耦合轮对车辆动力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自铁路运营以来,铁道机车车辆的轮对基本上都采用两个车轮紧固在一根车轴两端的形式,这种传统固定轮对的优点在于它具有纵向蠕滑力产生的偏转力矩从而使轮对具有自导向功能,但是在纵向蠕滑力矩的作用下,当车辆运行速度较高时就可能产生蛇行失稳。因此,近年来独立回转车轮日益受到重视,与传统轮对相比,独立回转车轮不存在纵向蠕滑力产生的偏转力矩,因而不产生蛇行运动,对提高稳定性有好处。但这一优点也同时是它的缺点,因为独立回转车轮失去了纵向蠕滑力矩的导向作用,因而降低了轮对的直线复位性能和曲线通过性能。鉴于此,国外一些专家学者又提出了耦合轮对的设想,即轮对的左右车轮通过某种形式进行适当的耦合,这样便可产生适量的纵向蠕滑力,从而使轮对既具有导向功能,又能保证车辆具有较高的临界速度。国外在这方面已做了一些开拓性的研究工作,而国内关于耦合轮对的研究还基本上是一片空白,为了填补国内在这方面的研究空白,也为了促进列车的高速化进程,很有必要对这一新技术作深入的研究。本文在国外对耦合轮对的研究基础之上,提出了一种新型的耦合轮对——磁流变耦合轮对,进而对磁流变耦合轮对车辆的动力学性能进行了系统深入的研究。
     本文根据磁流变流体的流变特点,首次设计出了磁流变耦合轮对的结构方案,分析了磁流变耦合轮对的工作原理,然后建立了包含38个自由度的磁流变耦合轮对车辆系统的非线性动力学模型,编制了磁流变耦合轮对车辆系统动力学的计算仿真软件。
     根据磁流变耦合轮对车辆系统动力学计算程序的仿真结果,对磁流变耦合轮对车辆的直线平稳性、稳定性和动态曲线通过性能进行了系统全面的分析,找出了轮对耦合度对车辆动力学性能的影响规律。
     为了考察线路条件(特别是曲线半径R)的变化对轮对耦合度取值大小的影响,本文采用遗传算法对磁流变耦合轮对车辆通过不同半径曲线时转向架前后轮对耦合度的匹配关系进行了优化研究。经过遗传算法的优化分析,找出了转向架前后轮对的耦合度的取值随曲线半径的变化规律。
     本文还从列车动力学的角度对磁流变耦合轮对的动力学性能进行了研究,提出了一种计算列车动力学的新方法——循环变量法,建立了基于循环变量法的列车动力学模型,编制了列车动力学计算软件。通过对传统固定轮对、独立回转车轮和磁流变耦合轮对列车动力学性能的分析比较进一步论证
    
     西南在回大学槽士研究生学位论文 黝I页
    了用流变耦合轮对的优越性。
     回流变耦合轮对的优越性在于它可以在控制系统的作用下根据实际需
    要来调整其耦合程度从而使车辆的动力学性能在各种工况下都可保持最优,
    但是这种优越性的发挥还需要相关的检测、控制等配套技术的支持,而本文
    对用流变耦合轮对动力学性能的研究恰好为下一步磁流变耦合轮对控制系统
    的研制提供了重要的理论依据。
Since railway is plunged into business, the wheelsets with two wheels fixed to two ends of one axle are commonly adopted in rail vehicle. The advantage of conventional fixed wheelsets is that they have self-steering capability produced by lognitudinal creep moments, however hunting unstability possibly occur when the speed of vehicle becomes higher, so independently rotating wheels are attached importance to increasingly. Independently rotating wheels don't engender lognitudinal creep forces, so hunting won't occur and the stability of vehicle system is very good. But independently rotating wheels lose self-steering capability of lognitudinal creep moments, so its restoration capability and curving performance becomes worse. Thereupon, the idea of coupled wheelsets is brought forward that the left and right wheels of wheelsets are coupled properly to produce a few lognitudinal creep forces. In this way, coupled wheelsets have both self-steering capability and higher critical speed. Some researches about coup
    led wheelsets have been carried through abroad, however research about coupled wheelsets is basically a blank in homeland. In order to fill up the research blank and speedup the progress of heightening train's speed, in-depth research about coupled wheelsets is very necessary. In this paper, based on the study about coupled wheelsets abroad, author have brought forward a kind of new coupled wheelsets-magneto-rheological coupled wheelsets(MRCW).
    In this paper, the structure scheme of magneto-rheological coupled wheelsets is designed and its work principle is analyzed. Afterwards, a 38 d.o.f. nonlinear dynamics model of vehicle system with magneto-rheological coupled wheelsets is established and the relevant computer simulation program is written.
    According to the computation result of dynamics simulation software, the response and stability on the tangent track and curve performance of the vehicle with magneto-rheological coupled wheelsets are analyzed comprehensively and the laws of coupled coefficient to dynamic performance of vehicle are found.
    In this paper, optimization of coupled coefficient for the leading wheelsets and trailing wheelsets of bogie is researched with genetic algorithms and the optimal matching law of coupled coefficient for leading and trailing wheelsets has been found when a vehicle negotiates all kinds of radii curve.
    
