柴油机连杆衬套微动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发动机运行的过程中,连杆衬套受到活塞销交变载荷以及连杆自身的惯性力的作用。由于连杆小头和衬套的材料特性不同,其接触面上在承受相同的接触压力时会产生不同程度的变形,导致两接触体在接触面上相互错动,即为微动。微动不但会引起微动磨损,还会引起微动疲劳,这会导致连杆衬套过盈量不足,从而会对发动机造成严重的破坏。因此探寻连杆衬套的微动特性对衬套的使用寿命的提高意义重大。
     本文结合某型柴油机连杆小头和衬套的实际工况,利用接触力学理论和有限元方法,以分析衬套微动特性为目的对其接触过程进行数值有限元模拟分析。具体工作如下:
     (1)查阅了大量微动特性分析的文献,详述了微动的发展现状。确定了本文的研究重点、分析方法和需要解决的问题。
     (2)总结了连杆衬套的结构和分类。在弹性接触理论的基础上,对常用球和平面接触模型的微动接触过程进行理论分析,得出微动关键参数的理论求解方法。
     (3)详述了接触问题的有限元理论和算法。建立包括连杆小头、衬套和活塞销的二分之一实体模型,确立了模型的边界条件。通过有限元求解计算得到了不同衬套过盈量下,连杆小头和衬套爆压时刻的等效应力和变形变化规律。
     (4)在过盈量为0.05mm时,先分析不同摆角下衬套的微动特性。确定出爆压时刻衬套微动关键参数最大。然后再分析不同过盈量下衬套爆压时刻的微动特性。最后分析过盈量为0.05mm时,不同摩擦系数下衬套爆压时刻的微动特性。通过系列的研究工作,总结出连杆摆角、过盈量和摩擦系数对衬套微动关键参数的影响规律。结合衬套的微动特性规律,提出一些减缓衬套微动的措施。
     结果表明,爆压时刻衬套的微动最严重。随着过盈量的加大,衬套的摩擦应力、接触压力和摩擦功不断的增大,而微动幅值呈不断减小的趋势。随着摩擦系数的降低,衬套的接触压力变化较小,摩擦应力和摩擦功不断减小,而微动幅值呈不断增大的趋势。
The connecting rod is acted upon by the alternating load of piston pin and inertia forceof connecting rod during the running process of engine, The contact surface under the samecontact pressure can produce the different degree of deformation resulting in two contactbodies mutual slip in the contact surface because the material character of connecting rod andbushing is different, it is called fretting. The fretting would not only cause fretting wear, butalso cause fretting fatigue, which can leads to Interference of connecting rod bushing isinsufficient. Insufficient Interference of connecting rod bushing can cause serious damage forengine. So, it is great significance for improving service life of bushing by finding the frettingcharacteristics of connecting rod bushing.
     Combined with actual working condition of connecting rod and bushing of a certaintype diesel engine, this paper simulates the contact process of the connecting rod and bushingby contact mechanics theory and finite element method for analyzing the frettingcharacteristics of bushing. The specific work is as follows:
     (1)Access to a large number of literatures of fretting characteristic analysis, this paperexpounds the current status of development of the fretting. The key of research,analysis methods and the problems that need to be solved of this paper are decided.
     (2) This paper summarizes structure and classification of the connecting rod bushing.On the basis of the elastic contact theory, this paper analyses the commonly ball andplane contact model to get the theory resolution method of key parameters offretting.
     (3)This paper expounds finite element theory and algorithm of the contact problem. Onehalf of the solid model of connecting rod, bushings and piston pin are established,and the boundary conditions of model are ascertained. This paper analyzes thechanging regularity of the comprehensive stress and deformation of connecting rod and bushing under different amount of interference of bushing in the detonationpressure moment.
     (4) Firstly, the fretting characteristic of bushing is analyzed under different connectingrod angles when the amount of interference of bushing is 0.05mm. According toanalysis, the key parameters of bushing fretting are the largest in the detonationpressure moment. And then the fretting characteristic of bushing is analyzed underdifferent amounts of interference of bushing in the detonation pressure moment.Finally, the fretting characteristic of bushing is analyzed under different frictioncoefficients when the amount of interference of bushing is 0.05mm. According tothe above analysis result, the law of fretting key parameters of bushing issummarized under different connecting rod angles, amounts of interference ofbushing and friction coefficients. Combined with the fretting characteristic ofbushing, some measures about slowing fretting wear of bushing are proposed.
