Ti6A14V与CoCrMo合金在血清溶液中的扭动微动腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭动微动是指在法向载荷作用下接触副间发生的往复的微小幅度的相对扭动。作为四种基本微动运行模式之一的扭动微动,对其的相关研究极少,尤其是在微动腐蚀条件下。因此,本研究具有探索未知的科学意义,不仅丰富和发展了微动摩擦学的基本理论,而且对于认识人工关节的损伤失效机理,也有一定的参考价值。
     本论文选用Ti6A14V与Zr02球、CoCrMo合金与CoCrMo球配副作为研究对象,在小牛血清溶液中对其进行了的扭动微动腐蚀试验研究。通过对动力学特性和腐蚀电化学行为分析,结合表面轮廓仪、三维轮廓仪、光学显微镜(OM)、扫描电子显微镜(SEM)和电子能谱(EDX)等手段,系统地研究了Ti6A14V和CoCrMo合金的扭动微动腐蚀的运行与损伤行为。获得的主要结论如下:
     1. Ti6A14V合金分别在纯水、血清溶液(?) CoCrMo合金在血清溶液中的T-O曲线随着扭动角位移幅值的增大分别呈现直线型、椭圆型和平行四边形型,分别对应部分滑移区、混合区和滑移区;结合磨痕OM形貌分析,建立了Ti6A14V合金和CoCrMo合金在血清溶液中的扭动微动运行工况图。在相同法向载荷和扭动角位移幅值情况下,Ti6A14V合金在纯水溶液中产生的塑性变形最大,损伤最严重,CoCrMo合金在血清溶液中的损伤最轻微。
     2.在相同法向载荷和扭动角位移幅值情况下,Ti6A14V合金在纯水溶液中的摩擦扭矩最大,Ti6A14V合金在血清溶液中的次之,CoCrMo合金在血清溶液中的摩擦扭矩最小。
     3.在相同法向载荷和扭动角位移幅值情况下,Ti6A14V合金在血清溶液中的腐蚀电位在扭动试验阶段产生的负移和腐蚀电流值上升幅度,比CoCrMo合金在血清溶液中产生的大,产生的电化学腐蚀要严重。
     4.在部分滑移区,Ti6A14V合金分别在纯水、血清溶液以及CoCrMo合金在血清溶液中的损伤机理均为轻微的磨粒磨损。在混合区,Ti6A14V合金在纯水溶液中的损伤机理为磨粒磨损、剥落以及轻微的氧化磨损;Ti6A14V合金在血清溶液中的损伤机理为磨粒磨损、氧化磨损、剥落以及一定的材料转移,伴随电化学腐蚀,CoCrMo合金在血清溶液中的损伤机理主要是磨粒磨损、氧化磨损和剥层,还伴有一定的材料转移与轻度电化学腐蚀。在滑移区,Ti6A14V合金在纯水溶液中的损伤机理为磨粒磨损、氧化磨损、剥落以及一定的材料转移;Ti6A14V合金在血清溶液中的损伤机理为磨粒磨损、氧化磨损、剥落与一定的材料转移,伴随明显的电化学腐蚀现象;CoCrMo合金在血清溶液中的损伤机理为严重的磨粒磨损、氧化磨损与剥落,并伴随有一定的材料转移与电化学腐蚀。
Torsional fretting can be defined as a relative angular motion which is induced by reciprocating torsion in an oscillatory vibratory environment. As one of four basic motion modes of fretting wear, torsional fretting wear has been rarely studied up to now, especially under the condition of fretting corrosion. Therefore, this research has scientific significance to explore the unknown. At the same time, it will not only enrich and develop the basic theory of fretting tribology, but also has some practical reference values for understanding the failure mechanism of the artificial joints.
