扁挤压筒强度分析与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型铝型材整体壁板(以下简称壁板、型材),和装配式铆接结构或焊接结构相比,具有比强度高、造型美观、耐腐蚀性和气密性好等优点。随着交通运输的高速化、节能降耗、减轻环境污染等要求的日益高涨,研制挤压壁板作为车厢地板、壁板、顶板等结构件就愈加重要。但壁板具有断面宽高比大(50~100以上)、形状复杂、精度高、壁薄、以及外形轮廓与长度尺寸大等特点,该特点对挤压工艺和模具提出了更高的要求,一般需要在大型挤压机上采用扁挤压筒才能生产。到目前为止,国内大型扁挤压筒的正确设计与制造技术问题一直没有得到很好的解决。本文以扁挤压筒为研究对象,开展大型整体壁板挤压用扁挤压筒强度分析与设计方法研究,对于提高大型壁板挤压模具的设计水平和产品质量,减少进口,实现这类挤压产品的国产化,都具有极其重要的意义。
    本文在吸纳国内外先进技术的基础上,综合运用理论分析、数值模拟和物理模拟相结合的方法,对壁板挤压模具强度、变形、结构优化和CAD系统进行了深入的研究和实验验证,取得了有实际意义的重要结论和创新性成果。
    首先系统研究了有限元模拟扁挤压筒的关键技术,为后续的数值分析提供了技术条件。在此基础上,应用接触单元和耦合方法,对组合式圆挤压筒和扁挤压筒进行了数值模拟。建立了预紧圆挤压筒有限元分析模型,通过和理论解的比较论证了接触单元法模拟过盈装配的可行性。在分析组合圆挤压筒的基础上,建立了预紧作用组合扁挤压筒的实体和平面有限元分析模型,并分别考虑了扁挤压筒单独受内压力、预紧力和热载荷以及相互耦合作用的受力情况,获得了接触应力和接触变形分布、等效应力分布、应力集中区以及产生原因。
    为了建立有实际意义的扁挤压筒应力解析解,本文结合单连体复变函数保角映射法和留数定理推导出受内压力作用的扁挤压筒的应力求解公式,更正了国外文献中相应公式的错误,开发了受内压扁挤压筒的应力计算程序,实现了应力计算的程序化。和数值模拟解的比较表明该方法的正确性,克服了保角映射法应用于扁挤压筒实际工程应力计算的主要障碍,为模具强度设计提供了计算手段。
    利用建立的有限元模型,探讨了扁挤压筒内腔位移分布情况和内孔变形规律,提出了变过盈量设计的概念,并对缝隙度Km对内孔长短轴变形的影响作了分析,得出Km的取值范围。在此基础上,提出变过盈量的施加和检验条件,以达到等强度设计;还建立了“CAE—数据处理—变形曲线拟合—CAM—检验精度”的修模新流程,为扁挤压筒修模、装配和结构优化提供了依据。
    
    提出了椭圆度概念下的扁挤压筒结构优化思想。通过对不同椭圆度下的数值模拟结果比较,指出了降低不均匀度的椭圆度取值范围,分析了采用椭圆形加强套的可行性。根据椭圆度和扁挤压筒内孔变形特点,建立了扁挤压筒结构优化数学模型,结合增广乘子法和FEM实现了扁挤压筒的结构优化,得出最佳椭圆度和过盈量分配,解决了等强度设计的关键技术问题。
    为了研究作用于扁挤压筒内壁的内压力分布规律,进行了光弹性实验,并分析了不同截面上的径向和周向应力分布规律。
    最后将所有有关的扁挤压筒设计经验整合到壁板挤压模具CAD系统,提出了基于RDBMS和FNN的壁板挤压模具ICAD系统,设计并构造了系统框架。系统引入消息触发主控机制,基于OOP的智能推理机和基于关系型数据库的事实库与知识库,同时利用ActiveX Automation技术实现了与CAD的无缝集成。为了解决壁板挤压模具CAD专家系统关于特征识别的前处理瓶颈,本文针对铝型材整体壁板的外形特征和设计要求,构建出壁板特征矩阵和目标矩阵。并采用神经网络分别对带与不带噪声的整体壁板特征识别进行了研究、训练和测试,论证了矩阵构造的神经网络在壁板特征识别中应用的可行性。
    本文的研究结果,可以为扁挤压筒设计、优化和模型的建立提供技术帮助,对于完善壁板挤压模具设计理论具有指导意义。
Compared with riveted and welded structures, the over-all aluminum wallboard profiles (wallboard or profile in short term), have the advantages of high strength/density ratio, fine airtightness and reliable properties, being widely used in ship, traffic and special containers etc. However, because of great width/height ratio (above 50~100), shape complexity, high precision, and large dimensions of the wallboard, it is recommended that the profiles be extruded by the flat receptacle in large extruder. By far, the design and manufacture technology of the flat receptacle have not been pleasingly solved. Therefore, it is important to work on the strength analysis and design method of the flat receptacle for large profiles. Furthermore, the work can reduce the import of extrusion dies for large profiles and improve the quality of extrusion dies.
