用户名: 密码: 验证码:
1m口径光电经纬仪关键部件优化设计与仿真分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应现代靶场测量技术的发展,光电经纬仪逐渐向大口径、高分辨力、高跟踪精度和高指向精度的方向发展。显然,大口径经纬仪带来了如下问题:结构过于庞大、复杂;自身转动惯量大,导致伺服跟踪性能下降;大口径主反射镜的精密支撑问题;大口径经纬仪主系统温度适应性,等等。为了满足结构刚度和稳定性要求,保证系统精度的同时减少结构质量,需要借助有限元法对经纬仪的关键部件进行结构优化设计,并对全系统进行动、静态响应分析和热分析,使系统结构得到比较全面的优化。
     概述了国内外大口径光电探测系统的发展,介绍了国内外光电探测系统有限元分析的发展现状。详细解释了有限元技术的概念和理论基础,总结了优化设计的基础理论,重点阐述了拓扑优化的原理。
     以某1m口径光电经纬仪为研究对象,以提高结构刚度质量比为目的,对四通、转台、基座等关键结构部件进行结构优化设计,重点进行保刚度的轻量化设计。首先详细研究各部件的工作特点及与其他部件的连接关系,分别建立各部件合理的有限元模型,借助连续体拓扑优化获得部件的最优材料拓扑,在此基础上采用桁架结构构建轻量化模型,然后对结构重要参数做尺寸优化设计,最后对优化设计后的结构进行有限元分析验证。
     对主反射镜支撑技术进行研究,总结了主反射镜支撑结构设计的原则和镜面面型评价方法。分析了现有轴向和径向支撑结构的局限性,提出了适用于1m口径主反射镜的改进的主镜复合支撑方案,重点研究新的主镜轴向和径向支撑结构,并对主镜径向支撑和轴向支撑的相关参数进行优化设计。
     在对部分结构进行简化后,建立经纬仪全系统的有限元模型。对经纬仪进行系统级静力学分析,讨论了系统在工作状态下的变形和应力情况,计算在不同重力方向和静态风载作用下的主、次镜离焦和偏移情况。接着对经纬仪进行系统级动力学分析,包括模态分析、动态风载分析等。
     研究了经纬仪主镜在轴向和径向温差作用下的热变形。分析了经纬仪主系统所处的热环境,计算了主系统的温度场,进而对经纬仪的光学系统和机械系统进行热-结构耦合分析,讨论了温度场作用下主系统的性能表现。
In order to satisfy the requirments of modern range measuring technology,photoelectric theodolite gradually develops towards large aperture, high-resolution,high tracking accuracy and high pointing accuracy. Clearly, large aperture theodolitebrought the following issues: the structure is too large and complex; servo trackingperformance decrease because the structure’s moment of inertia is large; lightweightdesign of large aperture primary mirror and the supporting means of primary andsecondary mirror; temperature adaptability of large aperture theodolite system, andso on. In order to meet the requirements of structural stiffness and stability, andensure system accuracy while reducing structural mass, it is need to optimize the keycomponents of theodolite using the finite element method. Besides, dynamic andstatic response analysis and thermal analysis is also indispensable for the wholesystem, so that the system structure can be comprehensive optimized.
     The development of the domestic and international large capture photoelectricdetection system is summarized. Current development of the finite element analysisfor photoelectric detection system at home and on board is introduced. The concept,theoretical basis and analysis method of finite element technique is explained indetail. Also, the theoretical basis of optimization design, especially topologyoptimization design, is summarized.
     Taking a1m aperture photoelectric theodolite as study object, its key componentsincluding four-way, turntable and base are structural optimized so as to improvestructural rigidity while reducing structural mass. First various components’ workingcharacteristics and relationships with the other parts are studied, based on these,reasonable finite element model of these components are established, then eachcomponent’s optimal material topology are obtained by continuum topologyoptimization. According to structural topology, lightweight truss structure modelsare constructed and the models’ key parameters are optimized in size. Finally, thestructures optimized are verified by finite element analysis.
     The basic theories of supporting primary mirror are studied. Design principle ofsupporting structure and method evaluating surface figure pricision are summedup. The disadvantages of existing axial and radial supporting structures are analyzedand improved composite supporting system including new axial and radialsupporting structures for1m aperture primary mirror are presented. Besides, therelevant parameters for radial and axial supporting structures are optimized.