    
    In this paper, the dynamics problem of train with magneto-rheological coupled wheelsets are also researched and put forward a new method of computing train dynamics-cycle variable method. In succession, a train dynamics model based on cycle variable method is established and the relevant computer simulation software on train dynamics is drawn up. By comparing dynamics performance of the train with traditional fixed wheelsets, independently rotating wheels and magneto-rheological coupled wheelsets, it is approved that magneto-rheological coupled wheelsets are superior to the others.
    The merit of magneto-rheological coupled wheelsets is that the coupled coefficient of MRCW neatly could be changed under the control systems so that vehicle dynamics performance could keep best ever and again. However, the exertion of its superiority needs the support of relevant test, control techniques. It just right provided impelling theoretical basis for the development of control system that the research on dynamics performance of magneto-rheological coupled wheelsets in this paper.
引文
[1] 王福天.车辆系统动力学.第2版.中国铁道出版社,1994
    [2] 严隽耄.车辆工程.北京:中国铁道出版社,1999
    [3] 詹斐生.机车动力学.北京:中国铁道出版社,1990
    [4] Vijay K. Garg, Rao V. Dukkipati. Dynamic of Railway Vehicle System. Canada: Academic Press, 1984
    [5] 张丽平.轻轨车辆动力学数字仿真.成都:西南交通大学硕士学位论文,2002
    [6] 陈泽深.独立车轮转向架的导向原理(1).铁道机车车辆.1998,(4):1~11
    [7] 陈泽深.独立车轮转向架的导向原理(2).铁道机车车辆.1999,(1):16~22
    [8] Shiro Koyangi. The Dynamics of Guided Independently-Rotating-Wheel Trucks. Quarterly Reports. 1981, (1): 19~25
    [9] D. C. Gilmore, J.A.C.Fortin. The Application of Free Wheelsets to a Steerable Truck: Analysis and Test Experience. The Dynamics of Vehicles on Roads and on Tracks. 1989:261~274
    [10] W. Choromanski, J.kisikowski. Dynamics of Railway Trucks with Wheelset with Independently Rotating Wheels and Controlled Slip. The Dynamics of Vehicles on Roads and on Tracks. 1989:108~125
    [11] Y. Suda. High Speed Stability and Curving Performance of Longitudinally Asymmetric Trucks with Semi-active Control Vehicle System Dynamics. 1994, 23: 29~52
    [12] Y. Suda, R.Nishimura, N.Kato, A.Matsumoto, Y. Satto, H.Ohno, M.Tanimoto. E.Miyauchi. Self-Steering Trucks Using Unsymmetric Suspension with Independently Rotating Wheels-Comparison between Stand Test and Calculations. Vehicle System Dynamics Supplement. 1999, 33:180~190
    [13] F.Frederich.独立轮转向架的动力性能.国外铁道车辆.1992,(3):27~34
    [14] F. Frederich. A Bogie Concept for the 1990s. Railway Gazette International. 1988, (9): 583-585
    [15] Eisaku Satho, Masayuki Miyamoto, Katoshi Fukazawa, Takeshi Hayase. Dynamics of a Bogie with Independently Rotating Wheels-A Case of Trailing Bogie. QR of RTRI. 1994, 35(2): 83~88
    