    With theoretical analysis, numerical simulation and physical simulation, the strength, deformation, optimization and CAD system of extruding profile die are investigated and verified on experiment. Then, some important and practical conclusions and achievement are obtained.
    Firstly, the key technology of numerical simulation theory is discussed to offer the technique support to subsequent analysis. Then, the numerical simulations for cylindrical and the flat receptacles are made by contact element and coupling method. The FEA model of prestressed cylindrical receptacle is built, and it shows contact element can be applied to simulate shrink-fit by the comparison with theoretical solution. After that, the planar and 3D FEA models of prestressed flat receptacle are built. Moreover, the flat receptacles under the conditions of pressure, prestress, thermal load and their coupling load are simulated respectively, and get the corresponding results and causes.
    In order to get the stress analytic solution, the stress equations are deduced with conformal mapping method and residue theorem, the defaults of equations in the reference are corrected. This method overthrows the obstacle in the engineering stress calculation for the flat receptacle with conformal mapping. In this paper, the stress calculation of pressed flat receptacle is developed.
    Using the established FE model, the deformation Law and displacement distribution of the flat receptacle are researched. Then, the concept of changeable shrinkage (CS)
    
    
    design is initialized. After analyzing the influence of gap ration (Km) on the deformation of major and minor axis, the Km span is obtained. During analysis, the implement and verification of CS are presented, the new die-repair process, CAE-----data processing ----deformation curves fitting--- CAM--- accuracy test, is established. These results give support to mold repair, design of shrink-fitting and structural optimization.
    The structure optimization for the flat receptacle under the condition of ellipticity is proposed. By comparing with the numerical results of different ellipticity, the ellipticity span to reduce the unevenness is got. The feasibility of elliptical inner layer is also got. According to the characteristics of ellipticity and deformation of the flat receptacle inner-hole, the model for structure optimization of the flat receptacle is built combined with FEM and argumented multiplier method, the structure of the flat receptacle is optimized, and the optimal ellipticity and shrinkage are obtained.
    The Law for the axial, radial and tangential stresses along the flat receptacle sidewall is obtained by photoelastic experiment.
    Finally, all the design experiences are introduced into mould CAD system. The CAD system and its framework for profiles have been built based on RDBMS and neural net. In this system, message trigger control mechanism, the fact base and knowledge base based on RDBMS, and the intelligent inference engine based on OOP are introduced respectively. Using the ActiveX Automation technology, CAD can be seamlessly integrated. Furthermore, the bottleneck of preprocessing occurring in extrusion die CAD expert system for wallboard can be solved
引文
М.З.ерманок, Прессование Панелей ИЗ Алюниниевых Сплавов. МЕАЛЛУРГИЯ: МОСКВА,1988:1-3 2-3 1-2 46-47 8-10 6-8 6-7 67-69 108 203 198-202 196
    王祝堂,董云天,王立波.提高挤压铝材产量措施.轻合金加工技术,1999, 27(9) :17-19
    Robert E. Sanders, Jr. Technology Innovation in Aluminum Products. Journal JOM, 2001, 53 (2): 21-25.