     After simplified some structures, finite element model of whole theodolite areestablished. System-level static analysises for the whole theodolite are made,including studying object’s deformation and stress in working condition, the primaryand secondary mirrors in defocus and offset under gravity in various direction andstatic wind loads. Then system-level dynamic analysises for the whole theodolite aremade, including mode analysis, dynamic wind load analysis, random vibrationresponse analysis when theodolite is on truck and ship.
     When radial and axial temperature differences are existing, the deformation ofprimary morror is studied. Thermal environment of theodolite are analyzed, thentemperature field of main optical and mechanical system are calculated. Based onthese, the thermal structural coupling analysis is made for optical and mechanicalsystem, and we can obtain the main system’s optical performance when loaded bytemperature field mentioned above.
引文
[1]董健.大型天文望远镜观测控制系统研究[D]:[博士学位论文].合肥:中国科学技术大学,2011.
    [2]James E. Kimbrell. AEOS3.67m telescope primary mirror active controlsystem[J].SPIE,1998, vol.3352:400-411.
    [3] P. Schipani, F. Perrotta, L. Marty. Active optics correction forces for the VST2.6mprimary mirror[J]. Proc. of SPIE,2006, Vol.6273.
    [4]F.B.Ray. Active optics technology-an overview[J]. SPIE,1991, vol.1532:188-206.
    [5] F.B.Ray, Active optics technology[J]. SPIE, Vol.1532(1991),188-206.
    [6]M. Iye, T. Noguchi. Active optics experiments with a62cm thin mirror[J]. SPIE,1990, vol.1236:929-939.
    [7]R.Q.Fugate. Two generations of laser guide star adaptive optics at the StarfireOptical Range[J]. OSA,1994, No.1:310-324.
    [8]Alexey Rukosuev, Alexander Alexandrov, et al. Adaptive optical system based onbimorph mirror and Shack-Hartmann wavefront sensor[J], SPIE,2002, Vol4493.
    [9]Myung K C,Larry S,Seongho K.Wind buffeting effects on the Gemini8mprimary mirrors[J].SPIE,2001,4444:302-314.
    [10] Frank W K,Daniel W E,Simpson G,et al.Wind vibration analyses of GiantMagellan Telescope[J].SPIE,2006,6271:1-13.
    [11] Itoh N,Mikami I,Noguchi T,et al.Mechanical structure of JNLT-analysis ofmirror deflection due to wind loading[J].SPIE,1990,1236:866-877.
    [12] Douglas R N, Jacques S, Michael W, et al. Wind induced imagedegradation(jitter)of the LSST telescope[J].SPIE,2008,7012:1-11.
    [13]Perrotta F. Earthquake safety system design for a telescope primarymirror[J].SPIE,2008,7017:1-11.
    [14]David T F,Ricky A C.Equivalent static vs. response spectrum-a comparison oftwo methods[J].SPIE,2004,5495:403-410.
    [15] Myung K C,Andrew C,Konstantinos V,et al.Thermal performance predictionof the TMT telescope structure[J].SPIE,2009,7427:1-15.
    [16]吴清文.空间相机主镜力学温度场特性及轻量化研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,1999.
    [17]单宝忠.空间相机光机系统光机热集成分析及优化设计[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,1999.
    [18]傅丹鹰.空间遥感器的热/结构/光学分析研究[J].宇航学报,2001,22(3):105-110.
    [19]冯树龙.地基望远镜力学、温度场特性对光学性能影响研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [20]周超.大口径望远镜系统建模及仿真分析研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011.
    [21]曾攀.有限元法分析基础教程[M].北京:高等教育出版社,2009.1-23.
    [22]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.
    [23]孔文秦.连续体结构的双向进化优化方法研究[D]:[博士学位论文].南京:南京航天航空大学,2005.
    [24]左孔天.连续体结构拓扑优化理论与应用研究[D]:[博士学位论文].武汉:华中科技大学,2004.
    [25]Esehenauer H.A, Olhoff Niels. Topology optimization of continuum structures: areview[J]. Applied Mechanies Reviews,2001,54(4):331-389.
    [26]张玉新. CONFORM连续挤压初始阶段的三维数值模拟[D]:[硕士学位论文].昆明:昆明理工大学,2004.
    [27]程耿东.关于桁架结构拓扑优化设计中的奇异最优解[J].大连理工大学学报,2000,40(4):379~383.
    [28]隋允康,于新.平面膜结构拓扑优化的有无复合体方法[J].力学学报.2001,3(33):357~364.