    
    [16]须田义大等.后轮对采用独立回转车轮的自导向径向转向架的曲线通过性能.国外内燃机车.1999,(5):8~14
    [17]罗世辉.轨道车辆独立车轮的动力学分析.铁道学报.1999,21(5):15~19
    [18]R.V. Dukipati. S.Narayanaswamy. Performance of a Rail Car Equipped with Independently Rotating Wheelsets having yaw Control. Pro. Instn. Mech. Engrs(Part F). 1999, 213: 31~38
    [19]文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(1).铁道车辆.2000,(6):6~8
    [20]文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(2).铁道车辆.2000,(7):12~14
    [21]Anonymous. Talgo target is 250km/h. Railway Gazette International. 1989: 799~800
    [22]Panagin, R. The use of independent wheels for the elimination of lateral instability of railway vehicles. Ingegneria Ferroviaria. 1978, 33(2): 143~150
    [23]B.M.Eickhoff and R.F. Harvey. Theoretical and Experimental Evaluation of Independently Rotating Wheels for Railway Vehicles. The Dynamics of Vehicles on Roads and on Tracks. 1989:190~201
    [24]Koyanagi, Shiro. The stability of motion of the independently rotating wheel-axle. Japanese National Research Quarterly Reports. 1971, 12(1): 29~33
    [25]Koyanagi, Shiro. The Dynamics of guided independently rotating wheel trucks. Japanese National Research Quarterly Reports. 1981, 22(1): 19~25
    [26]Chollet, H.,Ayasse, J.B.,and Pascal,J.P. Measurement of transversal creep force in a wheel-rail contact area. Proc. of the 11th IAVSD symp. 1989, 97~107
    [27]Benington, C. K. The railway wheelset and suspension unit as a closed-loop guidance control system: A method for performance improvement. Journal of Mechanical Engineering Science. 1968, 10(2): 91~100
    [28]Dukkipati,R.V. Bahgat,B.M. and Osman, M.O.M. Comparative performance analysis of conventional and damper coupled wheelsets. ASME paper no. :82-WA/RT-13
    [29]G.R. Doyle, R.H.Prause. Hunting Stability of Rail Vehicles with Torsionally Flexible Wheelsets. Transactions of the ASME(Journal of Engineering for
    
    Industry) 1977, (2): 10~17
    [30] Hadden, J.A. and Law, E.H. Effects of truck design on hunting stability of rail vehicles. Trans. ASME,J.of Engineering for Industry. 1977:162~171
    [31] A.K.W. Ahmed, S.Sankar. Lateral Stability Behavior of Railway Freight Car System With Elasto-Damper Coupled Wheelset: Part 1-Wheelset Model Journal of Mechanisms,Transmissions,and Automation in Design. 1987, 109(12): 493~499
    [32] A.K.W. Ahmed, S.Sankar. Lateral Stability Behavior of Railway Freight Car System With Elasto-Damper Coupled Wheelset: Part 2- Truck Model Journal of Mechanisms,Transmissions,and Automation in Design. 1987, 109(12): 500~507
    [33] A.K.W. Ahmed, S,Sankar. Steady-State Curving Performance of Railway Freight Truck with Damper-Coupled Wheelsets. Vehicle System Dynamics. 1988, 17: 295~315
    [34] W. Geuenich, Ch. Gunther, R.Leo. The Dynamics of Fibre Composite Bogies with Creep-Controlled Wheelsets. Vehicle System Dynamics. 1983, 12: 134~140
    [35] W. Geuenich, Ch. Gunther, R.Leo. Fibre Composite Bogie has Creep-Controlled Wheelsets. Railway Gazette International. 1995, (4): 279~282
    [36] J.Lieh and J.Yin. Stability of a Flexible Wheelset for High Speed Rail Vehicles with Constant and Varying Parameters. Journal of Vibration and Acoustics. 1998, 120:997~1002
    [37] 董平,唐家祥.MR智能材料在结构振动控制中的应用.工程抗震.2000,(2):15~23
    [38] S.J.Dyke, B.F. Spencer Jr.M.K.Sain and J.D.Carlson. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures. 1996, 5:565~575
    [39] Mark R.Jolly, J.David Carlson et al. A Model of the Behaviour of Magnetorheological Materials. Smart Materials and Structures. 1996, 5: 607~614
    [40] B.F. Spencer, S.J.Dyke, Jr.M.K.Sain,et al. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE,
    