    邢淑仪,王世洪.铝合金和钛合金.北京:机械工业出版社,1987:12-15
    A. I. Nussbaum. Worldwide aluminum extrusion technology. Light Metal Age, 1996, 54 (4): 27
    陈泽中.铝型材挤压CAD/CAE/CAO技术研究.南昌大学博士学位论文.2002:6-7
    Dae-Cheol Ko. Prediction of Surface Fracture Initiation in the Axisymmetric Extrusion and Simple Upsetting of an Aluminum Alloy, Journal of Materials Processing Technology, 1996,62(3) :166-174
    刘静安.轨道车辆用大型铝合金型材的开发评估及挤压工艺特点.四川有色金属, 2001, 1:4-10 10-12
    刘静安.铝材在交通运输工业中的开发与应用.四川有色金属,2001,2:21-29 22-24 23-24 23
    刘静安,萧今声.德国铝型材生产技术和装备.世界有色金属,1996,4,40-44
    刘静安,萧今声.日本和德国的大断面铝合金型材生产技术与工艺.世界有色金属,1995,11, 40-42 42
    J.D. Edwards, F.C. Frary. The Aluminum Industry. New York: McGraw-Hill Press, 1980:240 230-232
    R. Couchman. Aluminum Statistical Review for 1999. Washington, D.C.: The Aluminum Association, Inc., 2000:24-29 25
    刘静安.轻合金挤压工具与模具.北京:冶金工业出版社,1990:20-25
    刘静安.铝型材挤压模具设计、制造、使用及维修.北京:冶金工业出版社, 1999: 1-3 51-52 124 1-2 1-3
    Q. Sun, J. R. Dixon, X. Y. Ruan. Cold Extrusion Sequence Design and Comparison. Advanced Technology of Plasticity, 1993,4: 627-632
    洪深泽.挤压工艺及模具设计.北京:机械工业出版社,1995:1-6 188-189 212
    W. Koenig. Recent Developments in the Extrusion of Helical Gears. International Journal of Machine Tools Manufacture, 1993, 33 (4):599
    J.C. Benedyk. Automotive Aluminum Casting Trends and Developments. Light Metal Age, 2000,
    
    
    58 (10):36-39
    S. I. Oh, G. D. Lahoti, T. Altan. APLID- A General Purpose FEM Program for Metal Forming. Annals of the NAMRC, 1981,29(6): 83.
    M. Knoerr., Li. J. Altan. Application of the 2D Finite Element Method to Simulation of Various Forming Process. Journal of Materials Processing Technology, 1992, 33 (1):31
    Ko. Dae-Cheol. Prediction of Surface Fracture Initiation in the Axisymmetric Extrusion and Simple Upsetting of an Aluminum Alloy, Journal of Materials Processing Technology, 1996, 62 (8): 166-174,
    T. Wanheim, R. Balendra. Extrusion die for in-process compensation of component-errors due to die-elasticity. Journal of Materials Processing Technology, 1997, 72 (4):177-182
    E.Ceretti. Simulation of Metal Flow and Fracture Applications in Orthogonal Cutting Blanking and Cold Extrusion. Annals of the CIRP, 1997, 46 (1):187
    谢建新,毛倩,李静媛等.80MN挤压机用扁挤压筒的初步设计.锻压技术, 1999,3:48-50 51 49 50
    赵云路,刘静安,陈卫民.圆挤压筒改装成扁挤压筒的试验研究──80MN挤压机670mm×270mm×1600mm扁挤压筒的设计与制造.轻合金加工技术,2001,29 (6):24-26 26
    Jian-xin Xie,Yun-lu Zhao,Jing-an Liu. Stress Analysis of multilayer flat container for extruding aluminum sheet with flange by FEM. M.H.Yu, S.C.FAN. Application, Development & prospects for 21st Century, Xian, 1998. Beijing: Science Press, 1998: 1063-1068 1064-1065
    王匀,刘全坤.铝型材整体壁板挤压的进展和应力分析及举措.黑龙江科技学院学报, 2002, 15(1):36-38 37 36-37
    王开坤,谢建新.内孔四层套扁挤压筒的组合应力分析.北京科技大学学报, 2000, 22 (5) :464-466 465-466 466
