基于改进的数据驱动随机子空间方法的钢筋混凝土立筒仓动力参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土立筒仓在我国粮食、煤炭、建材、冶金等行业中被广泛应用,然而在地震中钢筋混凝土立筒仓发生破坏的现象依然严重。因此,根据立筒仓结构设计、工程应用、抗震减灾的需要,对其动力计算问题进行深入系统的理论分析和试验研究是十分必要和紧迫的。
     目前对于钢筋混凝土立筒仓动力计算问题的研究甚少,没有形成成熟的理论体系。对于立筒仓的抗震设计,在“工业构筑物抗震鉴定标准”中仅有单仓的频率简化计算方法,而没有相应规范和标准给出群仓的频率、振型和阻尼比的计算方法。因此,采用环境激励法进行立筒仓动力参数研究具有重要的理论意义和工程应用价值。环境激励法已广泛应用于大型建筑结构、桥梁结构和传输塔等结构中,将其应用于钢筋混凝土立筒仓结构中尚属首次。
     本文在对国内外结构环境激励实验和模态参数识别方法进行分析总结的基础上,采用理论分析、数值模拟和实验相结合的方法,对不同支承方式和不同荷载工况下的钢筋混凝土立筒单仓和群仓的环境激励实验方案和动力参数识别方法进行了深入研究。完成的主要研究工作和成果总结如下:
     1.钢筋混凝土立筒单仓和群仓的数值模拟研究。本文对四个模型仓和两个在役实仓进行了不同工况下的有限元模态分析。通过比较单仓和群仓的有限元模态分析结果,总结出了单仓和群仓模态各自的特点及差异。通过比较立筒仓不同工况下的有限元模态分析结果,研究了贮料对立筒仓模态的影响。
     2.钢筋混凝土立筒仓的动力参数识别方法研究。分析研究了基于环境激励的结构模态参数识别的频域、时域和联合时频域方法,提出了改进的数据驱动随机子空间方法,并编制了该识别方法的计算程序,采用经典结构悬臂梁验证了算法的有效性和计算精度。
     3.基于环境激励的钢筋混凝土立筒仓的测试技术研究。本文首先选取了柱支承、筒壁支承单仓和群仓模型进行环境激励实验,以获取所需模态振型为目标,重点研究了单仓和群仓模型的测点布置方案,之后进行了实际工作状态下的新密市超化煤仓和郑州市东郊粮库群仓的环境激励实验。
     4.钢筋混凝土立筒仓各阶模态的获取与分析。本文首先利用有限元模态分析得到了立筒仓各阶模态的频率和振型,之后通过立筒仓的环境激励实验测试得到结构的加速度响应数据,利用峰值拾取法和本文提出的改进的数据驱动随机子空间方法进行了立筒仓的动力参数识别。将两种识别方法的计算结果进行了对比分析,并将识别结果与有限元模态分析结果进行了对比分析,验证了本文提出的模态参数识别方法的有效性,并为建立有效的立筒仓有限元分析模型提供了依据。
Reinforced concrete silos are widely used in various fields such as food, coal, structure and metallurgy engineerings, et. al, whereas, it’s well known that their damage problem under earthquake disaster is still very serious. Therefore, it is necessary that one has to determine the dynamic response of reinforced concrete silos by further theoretical and experimental research for the requirement of structure design, application and disaster prevention.
     Currently, dynamic analysis of reinforced concrete silos is just involved in few literatures and no unified theories are available. For example, a simplified calculating method is given in the national standard“Seismic Assessment of Industrial Structures”for the frequency determination of single silo only, rather than the grouped silos, for the anti-seismic design. Among various dynamic analysis methods, the approach of ambient excitation has been successfully applied in engineering structures including huge buildings, bridges and transmission towers, and so on, while it hasn’t been extended to dynamic analysis of reinforced concrete silos. Hence, it’s interest to evaluate the dynamic parameters of silos using the ambient excitation method.
     In the present thesis, on the basis of available structural experiments based on ambient excitation and modal parameters identification methods, the coupled scheme with theoretical derivation, numerical simulation and experiments are developed to investigate the dynamic response of single and grouped reinforced concrete silos for the cases of various supports and loads. The corresponding research works are summarized as follows:
     1. Numerical simulation for reinforced concrete silos. In the present analysis, the finite element procedures of four silo models and two practical silos in service were separately established under different load cases. By comparison of numerical results of single silo and grouped silos, the dynamic behaviors of them are analyzed and the influence of granular materials on silos mode is investigated simultaneously.