     In this paper, the counter-pairs of Ti6A14V flats verus ZrO2ball and CoCrMo flats verus CoCrMo ball were selected as the objects of study, and the torsional fretting corrosion tests were carried out in the serum solution. Based on the analyses of torsional dynamics and electrochemical corrosion behaviors and combined with surface profile-meter,3D surface profilometry, optical microscope (OM), scanning electron microscopy (SEM) and electron energy dispersive X-ray spectroscopy (EDX), and so on, the torsional fretting corrosion running and damage behaviors were investigated systematically. The main conclusions were obtained as follows:
     1. T-θ curves of Ti6A14V alloy in the pure water, serum solution and CoCrMo alloy in the serum solution appeared three basic shapes:linear, elliptical and parallelogram as the function of the increase of torsional angle displacement amplitude, corresponding to the partical slip regime, mixed regime and slip regime. Combining with OM morphology analyses of wear scars, the running condition fretting maps of Ti6A14V and CoCrMo alloys in the serum solution have been set up. Under the same normal load and tortional angle displacement amplitude, the extend of plastic deformation and damage for the Ti6A14V alloy in pure water were the most serious, and the CoCrMo alloy in the serum solution presented the slightest damage.
     2. Under the same normal load and tortional angluar displacement amplitude, the friction torque of Ti6A14V alloy in the pure water was topest, the next was Ti6A14V alloy in the serum solution, and the friction torque of CoCrMo alloy in the serum solution was the lowest.
     3. Under the same normal load and tortional angluar displacement amplitude, the corrosion potential negative shift and corrosion current of Ti6A14V alloy were higher than that of the CoCrMo alloy in the serum solution during the tortional fretting tests. As a result the electrochemical corrosion of Ti6A14V alloy was more serious relatively.
     4. In the partical slip regime, the damage mechanisms of Ti6A14V alloy in the pure water, serum solution and CoCrMo alloy in the serum solution were slight abrasive wear. In the mixed regime, the wear mechanisms of Ti6A14V alloy in the pure water were abrasive wear, delamiantion and slight oxidation wear; the wear mechanisms of Ti6A14V alloy in the serum solution were abrasive wear, delamiantion, certain oxidation wear accompanied with a little material transfer at the contact zone and electrochemical corrosion; the wear mechanisms of CoCrMo alloy in the serum solution were abrasive wear, delamiantion, certain oxidation wear zone, accompanied with a little material transfer at the contact and slight electrochemical corrosion at the same time. In the slip regime, the damage mechanisms of Ti6A14V alloy in the pure water were serious abrasive wear, oxidation wear and delamiantion, accompanied with some material transfer; the damage mechanisms of Ti6A14V alloy in the serum solution were serious abrasive wear, oxidation wear and delamiantion combined with some material transfer and serious electrochemical corrosion; the damage mechanisms of CoCrMo alloy in the serum solution were serious abrasive wear, oxidation wear and delamiantion accompanied with some material transfer and electrochemical corrosion.
引文
[1]谢友柏,张嗣伟.摩擦学科学及工程应用现状与发展战略研究.高等教育出版社,2009
    [2]温诗铸,黄平.摩擦学原理.第三版.清华大学出版社,2008
    [3]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [4]王国彪,雷源忠.关注和发展摩擦学推动经济可持续发展.表面工程资讯,2005,25(5):3-4.
    [5]刘佐民.摩擦学理论与设计.武汉理工大学出版社,2009:1-10
    [6]薛群基.中国摩擦学研究和应用的重要进展.科技导报.2008,(23):3
    [7]张嗣伟.我国摩擦学工业应用的节约潜力巨大——谈我国摩擦学工业应用现 状的调查.中国表面工程.2008,21(02):50-52
    [8]黎明,雷源忠.摩擦学—前沿领域的探索.中国矿业大学学报.1999,28:117-118
    [9]张晶.摩擦学技术的应用潜力到底有多大?科技日报.2008:1-3
    [10]R.B. Waterhourse. Fretting corrosion[M]. Pergamon Press, Oxford,1972.
    [11]R.B. Waterhourse. Fretting fatigue[M]. Elsevier Applied Science, London,1981.
    [12]周仲荣,L.Vincent.微动磨损[M].北京:科学出版社,2002.
    [13]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [14]朱旻昊.径向与复合微动的运行和损伤机理研究[D].成都:西南交通大学博士学位论文,2001.
    [15]M.H. Zhu, Z.R. Zhou. Dual-motion fretting wear behaviour of 7075 aluminium alloy[J]. Wear,2003,255:269-275.
    [16]M.H. Zhu, Z.R. Zhou, Ph. Kapsa, L. Vincent. An experimental investigation on composite fretting mode[J]. Tribology International,2001,34:733-738.
    [17]M.H. Zhu, Z.R. Zhou. Composite Fretting Wear of Aluminum Alloy[J]. Key Engineering Materials,2007,353-358:868-873.