    刘静安.大型工业铝合金型材的挤压生产工艺与关键技术.铝加工,2001, 24(2) :18-20
    谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2001:125-126 156-158
    王祖唐.金属塑性成形理论.北京:机械工业出版社,1989:1-24
    汪家才.金属压力加工的现代力学原理.北京:冶金工业出版社,1990:33-56
    R. Hill.数学塑性理论.北京:科学出版社.1966:142-177
    W.Johnson, H.Kudo. Use of Upper Bound Solutions for Axisymmetric Extrusion Process. Int. J. Mech. Sci, 1960,22(1):175
    Yunxing Li, Dajun Zhou. An Upper-Bound Strip Technique for Predicting Spread in Forging. Journal of Mechanical Working Technology, 1989,18(2):109
    J. Monaghan. Closed-dies Cold Forging an Upper-Bound Analysis. Journal of Materials
    
    
    Processing Technology, 1991,26(3):181
    D.Y. Yang. An Upper-Bound Solution for Axisymmetric Extrusion of Composite Rods through Curved Dies. Int. J. Mech. Tools Manufacture, 1991,31(4):565
    B. O. Oyekanmi. The Validation of the Upper-Bound Element Technique(UBET) in the Prediction of Strain Distributions in Forgings. Journal of Materials Processing Technology, 1992, 12(10):231
    杜忠友,孙胜.上限元模拟技术在金属塑性加工优化设计中的应用.中国机械工程,1993, 16(4):25
    李国基,有限元法在模拟金属塑性加工过程方面的应用,锻压技术,1991, 4:2
    陈如欣,胡志明.塑性有限元法及其在金属成形中的应用.重庆:重庆大学出版社,1989:22-45
    O. C. Zienkiewicz, P. N. Gogbole. A Penalty Function Approach to Problems of Plastic Flow of Metal with Large Surface Deformations. J. Strain Analysis, 1975, 12(1) :10,
    森谦一郎,小坂田宏造.塑性变形の有限要素の解析.機械の研究, 1983,35:1-12
    刘相华,白光润.东北工学院学报, 1986,22(1):28
    刘相华,白光润.金属科学与工艺, 1986,12(3):93
    闫洪,包忠诩,柳和生.铝型材挤压模CAD/CAE/CAM研究进展.轻合金加工技术, 1999, 27(10):1-2 2-3 3 3
    赵云路,刘静安.工业铝型材模具优化设计(2).轻合金加工技术,1997,25(1):32-34
    赵云路,刘静安.铝型材挤压模具的种类及组装形式.轻合金加工技术,1997, 25(4) : 22-26 28
    Инж. П. И. Перлин, Метод Расчеа Контейнеров Для Прессования Из Плоского Слитка. Вестник мащиностроения,1959, 5:57-58 58
    Н.И.Мусхелищвили.数学弹性力学的几个基本问题.赵惠元译.北京:科学出版社, 1978:102-108 120-123
    刘志强,谢建新,刘静安.大型整体壁板用扁挤压筒受力的有限元分析.锻压技术, 1998, 14(6):12-16 15
    L. Hanssen, M. Lefstad, S. Rystad, et al. Billet Surface Flow in Aluminum Extrusion Using ‘Half-Moon’ Dies. In J.L. Chenot, J.F. Agassant, P. Montmitonnet, Proceedings of the 1st ESAFORM conference on Material Forming, 998:176-178
    N. Solomon, M. Teodorescu, I. Solomon. The Effect of Material Flowing During Deformation on the Extrusion Product Quality. In. J.L. Chenot, J.F. Agassant, P. Montmitonnet, B. Vergnes, Proceedings of the 1st ESAFORM conference on Material Forming, 1998:165-168
    S. Storen. Theory of Extrusion-advances and Challenges. Int. J. Mech. Sci.,1993, 35 (11):
    
    
    1007-1020
    V. Legat, J. M. Marchal. Die design: An Implicit Formulation for the Inverse Problem. Int. J. Numer. Methods Fluids,1993,16(2):29-42
    Lishnij, N. Biba, A. Milenin. Three-dimensional Simulation of Extrusion Process on PC. In. J.L. Chenot, J.F. Agassant, P. Montmitonnet. Proceedings of the 1st ESAFORM conference on Material Forming, Florida, 1998 :137-140