     2. Dynamic parameters identification method for reinforced concrete silos. The thesis respectively establishes dynamic parameter identification techniques in frequency domain, time domain and combined time-frequency domain with the ambient excitation method, and then an improved data-driven stochastic subspace method is proposed and programmed for the purpose of parameter identification. Subsequently, to validate the computational efficiency, stability and accuracy of the proposed approach, the dynamic vibration of classical cantilever beam is analyzed using the present procedure.
     3. Experimental research for reinforced concrete silos based on ambient excitation. For the purpose of mode analysis, the single and grouped silos with specified column or wall supports are firstly tested with the specified ambient excitation and the related collocation scheme of sample points are investigated in detail. Next the practical bunkers in Chao Hua, Xin Mi City, and grouped silos in the eastern suburb, Zheng Zhou City, are tested using these procedures, respectively, for the acceleration data.
     4. Modal identification and analysis for reinforced concrete silos. Once the frequencies and modes are obtained by finite element analysis, the ambient excitation test can be conducted to determine the acceleration of the silo structures, and then, the peak picking method and the developed improved data-driven stochastic subspace method are respectively employed to obtain associated dynamic parameters. The comparison of numerical results of these two methods shows the numerical stability, efficiency and accuracy of the proposed method. Simultaneously, the dynamic parameters obtained by modal identification technique are useful to further improve the established finite element model.
引文
[1]姚伯英,侯忠良.构筑物抗震[M].北京:测绘出版社,1990.
    [2]中华人民共和国国家标准,构筑物抗震设计规范GB 50191-93[S],1994.
    [3]中华人民共和国国家标准,工业构筑物抗震鉴定标准GBJ 117-88[S],1989.
    [4]王建平,黄义.我国贮仓结构抗震研究的现状及前瞻[J].工业建筑,2005,35(4):79-81.
    [5]赵衍刚,江近仁.筒仓结构的自振特性与地震反应分析[J].地震工程与工程振动,1989,(3):55-64.
    [6]孙景江,江近仁.钢筋混凝土柱承式贮仓的地震反应分析[J].地震工程与工程振动,1990,10(3):14-26.
    [7]马建勋,梅占馨.筒仓在地震作用下的计算理论[J].土木工程学报,1997,30(1):25-30.
    [8]徐荣光,胡声松.圆筒仓的自由振动[J].噪声与振动,1999(2):18-20.
    [9]刘增荣,黄义.贮仓结构参数的频域识别[J].振动与冲击,2001,20(1):79-81.
    [10]黄义,尹冠生.考虑散粒体与仓壁相互作用时筒仓的动力计算[J].空间结构,2002,8(1):3-9.
    [11]王命平,孙芳,高立堂等.筒承式群仓的地震作用分析及试验研究[J].工业建筑,2005,35(10):29-32.
    [12]王瑞萍,王命平,迟嵘.相互作用对筒承式简仓自振基频的影响[J].青岛理工大学学报,2006,27(2):21-23.
    [13]滕锴,王命平,耿树江.筒承式群仓有限元分析及自振基频的简化计算[J].特种结构,2006,23(4):34-36.
    [14] Pablo Vidal, Manuel Guaita, Francisco Ayuga. Analysis of dynamic discharge pressures in cylindrical slender silos with a flat bottom or with a hopper: Comparison with Eurocode 1 [J]. Biosystems Engineering, 2005, 91 (3): 335–348.
    [15] Mohamed T. Abdel-Fattah, Ian D. Moore, Tarek T. Abdel-Fattah. A numerical investigation into thebehavior of ground-supported concrete silos filled with saturated solids [J]. International Journal of Solids and Structures, 2006, 43: 3723–3738.
    [16] M. Molenda1, M.D. Montross, J. Horabik. Performance of earth pressure cell as grain pressure transducer in a model silo [J]. International Agrophysics, 2007, 21: 73-79.
    [17] Chowdhury Indrajit. Dynamic response of reinforced concrete rectangular Bunkers under earthquake force [J]. Indian Concrete Journal, 2009, 11 (2): 7-18.
    [18] M.A. Mart?′nez, I. Alfaro, M. Doblare. Simulation of axisymmetric discharging inmetallic silos: Analysis of the induced pressure distribution and comparison with different standards [J]. Engineering Structures, 2002, 24 : 1561–1574.
    [19] D. R. Parisi, S. Masson, J. Martinez.Partitioned Distinct element method simulation of granular glow within industrial silos [J]. Journal of Engineering Mechanics, 2004: 771-779.
