2001
    [47]武和全.汽车车架碰撞安全性分析及其优化设计[D].南昌:南昌大学,2009.
    [48]侯淑娟.薄壁构件的抗撞性优化设计[D].长沙:湖南大学,2007
    [49]陈仙燕.薄壁构件与桁架结构的抗撞性优化研究[D].长沙:湖南大学,2007
    [50]杨慧芳.CRH3动车组被动安全性和耐撞性优化研究[D].大连:大连交通大学,2009
    [51]张啸雨.轨道列车头车耐撞性仿真评估及吸能结构优化[D].北京:北京交通大学,2010
    [52]江志勇.基于轿车薄壁构件碰撞的变形及吸能特性的仿真与分析[D].南昌:南昌大学,2009
    [53]魏启永.基于反推设计理论的逐级吸能方法及其应用研究[D].长沙:湖南大学,2008
    [54]赵士鹏.开合屋盖体系被动碰撞吸能装置的研究与参数优化[D].天津:天津大学,2009
    [55]陆善斌.商用车被动安全结构设计研究[D].长春:吉林大学,2009
    [56]Castejon L, Miravete A, Larrode E. Intercity bus rollover simulation[J]. International Journal of Vehicle Design,2001,26 (2/3):204-217
    [57]Clark B J. The behaviour of roll over protective structures subjected to static and dynamic loading conditions[D]. Brisbane:Queensland University of Technology,2006
    [58]Clark B J, Thambiratnam D P, Perera N J. Enhancing the impact energy absorption in roll over protective structures [J]. International Journal of Crashworthiness,2008,13(2):167-183
    [59]Ahmad Z. Impact and Energy Absorption of Empty and Foam-filled Conical Tubes[D]. Brisbane: Queensland University of Technology,2009
    [60]Ahmad Z, Thambiratnam D P. Dynamic computer simulation and energy absorption of foam-filled conicaltubes under axial impact loading[J]. Computers and Structures,2009,87(3-4): 186-197
    [61]Ahmad Z, Thambiratnam D P. Tan, Andy. Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading[J]. International Journal of Impact Engineering,37(5):475-488
    [62]Appel H, Vu-Han V, Pirschel H. Occupant protection in earth-moving machines[C]. SAE paper 840202
    [63]Tyler Kress, Richard Rink, Peter Sewel. Occupant kinematics and restraint effectiveness during a quarter-turn rollover in a heavy truck[C]. SAE paper,2004-01-0327
    [64]571.201 Standard No.201, Occupant Protection in Interior Impact[S].2007-09-05
    [65]五亚军,陈超卓,吴沈荣.FMVSS201规程在车辆内饰件与乘员头部碰撞中的应用[J].汽车安全与节能学报,2010,1(02):127-131
    [66]Scott T Burr, Gavin D Vogel, Pirschel H. Material Model Development for Impact Analysis of Oriented Polypropylene Foam Structures[C]. SAE paper 2001-01-0310
    [67]Steven R Sopher. Recent Developments in Occupant Protection Interior Component Design and Construction Utilizing Advanced Expanded Polyolefin Bead Foam Materials[C]. SAE paper 2005-01-0976
    [68]Pathare R, Lokhande A, Vogel G, et al. Material Model Development of an Energy Absorbing Foam for Occupant Safety[C].SAE paper 2009-26-088
    [69]Ritesh K J, Gunwant P. Design and Development of Metallic Energy Absorber for A-Pillar[C]. SAE paper 2009-01-0355
    [70]王国权.虚拟试验技术[M].北京:电子工业出版社,2004
    [71]姜立标.汽车数字开发技术[M].北京:北京大学出版社,2004
    [72]方杰.汽车碰撞安全性与平顺性虚拟试验场的研究与开发[D].上海:同济大学,2006
    [73]杨国治.虚拟试验场的研究与开发[D].上海:同济大学,2005
    [74]Matthew Veal, Steven Taylor, Robert Rummer.modeling the behavior of excavator-based forest machine rollovers[C]. In:Proceedings of 2004 Council on Forest Engineering (COFE) Conference Proceedings:" Machines and People, The Interface,2004,27-30
    [75]Scarlett A J, Reed J N, Semple D A, et al. Operator roll-over protection on small vehicles[R]. Silsoe Research Institute,2006
    [76]于向军.工程车辆倾翻安全性动态仿真及试验研究[D].长春:吉林大学,2009