    H. G. Mooi. Finite Element Simulations of Aluminum Extrusion. [University of Twente PhD thesis].1996:3-89
    D.Y. Yang, C.M. Lee, J.H. Yoon. Finite Element Analysis of Steady-State Three Dimensional Extrusion of Sections Through Curved Dies. Int. J. Mech. Sci., 1989,31(2):145-156
    Lee, C.M., Yang, D.Y. and Kim, M.U. Numerical Analysis of Three-Dimensional Extrusion of Arbitrarily Shaped Sections by the Method of Weighted Residuals. Int. J. Mech. Sci., 1990, 32(1):65-82.
    K. Mori, K. Osakada, H. Yamaguchi. Prediction of Curvature of an Extruded Bar with Noncircular Cross-Section by A 3-D Rigid-Plastic Finite Element Method. Int. J. Mech. Sci., 1993, 35(10): 879-87
    Y.S. Kang, D.Y. Yang. Rigid-viscoplastic Finite Element Analysis of Hot Square Die Extrusion of Complicated Profiles with Flow Guides and Lands by Arbitrary Lagrangian-Eulerian Formulation. Proc. 5th Int. Conf. Num. Meth. Indust. Forming Processes, 1995:841-846
    Y.S.Kang, D.Y.Yang. Investigation into the Thermo-Viscoplastic Finite Element Analysis of Square Die Extrusion of Square Section with Lagrangian Description. Int. J. Mach. Tools Manufact, 1996, 36(9):906
    X.Q.Zhang, Y.C. Lam, C. Devadas. Progress in Numerical Simulation of Extrusion of Aluminum Sections. Proc. 4th Int. Conf. Tech. Plasticity, Arizona,1993:16-21
    H.G. Mooi, J. Huetink. Simulation of Complex Aluminum Extrusion Using an Arbitrary Eulerian Lagrangian Formulation. Proc. 5th Int. Conf. Num. Meth. Indust. Forming Processes,1995:869-874
    L. Tong. FE Simulation of Bulk Forming Processes With a Mixed Eulerian-Lagrangian Formulation. [Swiss Federal Institute of Technology, PhD thesis].1995:12-13
    H. G. Mooi. Finite Element Simulation of Aluminum Extrusion. [University of Twente, PhD thesis].1996:5
    I. Babuska, W.C. Rheinboldt. Error Estimates for Adaptive Finite Element Method Computation. SIAM J. of Numer. Anal., 1978, 15(11): 736-54
    
    W.C. Rheinboldt. Adaptive Mesh Refinement Processes for Finite Element Solutions. Int. J. Numer. Meth. Engng., 1981, 17(8): 649-662
    C.K. Choi, Y.M. Park. An Adaptive H-Refinement Using Transition Element for Bending Problems. Int. Jnl. Numer. Math. Engng., 1992 , 35(3) : 145-63
    O.C. Zienkiewicz, J.Z. Zhu. A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int. J. Numer. Meth. Engng., 1987,24(6): 337-57
    O.C. Zienkiewicz, Y.C. Liu, G.C. Huang. Error Estimation and Adaptivity in Flow Formulation for Forming Problems. Int. J. Numer. Meth. Engng., 1988, 25(3) :423-442
    C.K. Lee, S.H. Lo. An Automatic Adaptive Refinement Finite Element Procedure for 2d Elatostatic Analysis. Int. J. Numer. Meth. Engng., 1992, 35 (10) :1967-1989