    [29]Y. K. Sui, D. Q. Yang. A New Method for Structural Topological OptimizationBased on the Concept of Independent Continuous Variables and Smooth Model[J].Acta Mechanica Sinica(English Edition).1998,18(2):179~185.
    [30]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法[J].计算力学学报.2000,1(17):28~33.
    [31]Yun Kang Sui. ICM Method of Topological Optimization for Truss, Frame,Continuum Structure[C]. WCSMO-4, Dalian,2001, June4-8.
    [32]Yun Kang Sui, Lian Chun Long and Xu Chun Ren, Topological Optimization ofFrame Structures with Stress and Displacement Constraints Under Multi-loadingcases[C]. WCSMO-4, Dalian,2001, June4-8.
    [33]隋允康,于新,叶宝瑞.基于“有无复合体”的应力约束下桁架和平面膜结构拓扑优化的统一模型[J].固体力学学报.2001,22(1):15~22.
    [34]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报.2000,32(2):171~179.
    [35]杨德庆,隋允康,刘正兴.多工况应力约束下连续体结构拓扑优化映射变换解法[J].上海交通大学学报.2000,34(8):1061~1065.
    [36]Yun Kang Sui, Modeling and Optimization of Topology Design for Skeleton andContinuum Structure[J]. ICOTA2001,2001,16-18Dec.
    [37]隋允康,金雪燕等.应力和位移约束下的板壳结构截面优化[J].力学学报.2004,36(6):701~708.
    [38]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计[J].固体力学学报,2003,24(1):40~45.
    [39]Bendsoe M. P. and Kikuchi N. Generating optimal topologies in structural designusing a homogenization method[J]. Computer Methods in Applied Mechanics andEngineering,1988,71:197~224.
    [40] Rietz A. Sufficiency of a finite exponent in SIMP (power law) methods[J]. Struct.Multidisc. Optim.2001,21,159-163.
    [41]Mlejnek, H. P. and Schirrmacher R. An engineering approach to optimal materialdistribution and shape finding[J]. Computer Methods in Applied Mechanics andEngineering.1993,106,1~26.
    [42]Theocaris P. S. and Stavroulakis G. E. Optimal material design in composites: Aniterative approach based on homogenizaed cells[J]. Comput. Methods Appl.Mech.Engrg.,1999,169:31~42.
    [43]Sigmund O. Design of material structures using topology optimization[D].Denmark: Department of Solid Mechanics, Technical University of Denmark,1994.
    [44]Bendsoe M. P. and Sigmund O. Material interpolations in topologyoptimization[J]. Archive of Applied Mechanics,1999,69:635~654.
    [45]M. Zhou, G. I. N. Rozvany. On the Validity of ESO Type Method in TopologyOptimization[J]. Structural and Multidiscipline Optimization.2001,21:80~83.
    [46]Y. M. Xie, G. P. Steven. A Simple Evolutionary Procedure for StructuralOptimization[J]. Computers and Structures.1993,49(5):885~896.
    [47]Y. M. Xie, G. P. Steven. Evolutionary Structural Optimization[M]. Berlin:Springer-Verlag,1997.
    [48]Y. M. Xie, G. P. Steven. Optimal Design of Multiple Load Case Structures Usingan Evolutionary Procedure[J]. Engineering Computations.1994,11:295~302.
    [49]O. M. Querin, V. Young, G. P. Steven, et al. Computational Efficiency andValidation of Bi-directional Evolutionary Structural Optimization[J]. ComputerMethods in Applied Mechanics and Engineering.2000,189:559~573.
    [50]O. M. Querin, G. P. Steven, Y. M. Xie. Evolutionary Structural Optimization (ESO)Using Bi-directional Algorithm[J]. Engineering Computations.1998,15(8):1031~1048.
    [51]Rozvany G. I. N. and Sobieske J. S. New optimality criteria methods: forcinguniqueness of the adjoint strain by corner-rounding at constraint intersections[J].Structural Optimization,1992,4:244~246.
    [52]Rozvany G.I.N. and Zhou M. The COC algorithm, part I: Cross-sectionoptimization sizing[J]. Computer Methods in Applied Mechanics and Engineering,1991,89,281~308.
    [53]Zhou M. and Rozvany G.I.N. DCOC: an optimality criteria method for largesystems, Part2: algorithm[J]. Structural Optimization,1993,6,250~262.