     The results show that the fretting of bushing is most serious in the detonation pressuremoment. Along with the increase of amounts of interference, contact pressure, friction stressand frictional work of bushing show increasing trends, but fretting amplitude shows reducingtrend. With the decrease of the friction coefficient, bushing contact pressure changes a little,friction stress and frictional work show reducing trends, but fretting amplitude showsincreasing trend.
引文
[1]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [2] Waterhouse R B. Fretting corrosion. oxford: Pergamon Press, 1972.
    [3]朱旻昊.径向与复合微动的运行和损伤机理研究[M].上海:上海交通大学出版社,2006.
    [4]刘全.两类微动磨损的数值模拟研究[D].西南交通大学硕士研究生学位论文,2009.
    [5]廖正君.两种Fe-C合金的转动微动磨损研究[D].西南交通大学硕士研究生学位论文,2009.
    [6]张晓宇.Ⅰ-800合金高温微动磨损特性研究[D].西南交通大学硕士研究生学位论文,2009.
    [7]李政.两种钢的复合微动磨损行为的研究[D].西南交通大学硕士研究生学位论文,2004.
    [8]黄鹍鹏. TiAlZr钛合金及其爆炸喷涂WC-25Co涂层高温微动磨损研究[D].西南交通大学硕士研究生学位论文,2006.
    [9]徐进.固体润滑涂层抗微动磨损研究[D].西南交通大学硕士研究生学位论文,2003.
    [10]沈明学,谢兴源,蔡振兵等.扭转复合微动模拟及其试验研究[J].机械工程学报,2011,47(15):89~94.
    [11]蔡振兵,朱旻昊,俞佳等.扭动微动的模拟及其试验研究[J].摩擦学学报,2008,1:18~21.
    [12]朱旻昊,罗唯力,周仲荣.表面工程技术抗微动损伤的研究现状[J].机械工程材料,2003,4:1~3.
    [13]马磊. Ti-Al-Zr钛合金等离子喷涂WC-12Co涂层高温微动磨损研究[D].西南交通大学硕士研究生学位论文,2009.
    [14]宦臣茂.基于ABAQUS的扭转复合微动数值模拟[D].西南交通大学硕士研究生学位论文,2011.
    [15]郭严.车轴材料弯曲微动过程的有限元分析[D].西南交通大学硕士研究生学位论文,2010.
    [16]苏彬. 45号钢在不同应力比循环载荷下的微动疲劳特性[D].浙江工业大学硕士研究生学位论文,2010.
    [17]欧红永.微动疲劳接触应力的有限元分析研究[D].浙江工业大学硕士研究生学位论文,2009.
    [18]黄梦妮. RD,2型车轴过盈配合损伤分析研究[D].西南交通大学硕士研究生学位论文,2010.
    [19]符杰.过盈配合的摩擦系数研究[D].大连理工大学硕士研究生学位论文,2007.
    [20]张晖.镁合金及表面处理微动磨损研究[D].西南交通大学硕士研究生学位论文,2007.
    [21] Enden, Rose W N, Cunningham F L. The endurance of metals. Proc. Instn. Mesh. Eng. ,1911, 4: 839~974.
    [22] Gillt H W, Mack E L. Notes on some endurance test of metals. Proc. Am. Soc. TestingMaster, 1924, 24: 476
    [23] Mindlin R D. Compliance of elastic bodies in contact. ASME, Journal of AppliancedMechnaics, 1949, 16: 259~268.
    [24] Symposium on fretting corrosion. ASME STP 144, Philadelphia, PA: American Societyfor Testing and Materials, 1953.
    [25]申蓉蓉.抗微动摩擦损伤涂层制备工艺及性能研究[D].西南科技大学硕士研究生学位论文,2006.
    [26] Uhigh H H. Mechanism of fretting corrosion. J. Appl. Mech. 1954, 21: 401~407.
    [27]郝慧娇.中碳钢轴类构件的微动磨损特性及其对疲劳寿命的影响[D].兰州理工大学硕士研究生学位论文,2011.
    [28] Hurrick P L. The mechanism of fretting–a review. Wear, 1970, 15: 389~409.
    [29]屈金山.滑移区内焊接接头金属和堆焊层金属微动磨损特性研究[D].西南交通大学硕士研究生学位论文,2009.
    [30] Waterhouse R B. The role of adhesion and delamination in the fretting wear of metallicmaterials. Wear, 1977, 45: 355~364.
    [31] Suh N P. An overview of the delamination theory of wear. Wear, 1977, 44: 1~16.
    [32] Berthier Y, Vincent L, Godet M. Velocityaccomodation in fretting. Wear, 1988, 125:25~38.