    J.E. Bas, Van Rens. Finite Element Simulation of the Aluminum Extrusion Process: Shape Prediction for Complex Profiles. [Technology University of Eindhoven PhD thesis].1993:1-26
    K. Park, D.Y. Yang. Mismatching Refinement With Domain Decomposition for the Analysis of Steady-state Metal Forming Process Accepted for Publication. Int. J. Numer. Meth. Engng, 1999, 35(11):1245-1256
    黄晓林,刘静安,易幼平.组合扁孔挤压筒非均匀预应力场分析.重型机械,1997,32 (4) : 240-248
    徐盈辉,谢水生,张学军.扁挤压筒装配应力计算与受力分析.稀有金属, 2000, 24(3):182-187
    易幼平,郑志莲,刘静安.大型扁挤压筒强度分析.模具工业,2000, 8 (2):112-116
    周光灿.扁挤压筒的等强度设计理论.第一次全国机械零件计算方法学术交流会论文集.成都,1983:1-15
    刘全坤,俞芙芳,刘汉武.挤压凹模强度的光弹性与有限元优化综合分析.实验力学, 1992, 7(3):226-229
    易幼平,钟掘,高云章.扁挤压筒型腔有限元应力分析及形线优化.上海有色金属, 1996, 17(2):12-16
    Joeri Lof. Developments in Finite Element Simulations of Aluminum Extrusion.[University of Twente, PhD thesis]. 2000:6-7
    Yung-Chou Kao, Grier C.I. Lin. Integration of CAD/CAE/CAM on Metal Extrusion Die. Int. J.of Machine Tools and Manufacture, 1999, 31(4) : 521-537
    C.O. Stockdale. The Application of CAD/CAM to Extrusion Die Design. Proceedings of the International Aluminum Extrusion Technology Seminar ’92, Switzerland,1992. Electrical Engineering Press:323-328
    Reinholt Geelink, Otto W. Salomons, Fjodor van Slooten. Unified Feature Definition for Feature
    
    
    Based Design and Feature Based Manufacturing. Journal of Manufacturing Systems, 1996,12(2): 113-132
    He Bin, Chris George. Formally Describing Intelligent CAD. The United Nations University Report,1999:1-6
    C.K.Kwong, G.F.Smith. Application of Case-Based Reasoning in Injection Moulding. J. Materials Processing Technology, 1997, 63 (4):463-467
    雷永刚.冷挤压工艺设计的CBR系统及其关键技术研究.[上海交通大学博士学位论文]. 2000:38-42 125-127
    龙旭杰,石力开,王祖唐.型材挤压平模计算机辅助设计和制造(CAD/CAM)系统.轻合金加工技术,1988,9:36-41
    李红英.型材挤压分流组合模CAD系统的开发与应用研究.中南矿冶学院学报, 1992, 23 (6):234-238
    何德林,李志刚.型材挤压模CAD/CAM系统及其关键技术的研究. 轻合金加工技术, 1997,25 (9) :25-28
    谢建新,李静媛,冷智勇.型材挤压模具综合管理信息系统.中国有色金属学报, 1998,8 (4):643-646
    郑弃非,田柱平.挤压模具CAD/CAM系统简介.轻合金加工技术,1993,21(4):36-41
    陈泽中.铝型材挤压CAD/CAE/CAO技术研究.南昌大学博士学位论文.2002:6-7 8
    王匀,王雷刚,刘全坤.基于RDBMS和模糊NN的智能整体壁板挤压模具CAD系统. 2001年中国机械工程学会年会论文集,苏州, 2001.北京,机械工业出版社:538-540 540-541
    P.Myllykoski, J.Larkiola, J.Nylander. Development of Prediction Model for Mechanical Properties of Batch Annealed Thin Steel Strip by Using Artificial Neural Network Modelling. J.Mater.Proc.Tech, 1998,23(60): 123-126
    胡守仁,余少波,戴葵.神经网络导论.北京:国防科技大学出版社,1999:1-55
    张立明.人工神经网络的模型及应用.上海:复旦大学出版社,1993:23-25 42-45
    陶宏芝.板料多道次拉深成形模拟技术研究与工艺优化.上海交通大学博士论文.2000:51-63
    王雷刚.大型汽轮机转子锻造工艺模拟与智能CAPP研究.[燕山大学博士学位论文]. 2001:10-12 16-17
    朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998:248-250 276