    [20] Riccardo Artoni, Andrea Santomaso, Paolo Canu. Simulation of dense granular flows: Dynamics of wall stress in silos [J]. Chemical Engineering Science, 2009, 64: 4040– 4050.
    [21] Fernando G. Flores, Luis A. Godoy. Forced vibrations of silos leading to buckling [J]. Journal of Sound and Vibration, 1999, 224(3): 431-454.
    [22] Peter Knoedel, Thomas Ummenhofer, Utrieh Sehuiz. On the modelling of different types of imperfections in silo shells [J]. Thin-walled Structure, 1995, 23: 183-293.
    [23] Emest C. H, John D. N. Experimental determination of effective weight of stored material for use in seismic design of silos [C]. ACI Journal Proceedings, 1985, 82(6): 828-833.
    [24] A Shimamoto, M Kodama, M Yamamura. Vibration tests for scale model of cylindrical coal storing silo [C]. Proceedings of the 8th World Conference on Earthquake Engineering, SanFrancisco, 1984.
    [25]施卫星,朱伯龙.钢筋混凝土圆形筒仓地震反应试验研究[J].特种结构,1994,11(4):55-58.
    [26]顾培英,陈中一,王五平.大圆筒码头结构模型振动台试验研究[J].中国港湾建设,2000,6:21-24.
    [27] Chris Wensrich. Experimental behaviour of quaking in tall silos [J]. Powder Technology, 2002, 127(1): 87-94.
    [28]马建勋,魏锋,苏清波.筒仓耗能减震结构体系振动台试验研究[J].西安交通大学学报,2003,37(11):1198-1201.
    [29] Stefan Holler, Konstantin Meskouris, M.ASCE. Granular material silos under dynamic excitation: Numerical simulation and experimental validation [J]. Journal of Structural Engineering. 2006, 1573-1579.
    [30] D.Dooms, G.Degrande, G.DeRoeck etal. Finite element modelling of a silo based on experimental modal analysis [J]. Engineering Structures. 2006, 28: 532-542.
    [31]张华.立筒群仓结构模型模拟地震振动台试验研究[D].郑州:河南工业大学,2008.
    [32]郑敏,申凡,陈同纲.采用互相关复指数法进行工作模态参数识别[J].南京理工大学学报,2002,26(2):113-116.
    [33]郑敏,申凡,鲍明.在时域中单独利用响应数据进行模态分析[J].中国机械工程,2003,14(5):399-401.
    [34] Byeong Hwa Kim, Jungwhee Lee, Do Hyung Lee. Extracting modal parameters of high-speed railway bridge using the TDD technique [J]. Mechanical Systems and Signal Processing. 2010, 24: 707–720.
    [35] Johan Paduart, Lieve Lauwers, Jan Swevers etal. Identification of nonlinear systems using polynomial nonlinear state space models [J]. Automatic. 2010, 46: 647-656.
    [36] C. Rainieri, G. Fabbrocino. Automated output-only dynamic identification of civil engineering structures [J]. Mechanical Systems and Signal Processing, 2010, 24: 678–695.
    [37] Filipe Magalha% es, A′l varoCunha, Elsa Caetano etal. Damping estimation using free decays and ambient vibration tests [J]. Mechanical Systems and Signal Processing. 2010, 24: 1274–1290.
    [38] James G H,Game T G.The natural excitation technique(NExT) for modal parameter extraction from ambient operating structure. The International J of Analytical and Experimental Modal Analysis, 1995, 10(4): 260—277.
    [39]李金国.环境振动下工程结构模态识别及损伤检测研究[D].南京:东南大学硕士学位论文,2005.
    [40] Yuen Ka-Veng, Katafygiotis Lambros S. Bayesian time-domain approach for modal updating using ambient data [J]. Probabilistic Engineering Mechanics, 2001,16: 219-231.
    [41]徐士代.环境激励下工程结构模态参数识别[D].南京:东南大学博士学位论文,2006.
    [42] L. H. Yam, T. P. Leung, D. B. Li etal. Use of ambient response measurements to determine dynamic characteristics of slender structures [J]. Engineering Structures, 1997, 19(2): 145–150.
    [43] Paolo Bonato, Rosario Ceravolo, Alessandro De Stefano. The use of wind excitation in structural identification [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 709-718.
    [44] S.S. Ivanovic,M.D. Trifunac,E.I. Novikova etal. Ambient vibration tests of a seven-story reinforced concrete building in Van Nuys, California, damaged by the 1994 Northridge earthquake [J]. Soil Dynamic sand Earthquake Engineering, 2000, 19: 391-411.