    [33] Godet M. Third-bodies in tribology. Wear, 1990, 136: 29~45.
    [34]杨茂胜,陈跃良,郁大照等.微动疲劳研究的现状与展望[J].强度与环境,2008,4:45~53.
    [35] Hills D A. Mechanics of fretting fatigue. Wear, 1994, 175: 103~107.
    [36] Vingsbo O, Soderberg S, On fretting maps.Wear, 1988, 126: 131~147.
    [37] Zhou Z R, Vincent L. Mixed frettingregime. Wear, 1995, 181~183: 531~536.
    [38] International Symposium on Fretting Fatigue. Salt Lake City, USA, 1998.
    [39]周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状及趋势[J].摩擦学学报,1997,17(3):272~280.
    [40] M. H. Zhu, Z. R. Zhou, Ph. Kapsa and L. Vincent. An experimental investigation oncomposite fretting mode. Tribology International, 2001, 34(11): 733~738.
    [41]朱旻昊,周仲荣,石心余,刘启跃.新型径向微动装置[J].摩擦学学报,2000,20(1):102~105.
    [42] M. H. Zhu, Z. R. Zhou. Dual-motion fretting wear behaviour of 7075 aluminium alloy.Wear, 255(1-6), 2003: 269~275.
    [43] J. Xu, M. H. Zhu, Z. R. Zhou, Ph. Kapsa and L. Vincent. An investigation on frettingwear life of bonded MoS2 solid lubricant coatings in complex conditions. Wear, 255(1-6),2003: 253~258.
    [44]朱旻昊,周惠娣,陈建敏,周仲荣.二硫化钼粘接固体润滑涂层的径向和切向微动损伤的比较研究[J].摩擦学学报,2002,22(1)14-18.
    [45] M. H. Zhu,Z. R. Zhou, The damage mechanisms under different fretting modes ofbonded molybdenum disulfide coating, Material Science Forum, Vols. 475-479, 2005,1545~1550.
    [46]朱旻昊,周仲荣.关于复合式微动的研究,摩擦学学报[J],2001,21(3):182~186.
    [47]朱旻昊,周仲荣. 7075铝合金复合微动行为的研究,摩擦学学报[J],2003,23(4):320~325.
    [48]李政,朱旻昊,周仲荣. 60Si2Mn钢复合微动磨损行为的研究[J].机械工程学报,2005,41(1):203~207.
    [49]蔡振兵.扭动微动磨损机理研究[D].西南交通大学博士研究生学位论文,2010.
    [50]朱旻昊,徐进,周仲荣.抗微动损伤的表面工程设计[J].中国表面工程. 2007(6)5~10.
    [51] C. H. Hager Jr, J. Sanders, S. Sharma, A. Voevodin, Albert Segall. The effect oftemperature on gross slip fretting wear of cold-sprayed nicked coatings on Ti6A14Vinterfaces. Tribology International, 2009, 42(3), 491~502.
    [52] Young Woo Park, T. S. N. Sankara Narayanan, Kang Yong Lee. Fretting corrosion oftin-plated contacts. Tribology International, 2008, 41(7): 616~628.
    [53]张强. Ti6Al4V合金扭动微动早期损伤行为研究[D].西南交通大学硕士研究生学位论文,2010.
    [54]樊文欣,张涛,宋河金等.强力旋压加工的高速柴油机连杆衬套[J].车用发动机,1997,(2)32~35.
    [55] C.Paulin, S. Fouavry, C. Meunier. Finite element modelling of fretting wear surfaceevolution: Application to a Ti-6AL-4V contact.Wear,2008,264(2):26-36
    [56] Frederic L, Auelian V, Bernard S. Finite element analysis and contact modelingconsideration of interference fits for fretting fatigue strength calculations[J]. SimulationModelling Practice&Theory, 2009, 17(10): 1587-1602.
    [57] Nowell D, Dini D, Hills D A. Recent development in the understanding of frettingfatigue. Eng Fracture Mech. 2006, 73: 207.
    [58]李润方,龚建霞.接触问题数值方法及其在机械设计中的应用[M].重庆大学出版社,1991.
    [59]杜平安,甘娥忠,余亚婷.有限元法-原理、建模及应用[M].国防工业出版社,2004.
    [60]周永明.柴油机连杆小端衬套装配失效分析.农机使用与维修[J],2003, 1:4.
    [61]曾飞,陈光雄,周仲荣.基于ANSYS的轮对过盈配合微动分析[J].机械工程学报,2011,5(3):121-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700