    O.C. Zienkiewicz, G.C. Huang, Y.C. Lin. Adaptive FEM Computation of Forming Processes Application to Porous and Non-Porous Materials. Int. J. Num. Meth. Engng, 1990,30(2), 1527-1553
    J.S. Sandhu, H. Liebowitz. Examples of Adaptive FEA in Plasticity. Engng Frac. Mech., 1995,
    
    
    50(6):947-956
    O.C. Zienkiewicz, J.Z. Zhu. The Superconvergent Patch Recovery and a Posteriori Error Estimates Part 1. The Recovery Technique. Int. J. Num. Meth. Engng, 1992, 33(2), 1331-1344 1360-1364
    R.Schneiders. A Grid Based Algorithm for The Generation of Hexahedral Element Meshes. Engineering with Computers, 1996, 12(2),168-177.
    H. Kardestuncer,有限元法手册.诸德超,傅子智.北京:科学出版社,1996:343-345 1232-1234
    美国ANSYS公司北京办事处. ANSYS耦合场分析指南,1998:2-4 28-30
    徐芝纶.弹性力学.第二版.北京:高等教育出版社,1986:115-152 166-168 142 143
    周光灿.弹性问题的模拟与泊松系数、弹性模量的测定.全国第三次实验应力分析会议论文论文集.沈阳,1983:1-4
    D.Y.Yang, C.H. Lee. Analysis of Three Dimensional Extrusion of Sections Through Curved Dies by Conformal Transformation. Int. J. Mech. Sci., 1978, 35 (2):541
    谢水生,贺金宇,徐盈辉.扁挤压筒结构参数优化及分析研究.塑性工程学报, 2001, 32(4) :12-16
    闻国椿,殷慰萍.复变函数的应用.北京:首都师范大学出版社, 1999:212-235
    Д.И. Шерман,Напряжениях В Весомой Полуплоскости Ослаъленной Двумя Круговыми Отверстиями. Прикладдная математнка,1951, 15 (3):297-316
    莫叶.复变函数论.山东:山东科学技术出版社,1983: 97-99
    俞彬. Visual C++5.0 程序设计教程.北京:人民邮电出版社,1998,86-128
    王燕.面向对象的理论与C++实践.第二版.北京:清华大学出版社, 1997:34-56
    美国ANSYS公司北京办事处.ANSYS非线性分析指南,1998:23-89 56-60 68-70 66
    寇淑清,金文明,谷诤巍.体积成形数值模拟边界接触摩擦与滑动约束处理.锻压机械, 2001,36 (3) : 21-23
    杜庆华,余寿文,姚振汉.弹性理论.北京:科学出版社,1986:284-286
    http://www.ansys.com.cn/support/几种圆柱体接触问题的模拟求解.htm
    王晓林,周贤宾.板料成形接触摩擦过程的有限元模拟技术研究.塑性工程学报.2000,7(1):18-21
    王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学, 2000 : 24-25 202 166-167
    钟志华,李光耀.薄板冲压成成形过程的计算机仿真与应用.北京:北京理工大学出版社, 1998: 122-123 152-154
    
    S. Kobayahi, S. I. Oh and T. Altan. Metal Forming and the Finite Element Method. New York: Oxford University Press, 1989:45-65
    Y. Kanto, G.A. Yagawa. Dynamic Contact Bulkling Analysis by the Penalty Finite Element Method.Int J.Numer.Methods Eng,1990,29(4):755-774
    刘静安,赵云路.铝材生产关键技术.重庆:重庆大学出版社,1997:148-151
    孔祥谦.有限元法在传热学中的应用.北京:科学出版社,1986:112-114 130-134
    竹田内一郎.热应力.北京:科技出版社.1989:25-30 50-56
    杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社.2000:420-421
    吕丽萍.有限元法及其在锻压工程中的应用.西安:西北工业大学出版社,1989:13-43
    王能超.数值分析简明教程.北京:高等教育出版社,1999:186-190
    孙靖民.机械优化设计.北京:机械工业出版社,1992:226-230 232-233
    http://www.jci.jx.cn/sci/kjzc/kjzc1-jxzy.htm,罗贤海,机械最优化设计的应用及若干问题的探讨
    陈钏棠.General Research on Three-Dimensional Structural Shape Optimization.[台湾元智大学硕士学位论文]. 1996:30-45
    O.C. Zienkiewicz, J.S. Campbell. Shape Optimization and Sequential Linear Programming. Optimal Structure Design, R.H. Gallagher, O. C. Zienkiewicz eds., Optimal Structural Design ,Wiley, New York,1973,1:109-126.