    [18]R.B. Waterhouse. Fretting fatigue. International Materials Reviwer,1992,37(2):77-97.
    [19]W O. Vingsbo. On fretting maps. Wear.1988,126(2):131-147
    [20]Z. R. Zhou. Fissuration induite en petits debattements:Application au casd'alliages d'aluminium aeronautiques. Thesis, Ecole Centrale de Lyon,1992
    [21]Z. R. Zhou, L. Vincent. Effect of external loading on wear maps of alumiun alloys. Wear.1993,162-164:619-623
    [22]Z. R. Zhou, S. Fayeulle, L. Vincent. Cracking behavior of various aluminium alloys during fretting wear. Wear.1992,155(2):317-330
    [23]Z. R. Zhou, L. Vincent. Mixed fretting regime. Wear.1995,181-183:531-536
    [24]Z. R. Zhou, L. Vincent. Cracking induced by fretting of alunium alloys. ASME Journal of Tribology.1997,119:36-42
    [25]朱旻昊,周仲荣.TiN涂层的径向微动行为.摩擦学学报.2000,20(03):161-164
    [26]M. H. Zhu, Z. R. Zhou. An experimental study on radial fretting behaviour. Tribology International.2001,34 (5):321-326
    [27]朱旻昊,周惠娣,陈建敏,周仲荣.二硫化钼粘结固体润滑涂层的径向和切向微动损伤的比较研究.摩擦学学报.2002,22(01):14-18
    [28]M. H. Zhu, Z. R. Zhou. An experimental study on radial fretting behaviour. Tribology International.2001,34 (5):321-326
    [29]M. H. Zhu, Z. R. Zhou, Ph. Kapsa, L. Vincent, Radial fretting fatigue damage of surface coatings. Wear.2001,250(1-12):650-657
    [30]M. H. Zhu, H. Y. Yu, Z. B. Cai, Z. R. Zhou. Radial fretting behaviours of dental feldspathic ceramics against different counterbodies. Wear.2005,259(7-12):996-1004
    [31]朱旻昊,周仲荣,石心余,刘启跃.新型径向微动装置[J].摩擦学学报,2000,20(1):102-105.
    [32]M.H. Zhu, H.Y. Yu, Z.B. Cai, Z.R. Zhou. Radial fretting behaviours of dental feldspathic ceramics against different counterbodies[J]. Wear,259(7-12),2005:996-1004.
    [33]朱旻昊,周仲荣.关于复合式微动的研究[J].摩擦学学报,2001,21(3):182-186.
    [34]朱旻昊,周仲荣.7075铝合金复合微动行为的研究[J].摩擦学学报,2003,23(4):320-325.
    [35]朱旻昊,李政,周仲荣.低碳钢的复合微动磨损特性研究[J].材料工程,2004,257(10):12-15,20.
    [36]蔡振兵,朱旻昊,俞佳,周仲荣.扭动微动的模拟及其试验研究[J].摩擦学学报,2008,28(1):18-22.
    [37]J.Yu, Z.B. Cai, M.H. Zhu, S.X. Qu, Z.R. Zhou. Study on torsional fretting behavior of UHMWPE[J]. Applied surface science,2008,225:616-618.
    [38]俞佳.超高分子量聚乙烯的扭动微动磨损研究[D].成都:西南交通大学硕士学位论文,2008.
    [39]Z.B. Cai, M.H. Zhu, H.M. Shen, Z.R. Zhou, X.S. Jin. Torsional fretting wear behaviors of 7075 aluminum alloy in various relative humidity environment[J]. Wear,2009,267: 330-339.
    [40]蔡振兵.扭动微动磨损机理研究[D].成都:西南交通大学博士学位论文,2009.
    [41]莫继良,廖正军,朱旻昊,周仲荣.转动微动的模拟与试验研究[J].中国机械工程,2009,20(6):631-634.
    [42]朱旻昊,罗唯力,周仲荣.表面工程技术抗微动损伤的研究现状[J].机械工程材料,2003,27(4):1-3+29.
    [43]徐进.固体润滑涂层抗微动磨损研究[D].成都:西南交通大学博士学位论文,2003.
    [44]朱旻昊,徐进,周仲荣.抗微动损伤的表面工程设计[J].中国表面工程2007(6)5-10.