    [45]杨和振,李华军,黄维平.海洋平台结构环境激励的实验模态分析[J].振动与冲击,2005,24(2):129-135.
    [46]夏江宁,陈志峰,宋汉文.基于动力学环境试验数据的模态参数识别[J].振动与冲击,2006,25(1):99-104.
    [47] Dionysius M. Siringoringo, Yozo Fujino. System identification of suspension bridge from ambient vibration response [J]. Engineering Structures, 2008, 30: 462–477.
    [48] J.M.W.Brownjohn, Filipe Magalhaes, Elsa Caetano etal. Ambient vibration re-testing andoperational modal analysis of the Humber Bridge [J]. Engineering Structures, 2010, 32: 2003-2018.
    [49]任伟新,胡卫华,林友勤.斜拉索模态试验参数研究[J].实验力学,2005,20(1):102-108.
    [50]何林,欧进萍.基于ARMAX模型及MA参数修正的框架结构动态参数识别[J].振动工程学报,2002,15(1):47-56.
    [51]胡孔国,陈小兵,岳清瑞.随机地震动模拟的时间序列法及其工程应用[J].世界地震工程,2003,19(1):141-153.
    [52] Dan-Jiang Yu, Wei-Xin Ren. EMD-based stochastic subspace identification of structures from operational vibration measurements [J]. Engineering Structures, 2005, 27: 1741-1751.
    [53]禹丹江,任伟新.基于经验模式分解的随机子空间识别方法[J].地震工程与工程振动,2005,25(5):60-65.
    [54] X.H.He, X.G.Hua, Z.Q.Chen etal. EMD-based random decrement technique for modal parameter identification of an existing railway bridge [J]. Engineering Structures. 2011: 1-9.
    [55] Fei Bao, Xinlong Wang, Zhiyong Tao etal. EMD-based extraction of modulated cavitation noise [J]. Mechanical Systems and Signal Processing, 2010, 24: 2124-2136.
    [56] Chen Li, Xinlong Wang, Zhiyong Tao etal. Extraction of time varying information from noisy signals: An approach based on the empirical mode decomposition [J]. Mechanical Systems and Signal Processing, 2011, 25: 812-820.
    [57] B. PEETERS, G. DE ROECK. Reference based stochastic subspace identification in civil engineering [J]. Inverse Problems in Engineering, 2000, 8: 47-74.
    [58]徐良,江见鲸,过静珺.随机子空间识别在悬索桥实验模态分析中的应用[J].工程力学,2002,19(4):46-50.
    [59] Hideyuki Tanaka, Tohru Katayama. Stochastic subspace identification via“LQ decomposition”[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, 2003: 3467-3472.
    [60] S.JoeQin. An overview of subspace identification [J]. Computers and Chemical Engineering, 2006, 30: 1502–1513.
    [61] Jiangling Fan, Zhangyi Zhang, Hongxing Hua. Data processing in subspace identification and modal parameter identification of an arch bridge [J]. Mechanical Systems and Signal Processing, 2007, 21: 1674-1689.
    [62] Edwin Reynders,Guido De Roeck. Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis [J]. MechanicalSystems and Signal Processing, 2008, 22: 617-637.
    [63] Daniel N. Miller, Raymond A. de Callafon. Subspace identification from classical realization methods [C]. 15th IFAC Symposium on System Identification, Saint-Malo, France, 2009: 102-107.
    [64] Virote Boonyapinyo, Tharach Janesupasaeree. Data-driven stochastic subspace identification of flutter derivatives of bridge decks [J]. J. Wind Eng. Aerodyn. 2010, 98: 784-799.
    [65]张志谊,续秀忠,华宏星等.基于信号时频分解的模态参数识别[J].振动工程学报,2002,15(4):389:394.
    [66]续秀忠,张志谊,华宏星等.结构时变模态参数识别的时频分析方法[J].上海交通大学学报,2003,37(1):122-126.
    [67] Guid De Roeck et al. Benchmark study on system identification through ambient vibration measurements [C]. 18th IMAC, 2000, 1106-1112.
    [68] Rune Brincker et al. Modal identification from ambient responses using frequency domain decomposition [C]. 18th IMAC, 2000, 625-630.
    [69] Tomas McKelvey. FREQUENCY DOMAIN IDENTIFICATION METHODS [J]. CIRCUITS SYSTEMS SIGNAL PROCESSING. 2002,21(1):39-45.