    V. Braibant, C. Flury. Shape Optimal Design Using B-Spline. Computer Methods in Applied Mechanics and Engineering, 1984 , 3(44):247-267
    http://www2.nsysu.edu.tw/csmlab/fem/project/ansysprj.htm,曾中庆,应用ANSYS有限元素软件于最优化设计题
    P. Pedersen, C.L. Laursen. Design for Minimum Stress Concentration by Finite Elements and Linear Programming. Journal of Structural Mechanics, 1982, 4(10):375-391
    S. S. Bhavikatti, C. V. Ramakrishnan. Optimum Shape Design of Rotating Disks. Computers and structures,1980, 2(11):397-401
    Wang yun, Liu Quankun. Structure Optimization for Prestressed Flat Receptacle with Augmented Multiplier Method. ISPMM2002, Hefei, 2002:523-526
    美国ANSYS公司北京办事处. ANSYS高级技术分析指南优化设计,1998:12-18
    牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社.1999:245-314
    蔡薇,柳瑞清.高温挤压变形的模拟实验研究.锻压技术,1999,24(1):8-9
    王圣佑,曹才芝,韩召进.光测原理和技术. 北京:兵器工业出版社,1992:322-342
    柯斯克 G. 罗伯逊, 王爕山,黄杰藩译.光弹性应力分析. 上海:上海科学技术出版社,
    
    
    1979:12-46
    阮孟光,郭明洁,管大椿.光测力学, 北京:科学出版社,1995:122-128 140-145 143
    赵华松,李学珍,晏振贵.变弹模光弹材料性能的试验研究.第五届实验力学学术会论文集,1987,南京,实验应力分析专业委员会编:455-456
    陈平,刘胜平.环氧树脂.北京:化学工业出版社,1997:211-300
    王赛玉,黄楚云.型材挤压模面压分布研究.锻压技术,2001,26(2):121-123
    张吉锋.专家系统与知识工程引论.北京:清华大学出版社,1988:88-120
    王雷刚,王匀,刘全坤.面向对象的挤压工艺设计专家系统的实现.模具技术,2000, 24(1):1-3
    曾令友.Delphi5.0数据库应用开发.北京:中国水利水电出版社,2000:123-160
    刘全坤,王匀,王雷刚.基于关系型数据库的专家系统结构模型及实现技术.中国机械工程, 2001,12(6):645-648
    王匀,刘全坤.冷冲模工艺专家系统的实现技术及与CAD的无缝集成.黑龙江科技学院学报, 2001,14(4):22-23 23-24
    王匀,刘全坤.基于特征矩阵和神经网络的铝型材整体壁板外形识别.中国机械工程. (录用)
    焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1992:210-240
    J.Wang,X.Wu,P.F. Thomson,A. Flitman. A neural networks approach to investigating the geometrical influence on wrinkling in sheet metal forming. J.Mater.Proc.Tech.2000, 15(7): 215-220
    http://www.mathworks.com/suppor/thelp/toolbox/nnet/neural network

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700