    [54]Zhou M. and Rozvany G.I.N. DCOC: an optimality criteria method for largesystems, Part1: theory[J]. Structural Optimization,1992,5,12~25.
    [55]Zhou M. and Rozvany G.I.N. The COC algorithm, part II: Topological, geometryand generalized shape optimization[J]. Computer Methods in Applied Mechanicsand Engineering,1991,89,309~336.
    [56]Fleury C. Sequential convex programming for structural optimization problems,In G.I.N. Rozvany (ed.) Optimization of Large Structural Systems[J]. KluwerAcademic Publishers,1993, Vol. I:567~578.
    [57]Svanberg K. A globally convergent version of MMA without linesearch. In:Rozvany G.I.N. and Olhoff N.(eds.) Proc[J]. First World Congress of Structuraland Multidisciplinary Optimization, Germany, Goslar,1995:9~16.
    [58]Bruyneel M., Duysinx P. and Fleury C. A family of MMA approximations forstructural optimization. Struct. Multidisc. Optim.,2002,24:263~276G.I.N.Rozvany (ed.) Optimization of Large Structural Systems[J]. Kluwer AcademicPublishers,1993, Vol. I:567~578.
    [59]Svanberg K. Some second order methods for structural optimization, In G.I.N.Rozvany (ed.) Optimization of Large Structural Systems[J]. Kluwer AcademicPublishers,1993, Vol. I:567~578.
    [60]Svanberg K. The method of moving asymptotes-a new method for structuraloptimization[J]. International Journal for Numerical Methods in Engineering,1987,24:359~373.
    [61]Bruyneel M., Duysinx P. and Fleury C. A family of MMA approximations forstructural optimization[J]. Struct. Multidisc. Optim.,2002,24:263~276.
    [62]Svanberg K. The MMA for modeling and solving optimization problems[C]. TheThird World Congress on Structural and Multidisciplinary Optimization, Buffalo,New York,1999, May17~21.
    [63]Bruyneel M. and Fleury C. Composite structures optimization using sequentialconvex programming[J]. Advances in Engineering Software,2002,33:697~711.
    [64]Svanberg K. Two primal-dual interior-point methods for the MMAsubproblems[J]. Technical Report TRITA-MAT-1998-0S12, Dept. of Mathematics,Royal Institute of Technology, Stockholm,1998.
    [65]Fleury C. Structural weight optimization by dual methods of convexprogramming[J]. International Journal for Numerical Methods in Engineering,1979,14:1761~1783.
    [66]Fleury C. CONLIN: an efficient dual optimizer based on convex approximationconcepts[J]. Struct. Optim.,1989,1:81~89.
    [67]Fleury C. and Braibant V. Structural optimization-a new dual methods usingmixed variables[J]. International Journal for Numerical Methods in Engineering,1986,23:409~428.
    [68]Svanberg K. A new globally convergent version of the method of movingasymptotes[J]. Technical Report, Dept. of Mathematics, Royal Institute ofTechnology, Stockholm,1999.
    [69]Svanberg K. The methods of moving asymptotes (MMA) with some extension, InG.I.N. Rozvany (ed.) Optimization of Large Structural Systems[J]. KluwerAcademic Publishers,1993, Vol. I:555~566.
    [70]Zhang W. H., Fleury C. and Duysinx P. A generalized method of movingasymptotes (GMMA) including equality constraints[J]. Structural Optimization,1996,12:143~146.
    [71]Zhang Wei-Hong and Fleury C. A modification of convex approximation methodsfor structural optimization[J]. Computers&Structures,1997,4(64):89~95.
    [72]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984.
    [73]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.
    [74]Behrooz Hassani and Ernest Hinton. Homogenization and Structural TopologyOptimization[M]. London: Springer-Verlag Limited,1999.
    [75]伞晓刚,王莹,薛育.基于连续体拓扑优化的大型基座轻量化设计[J].长春理工大学学报(自然科学版).2012,35(3):4~7.
    [76]易明,王晓,王龙.美军光电对抗技术、装备现状与发展趋势初探[J].红外与激光工程,2006,35(5):601~607.
    [77]王富国,杨洪波,杨飞,等.大口径主镜轴向支撑点位置优化分析[J].红外与激光工程,2007,36(6):877-880.
    [78]Yoder J R. Paul R. Opto-Mechanical Systems Design [M]. New York: MarcelDekker, Inc,1993:407~470.