    1997,123(3):230~238
    [41]左军,罗晓玉等.磁流变流体——新型智能流体材料.机床与液压.2000,(1):30~32
    [42]Eisaku Satho等.独立轮转向架的动力学.国外铁道车辆.1995,(1):39~43
    [43]F. Frederich. Possibilities of as yet unknown or unused regarding the wheel/rail tracking mechanism: Development of modern rolling stock running gear. Rail International. 1985, (11): 33~40
    [44]F. Frederich. Dynamics of a Bogie with Independent Wheels. The Dynamics of Vehicles on Roads and onTracks. 1989:217~213
    [45]贺启庸.独立旋转车轮的进展.世界铁路.1994,(4):5-7
    [46]张厚胜.独立轮转向架的研制.铁道车辆.1999,37(9):35~37
    [47]R. V. Dukkipati, S.Narayana Swamy, M.O.M.Osman. Independently rotating wheel systems for railway vehicles-A state of the art review. Vehicle System Dynamics. 1992, 21:297~330
    [48]欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动.1998,18(3):74~81
    [49]翁建生,胡海岩等.磁流变阻尼器的实验建模.振动工程学报.2000,13(4):616~621
    [50]魏宸官,赵家象.液体粘性传动技术.北京:国防工业出版社,1996
    [51]魏宸官.电流变技术.北京:北京理工大学出版社,2000
    [52]邹继斌,陆永平.磁性流体密封原理与设计.北京:国防工业出版社,2000
    [53]杜善义,冷劲松,王殿富.智能材料系统与结构.北京:科技出版社,2001
    [54]庄心复.电磁元件.北京:航空工业出版社,1989
    [55]陈果.车辆——轨道耦合系统随机振动分析.成都:西南交通大学博士学位论文,2000
    [56]卜继玲.主动悬挂摆式列车组运行性能的研究.成都:西南交通大学博士学位论文,2001
    [57]王铎,赵经文.理论力学.第5版.北京:高等教育出版社,1997
    [58]曾京.车辆系统动态分析的综合模拟.成都:西南交通大学博士学位论文,1991
    [59]黄伟.机车径向转向架研究.成都:西南交通大学博士学位论文,1996
    [60]邬平波.机车车辆多刚体系统动力学分析及系统动态仿真研究.成都:
    
    西南交通大学博士学位论文,1997
    [61]张卫华.机车车辆运行动态模拟研究.成都:西南交通大学博士学位论文,1996
    [62]王勇.三大件转向架货车非线性稳定性研究.成都:西南交通大学硕士学位论文,1995
    [63]刘宏友.摆式客车曲线通过动力学研究.成都:西南交通大学硕士学位论文,1999
    [64]王开云.车辆轨道耦合动力学.成都:西南交通大学硕士学位论文,2000
    [65]翟婉明.车辆-轨道耦合动力学.北京:中国铁道出版社,1997
    [66]王开文.车轮接触点迹线及轮轨接触几何参数的计算.西南交通大学学报.1984,(1):89~99
    [67]罗文赟.轮轨空间接触的快速算法.成都:西南交通大学硕士学位论文,1989
    [68]严隽耄,王开文.锥形及磨耗形踏面轮对的空间轮轨接触几何约束特点.铁道学报.1985,2
    [69]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报.1983,(3):40~48
    [70]金鼎昌.磨耗型踏面研究.西南交通大学学报.1984,(1):81~87
    [71]杨国桢.磨耗型踏面轮轨接触几何学参数的研究.中国铁道科学.1980,3
    [72]藤本裕.车轮踏面形状对高速动车运动特性的影响.国外内燃机车.1999,(2):22~29
    [73]E.Garcia-Vadillo, Jose G. Gimenez, JoseA.Tarrago. Wheel/Rail Contact: Geometrical Study. Vehicle System Dynamics. 1984, 13:207~214
    [74]M.N,J.K.Hederick. High speed Stability for rail Vehicles Considering Varying Conicity and Creep Coefficients. Vehicle System Dynamics. 1984, 13: 299~313
    [75]金学松.轮对/轨道滚动接触蠕滑率/力分析.铁道学报.1998,20(2):38~44
    [76]J.Piotrowski, J.J.Kalker. The Elastic Cross-Infulence between Two Quasi-Hertzian Contact Zones. Vehicle System Dynamics. 1988, 17: 337~355
    [77]J.Piotrowski. A Theory Wheelset Forces for Two Point Contact between Wheel and Rail. Vehicle System Dynamics. 1982, 11: 69~87
    [78]J.J.Kalker. Survey of Wheel-Rail Rolling Contact Theory. Vehicle System
    