    [77]于向军,王国强,王继新等.工程车辆ROPS动态仿真与试验研究[J].吉林大学学报(工学版),2009,39(03):188-191
    [78]于向军,王国强,王继新等.轮式装载机滚翻保护结构动态响应[J].吉林大学学报(工学版),2010,40(05):1262-1267
    [79]Altamore P, Tomas J A, Tran H, Aljundi B, Skidmore M. Static and Dynamic Simulation of ROPS for Earth Moving Machinary[C]. SAE Paper 961286,1996
    [80]魏秀玲,王国强,郝万军等.工程车辆翻车事故中两点式安全带约束效能分析[J].农业工程学报,2009,25(8):119-123
    [81]魏秀玲.工程车辆翻车事故中司机保护系统性能研究[D].长春:吉林大学,2009
    [82]司俊德,王国强,魏秀玲等.工程车辆翻车时ROPS刚度、斜坡角度和安全带方式对人体损伤的影响[J].吉林大学学报(工学版),2010,40(06):1583-1588
    [83]黄世霖,张金换,王晓冬等.汽车碰撞与安全[M].北京:清华大学出版社,2000
    [84]王勖成,邵敏.有限元基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997
    [85]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007
    [86]吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992
    [87]初永平.汽车乘员约束系统参数设计改进与减小人体损伤的关系研究[D].镇江:江苏大学,2009
    [88]危海烟.汽车与行人碰撞中下肢损伤防护及其评价方法研究[D].长沙:湖南大学,2006
    [89]廖洪波.人-车碰撞时行人头部碰撞特点及其试验评价方法研究[D].长沙:湖南大学,2007
    [90]肖志.汽车后碰撞中乘员颈部损伤防护的研究[D].长沙:湖南大学,2007
    [91]黄靖.汽车碰撞过程中加速度特征对乘员损伤的影响分析[D].大连:大连理工大学,2009
    [92]钟志华,张维刚,曹立波等.汽车碰撞安全技术[M].北京:机械工业出版社,2003
    [93]J. Wittenburg,传锋谢.多刚体系统动力学[M].北京:北京航空学院出版社,1986
    [94]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992
    [95]刘延柱.多刚体系统动力学[M].北京:高等教育出版社,1989
    [96]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999
    [97]刘子建,张建华,杨济匡.碰撞生物力学基础及其应用[J].中华创伤杂志,2001,17(05):161-163
    [98]U Bjornstig, P Albertsson, J Bjornstig, et al. Injury events among bus and coach occupants Non crash injuries as important as crash injuries[J]. IATSS Res,2005,29(1):79-87
    [99]U Pontus Albertsson, Torbjorn Falkmer, Alan Kirk et al. Case study:128 injured in rollover coach crashes in Sweden-injury outcome, mechanisms and possible effects of seat belts[J]. Safety Science,2006,44:87-109
    [100]Melvin L Myers, Henry P Cole, Susan C Westneat. Injury severity related to overturn characteristics of tractors[J]. Journal of Safety Research,2009,40,165-170
    [101]YANG J K. Injury biomechanics in car-pedestrian collisions Development, validation and application of human-body mathematical models[D]. Sweden Chalmers University of Technology,1997
    [102]Fildes B N, Lane J C, Lenard J, and Vulcan A P, Passenger Cars and Occupant Injury, Report No.CR95, Monash University Accident Research Center, March 1991.
    [103]许伟,杨济匡.行人与汽车碰撞中颅骨骨折损伤机理的虚拟实验研究[J].汽车工程,2008,30(4):291-296.
    [104]许伟.车辆碰撞事故中头部生物力学响应和损伤机理分析[D].长沙:湖南大学,2007
    [105]朱广友,侯心一,吴军.道路交通事故受伤人员伤残评定[M].北京:中国检察出版社,2004
    [106]Samuel P M, Robert K, Christopher D M, Eileen M B. Mortality and injury patterns associated with roof crush in rollover crashes[J]. Accident Analysis and Prevention,2010,42:1326-1331
    [107]姚剑锋.人体颈部有限元模型的建立和验证[D].长沙:湖南大学,2002
    [108]陈世贤,闵建雄,王季中.法医学手册[M].上海:上海科学技术出版社,1999
    [109]徐炯.面向乘员损伤的大客车碰撞事故再现研究与应用[D].上海:上海交通大学,2010
    [110]申杰.汽车—行人碰撞事故再现研究与应用[D].上海:上海交通大学,2007
    [111]许洪果.汽车事故工程[M].北京:人民交通出版社,2008
    [112]AAAM. The abbreviated injury scale 1990 version[S]. Arlington Heights:American Association for Automotive Medicine,1990
    [113]T Kroell CKS, Dennis C, Alan M. Impact tolerance and response of the human thorax Ⅱ. Proceedings of the 18th Stapp Car Crash Conference. Michigan,1974,121-132.