    [70]续秀忠,华宏星,陈兆能.基于环境激励的模态参数识别方法综述[J].振动与冲击,2002,21(3).
    [71] Rune Brincker et al. Modal identification from ambient responses using frequency domain decomposition[C], 18th, IMAC, 2000, 625-630.
    [72]王济,胡晓.MATLAB在振动信号处理中的应用[M].中国水利水电出版社,2006
    [73]刘齐茂.用随机减量技术及ITD法识别工作模态参数[J].广西工学学报,2002,13(4):23-26.
    [74]孟庆丰,何正嘉.随机减量技术中周期激励的影响及消除方法[J].振动与冲击,2003,22(1):100-102.
    [75]邹良浩,梁枢果,顾明.高层建筑气动阻尼评估的随机减量技术[J].华中科技大学学报,2003,20(1):30-33.
    [76]张亚林,胡用生.运用相关函数辨识轨道车辆轮对模态参数[J].同济大学学报,2003,31(2):205-208.
    [77] S.M.潘迪特,吴宪民.时间序列分析及系统分析与应用[M].机械工业出版社,1988.
    [78]杨叔子,吴雅.时间序列分析的工程应用[M].上册.武汉:华东理工大学出版社,1991.
    [79]杨叔子,吴雅.时间序列分析的工程应用[M].下册.武汉:华东理工大学出版社,1991.
    [80]蔡季冰,系统辨识[M].北京理工大学出版社,1989.
    [81]姚志远.大型工程结构模态识别的理论和方法研究[D].南京:东南大学博士学位论文,2004.
    [82] Peeters B, De Roeck G et al. Stochastic subspacetechniques Applied to parameter identification of civil engineering structures[C]. Proceeding of New Advances in Modal Synthesis of Large Structures: Nonlinear, Damped and Nondeterministic Cases, Lyon, France, 1995: 151-162.
    [83] Peter Van Overschee, Bart De Moor. Subspace identification for linear systems: Theory-Implementation-Application [M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1996.
    [84] De Moor B. Mathematical concepts and techniques for modeling of static and dynamic systems[D]. Katholieke Universiteit Leuven, Belgium, 1988.
    [85] Ibrahim S R. Efficient random decrement computation for identification of ambient responses. Proceeding of 19th IMAC, Florida, USA, 2001.
    [86]曹树谦,张文德萧龙翔.振动结构模态分析一理论、实验与应用[M].天津大学出版社,2001.
    [87]杨明,刘先忠.矩阵论(第二版)[M].武汉:华中科技大学出版社,2005.
    [88] J. N. Juang . Applied System Identification [M]. Englewood Cliffs, NJ, USA: Prentice Hall, 1994.
    [89] Baut Peeters, Guido De Roeck. Reference-based Stochastic Subspace Identification for Output-only Modal Analysis [J]. Mechanical Systems and Signal Processing. 1999, 13(6): 855-878.
    [90]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [91] CHEN, S Y. Extraction of normal modes from highly coupled incomplete systems with general damping [J]. Mechanical systems and signal processing, 1996, 10(1): 93-106.
    [92] M. Imregun, D.J. Ewins. Realisation of complex mode shapes [C]. Proceedings of the 11th International Modal Analysis Conference, Kissimmee, FL, USA, 1993: 1303-1309.
    [93] Ulrich Fuellekrug. Computation of real normal modes from complex eigenvectors [J]. Mechanical Systems and Signal Processing, 2008, 22: 57-65.
    [94] J.H. Wilkinson, C. Reinsch. Linear Algebra [M]. Springer, Berlin, Heidelberg, New York, 1971.
    [95]盛宏玉.结构动力学[M].合肥工业大学出版社,2007.
    [96]王新敏.ANSYS工程结构数值分析[M].人民交通出版社,2007.
    [97]尹冠生,黄义.散粒体-贮仓结构-地基的动力特性分析[J].应用力学学报,2002,19(4):92-97.
    [98]罗英,高立堂.筒承式单排群仓自振特性的研究[J].西安科技学院学报,2002,22(3):277-280.
    [99]黄义,尹冠生.考虑地基-结构-散粒体相互作用时贮仓结构的静、动力研究[Ⅱ]———有限元分析[J].应用力学学报,2003,20(2):124-129.
    [100]王命平,荆超,李玉川等.带仓顶室筒承式群仓自振特性的实验研究[J].青岛理工大学学报,2006,26(6):1-5.
    [101]王命平,李玉川,刘伟.带仓顶室筒承式筒仓的自振周期及地震作用计算[J].振动与冲击,2007,26(8):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700