    Dynamics. 1979, 5:317~358
    [79]李庆扬,王能超,易大义.数值分析.华中理工大学出版社,1982
    [80]严隽耄,沈志云等.轮轨相互作用应用软件编制原理.西南交通大学,1992
    [81]谭浩强,田淑清.FORTRAN语言.清华大学出版社,1990
    [82]谭浩强.C程序设计.清华大学出版社,1991
    [83]孙竹生等.内燃机车总体及走行部.第3版.中国铁道出版社,1995
    [84]张定贤.机车车辆轨道系统动力学.北京:中国铁道出版社,1996
    [85]王志春.低磨耗高速客车径向转向架优化研究.成都:西南交通大学硕士学位论文.2002
    [86]曾京,徐涛,邬平波.非线性车辆系统的横向稳定性研究.铁道车辆.1996
    [87]张卫华,沈志云.车辆系统非线性运动稳定性研究.铁道学报.1996,18(3):29~34
    [88]张洪,林东.键图法在高速客车横向运行平稳性研究中的应用.铁道车辆.1994,4
    [89]沈志云.铁路机车车辆非线性稳态曲线通过的简化计算.西南交通大学学报.1982,3
    [90]沈钢,黎冠中.非对称半主动控制径向转向架的仿真研究与方案设计.铁道车辆.2002,3
    [91]郭荣生.铁道车辆通过曲线时的轮载荷变化和钢轨导向力.铁道车辆.1981,2
    [92]A.D.de Pater. The Lateral Stability of a Railway Vehicle with Tow Two-Axle Bogies. The Dynamics of Vehicles on Roads and on Tracks. 1989:440~450
    [93]S.N.Swany, R. V. Dukkipati,M.O.M.Osman. Analysis of Modified Railway Passenger Truck Designs to Improve Lateral Stability/Curving Behavior Compatibility. Pro. Instn. Mech. Engrs. 1995, 209(4): 49~59
    [94]Mehdi Ahmadian, Shaopu Yang. Effect of System Nonlinearities on Locomotive Bogie Hunting Stability. Vehicle System Dynamics. 1998, 29: 365~384
    [95]A. H. Wickens. Steering and dynamic stability of the vehicles. Vehicle System Dynamics. 1975/1976, Vol(5). 15~46
    [96]池茂儒,王开文等.磁流变耦合轮对的研究.铁道科学.2002,23(6):55~59
    
    
    [97] 池茂儒,王开文等.磁流体耦合轮对转向架直线稳定性的研究.同济大学学报.2003,(2)
    [98] 池茂儒,王开文等.磁流体耦合轮对转向架曲线通过性能的研究.铁道学报.2002,24(4):28~33
    [99] 池茂儒,王开文等.磁流变耦合轮对耦合度对轮轨横向力的影响.铁道学报.2003,25(1):30~33
    [100] 池茂儒,王开文等.磁流体耦合轮对转向架动力学性能的研究.西南交通大学学报.2002,37(6):664~668
    [101] 陈国良,王煦法等.遗传算法及其应用.北京:人民邮电出版社,1996
    [102] 周明,孙树栋.遗传算法原理及其应用.北京:国防工业出版社,1999
    [103] Holland J H. Adaptation in Natural and Artificial Systems. MIT Press, 1975
    [104] 袁亚湘等.最优化理论与方法.北京:科学出版社,1997
    [105] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA,Addison Wisely, 1989
    [106] Jenkins W.M. Structural Optimization with the Genetic Algorithm. The Structural Engineer. 1991, 69(24): 418~422
    [107] 刘勇,康立山等.非数值并行计算——遗传算法.北京:科学出版社,1995
    [108] 赵洪伦,周劲松等.高速客车蛇行运动稳定性最优化研究.上海铁道学院学报.1995,16(4):7~34
    [109] 周劲松,赵洪伦等.铁道车辆稳定性与曲线通过性能折衷最优化研究.铁道学报.1998,20(3):39~45
    [110] 陆正刚等.货车转向架动力学性能与悬挂结构设计和参数优化综合研究.铁道车辆.2001,39(1):1~5
    [111] 原亮明,郭继斌等.遗传算法在铁路客车横向稳定性多参数优化中的应用.北方交通大学学报.1998,22(4):75~78
    [112] 孙翔,余民宜.缓冲器动力学分析.西南交通大学学报.1991,(1)
    [113] 范佩鑫,陈成元.重载组合列车纵向动力学的试验研究与理论分析.西南交通大学学报.1991(1)
    [114] 陈清,孙翔.列车纵向冲动的快速算法.见:第四届国际重载铁路会议译文集.北京:中国铁道学会,1990
    [115] 陈清.重载列车纵向冲动的快速分析方法.西南交通大学学报.1991,(1)
    [116] 陈清.万吨级重载列车的安全运行条件研究.铁道学报.1994,增刊

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700