    [114]TNO road-vehicle research institute. Madymo Manuals version 6.4.1 [M],2007
    [115]Cavanaugh J M, Zhu Y, Huang Y, et al.Injury and response of the thorax in side impact cadaveric tests[C]. Proceedings of the 37th Stapp Car Crash Conference, San Antonio, Texas, 1993
    [116]Kleinberger M, Sun E, Eppinger R. Development of improved injury criteria for the assessment of advanced automotive restraint systems[R]. NHTSA Docket 98-4405-9, Washington DC, USA, 1998,18-27
    [117]Yuanzhi Hu, Clive E, Neal-Sturgess A M, et al. Modeling the effects of seat belts on occupant kinematics and injury risk in the rollover of a sports utility vehicle(SUV)[J], SAE 2007 Transactions.2007-01-1502
    [118]Kuppa S. Injury criteria for side impact dummies. Report from the National Highway Traffic Safety Administration. Docket Document No.NHTSA-2004-17694-12, Washington, DC:U.S. Department of Transportation,2004.
    [119]GB/T 17922-1999:土方机械—翻车保护结构试验室试验和性能要求[S],1999
    [120]蒋维城,丁刚毅.ANSYS/LS-DYNA算法基础和使用方法[M].北京:北京理工大学出版社,1998
    [121]王勖成,邵敏.有限元基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997
    [122]白金泽.LS-DYNA3D理论基础与失效分析[M].北京:科学出版社,2005
    [123]宋子康,蔡文安.材料力学[M].上海:同济大学出版社,1998
    [124]LSTC, LC-DYNA Keyword User's Manual Volume Ⅰ, VERSION 971,2010,7
    [125]C J Chisholm著,吕俊译.拖拉机的翻车事故和安全驾驶室的强度[J].拖拉机与农用运输车,1982,06:6-11
    [126]王文斌.轨道车辆耐碰撞结构及乘员安全防护技术研究[D].上海:同济大学,2009
    [127]QC/T55-1993:汽车座椅动态舒适性试验方法[S],1993
    [128]葛庆湘译.工程机械安全驾驶棚(ROPS)标准的制定研究[J].国外工程机械,1975,4-5:39-47,116
    [129]余志刚.中国50百分位人体与标准试验假人正面碰撞响应差异的研究[D].长沙:湖南大学,2008
    [130]GB/T 8420-2000:土方机械司机的身材尺寸与司机的最小活动空间[S],2000
    [131]Deb A, Chou C C, Barbat S D. An Analytical Study on Headform Impact Protection Space for a Rigid Target[C]. SAE Paper No.2000-01-0608.
    [132]Deb A, Ali T. A lumped parameter-based approach for simulation of automotive headform impact with countermeasures[J]. International Journal of Impact Engineering,2004,30(5):521-539.
    [133]Deb A, Chou C C. Headform Impact Safety Design Through Simulation and Testing[C]. SAE Paper No.2003-01-1386
    [134]Chou C C, Huang Y Z, Lim G G. Development and validation of a deformable featureless head form model using LS-DYNA3D[C]//15th Int Tech Conf Enhanced Safety of Vehicles, Melbourne, Australia,1996:13-16
    [135]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究[D].北京:清华大学,2006
    [136]卢险峰.最优化方法应用基础[M].上海:同济大学出版社,2003
    [137]任露泉.试验优化设计与分析(第二版)[M].北京:高等教育出版社,2004
    [138]张立新,隋允康,高学仕.基于响应面方法的结构碰撞优化[J].力学与实践,2005,27(3):35-39
    [139]熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计[J].航空学学报,2006,27(3):399-402
    [140]刘勇,康立山,陈毓屏.非数值并行算法-遗传算法[M].北京:科学出版社,2000
    [141]王小平,曹立明,遗传算法-理论应用与软件实现[M].陕西:西安交通大学出版社,2002
    [142]雷黄杰,张善文,李续武等.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005,4
    [143]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700