    [45]王成焘.人体生物摩擦学[M].北京:科学出版社,2008.
    [46]T.T. Vuong, P.A. Meehan. Wear transitions in a wear coefficient model[J]. Wear,2009, 266(9-10):898-906.
    [47]Z.B. Cai, M.H. Zhu, J. Liu, H.M. Shen, H.Y. Yu, Z.R. Zhou. Investigation of microcracking behaviors of human femur cortical bone during radial fretting[C].3rd International Conference on Mechanics of Biomaterial and Tissues,13-17, Dec,2009, Clearwater Beach, Flofida, USA.
    [48]I. Paczelt, Z. Mroz On the analysis of steady-state sliding wear processes[J]. Tribology International,2009,42(2):275-283.
    [49]蔡振兵,朱曼昊,俞佳,周仲荣.扭动微动的模拟及其试验研究.摩擦学学报.2008,28(1):18-21
    [50]戴淑红.货车心盘损坏的原因与改进建议[J].铁道机车车辆工人,2003,(1):16-17.
    [51]韩建民,崔世海,李卫京,李荣华,王金华.铁路货车心盘材料的耐磨性研究[J].摩擦学学报,2004,24(1):79-82.
    [52]http://www.eternalrollerz.com/TechArticles/Reinforcement.htm.
    [53]B. J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Fretting wear behaviour of polym ethyl- methacrylate under linear motions and torsional contact conditions [J]. Tribology International,1998,31(11):701-711.
    [54]A. Chateauminois, B. J. Briscoe. Nano-rheological properties of polymeric third bodies generated within fretting contacts[J]. Surface and Coatings Technology,2003,163-164(30):435-443.
    [55]B. J. Briscoe, A. Chateauminois. Measurements of friction-induced surface strains in a steel/polymer contact[J]. Tribology International,2002,35(4):245-254.
    [56]B.J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Contact damage of poly (methylmethacrylate) during complex microdisplacements[J]. Wear,2000,240(1-2): 27-39.
    [57]林修洲.钛合金扭动微动腐蚀行为研究[D].成都:西南交通大学博士学位论文,2010.
    [58]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.
    [59]H.H. Uhlig. Mechanism of fretting corrosion[J]. J. Appl. Mech.,1954,21:401-407.
    [60]王晓敏.工程材料学[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [61]郭亮,梁成浩,隋洪艳.模拟体液中纯钛及Ti6A14V合金的腐蚀行为[J].中国有色金属学报,2001,11(1):107-109.
    [62]R. Noort. Titanium:the implant material of today[J]. Mater. Sci.,1987,22(14):3801-3811.
    [63]P. Temgralll, I. Lunfsytom. Physico-chemical consideration of titamium as a biomaterial[J]. Clin. Mater.,1992,9(1):115-134.
    [64]W. Kathy. The use of titanium for medical application in the USA[J]. Mater. Sci. Eng. A,1996,213:134-137.
    [65]L. Rieu, A. Pichat, L. M. Rabbe, et al. Structural modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses[J]. Materials Science and Technology,1992,8:589-593.
    [66]R. Zwicker, K. Buehler, et al. Mechanica properties and tissue reactions of a titanium alloy for implant material. In:H. Kimura, editor. Titanium '80 Science and Technology[M]. TMSAIME.1980:505-514.
    [67]陈长春.髋关节置换用股骨假体材料的研究与应用[[J].材料导报,1998,12(6):1.
    [68]李明喜,袁晓敏,何宜柱.Ni基合金表面激光熔覆Co基合金的组织与性能.安徽工业大学学报2003:20(2):106—120.
    [69]郭彦宏,顾家琳.Ni-20Cr-101Mo-10Co高温合金的相分析.理化检验一物理分册2001;37(5):185—187.
    [70]Kilner T,Pilliar RM,WheatherlyGC,Allibert C,Phase identification and incipient melting in a cast Co-Cr surgical implant alloy.J Biomed Mater Res 1982; 16:63.
    [71]林修洲,蔡振兵,朱旻昊等.恒温扭动磨损腐蚀的模拟与试验[J].西南交通大学学报,2011,2(1):132-137.
    [72]GB10124-88《金属材料实验室均匀腐蚀全浸试验方法》

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700