    [79]张景旭.大口径地基光电望远镜结构总体研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [80]谭凡教.超薄反射镜系统支撑结构研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [81]陈夫林.620mm弯月形主镜主动支撑研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012.
    [82]Myung K C.Optimization strategy of axial and lateral supports for large primarymirors[C]//SPIE,1994,2119:841-851.
    [83]张东阁.主镜及其支撑系统的设计研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [84]HANS J. K, PETER E, MARTIN S. Mechanical principle of large mirror supports[J]. SPIE20107733:1-12.
    [85]Yoder J R. Paul R. Opto-Mechanical Systems Design [M]. New York: MarcelDekker, Inc,1993:407-470.
    [86]Luc Arnold. Optimized axial support topologies for thin telescope mirrors[J].Optical Engineering(S0091-3286),1995,34(2):567-574.
    [87]郭疆,何欣.大口径空间遥感相机主反射镜支撑设计[J].光学精密工程,2008,16(9):1642-1647.
    [88]吴小霞,杨洪波,张景旭,等.大口径球面主镜支撑系统优化设计[J].光子学报,2009,38(1):129-132.
    [89]王富国,杨洪波,杨飞,等.大口径主镜轴向支撑点位置优化分析[J].红外与激光工程,2007,36(6):877-880.
    [90]张东阁,卓仁善,李耀彬.反射镜轴向支撑位置优化的代理模型方法[J].红外与激光工程,2012,41(2):409-414.
    [91]吴清文.镜面面型误差的曲面方程处理方法[J].光学精密工程,1998,6(6):56~59.
    [92]王洋,张景旭.大口径望远镜主镜支撑优化分析[J].光电工程,2009,36(1):107-113.
    [93]程景全.天文望远镜原理和设计[M].北京:中国科学技术出版社,2003.
    [94]别捷列夫PG,茨伯P G.滚动轴承手册[M].陈焱(译).北京:机械工业出版杜,1966.
    [95]吴延巽,郭劲,耿记波.光电转台轻量化几何形状优化研究[J].计算机仿真,2008,25(5):283~286.
    [96]杜静,黄文,李成武,等.基于GAP单元的滚动轴承应力分析[J].机械设计与制造.2011,(6):43~45.
    [97]王俊,卢锷,王家琪.径向滚珠轴承在工程分析中简化方法的研究[J].光学精密工程.1999,7(2):110~114.
    [98]贾群义.滚动轴承的设计原理与应用技术[M].洛阳:洛阳工学院出版.1988.
    [99]戴曙.机床滚动轴承应用手册[M].北京:机械工业出版社,1993.
    [100]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [101]杨德华,徐灵哲,徐欣圻.大型光学天文望远镜风载作用分析[J].光学技术,2009,35(3):342-346.
    [102]周超,杨洪波,吴小霞,张景旭.1.2m望远镜风载作用分析[J].红外与激光工程.2011,40(5):889~893.
    [103]张相庭.工程抗风设计计算手册[M].北京:中国建筑工业出版社,2008.
    [104]张相庭.结构风工程[M].北京:中国建筑工业出版社,2006.45-83.
    [105]苏成,何滔.几种常用风谱模型的对比研究[C].全国结构计算理论与工程应用学术会议论文集.上海:同济大学,2003.260-264.
    [106]薛松涛,钱宇音,陈镕等.风速谱的分析研究及风致响应的计算分析[J].工程力学,2001,(增刊):194-198.
    [107]李冬霞,李晓宾.基于ansys计算高层建筑顺风向动力响应[J].山西建筑,2006,32(6):78-80.
    [108]阎石,郑伟.简谐波叠加法模拟风谱[J].沈阳建筑大学学报(自然科学版),2005,21(1):1-4.
    [109]沈亮.空间小型CCD相机的热分析研究[D].[硕士学位论文].江苏:苏州大学,2008.
    [110]肖丽波.桁架式充气展开太阳帆板热分析[D].[硕士学位论文].哈尔滨:哈尔滨大学,2010.
    [111]吴清文,卢锷,王家琪,牛晓明.主镜稳定温度场特性分析[J].光学精密工程.1996,4(6):47-53.
    [112]Roger W. Applewhite, The effects of thermal gradients on the Mars ObserverCamera primary mirror. SPIE,1992,1690,376-386.
    [113]J. P.霍尔曼.传热学[M].北京:人民教育出版社,1979.273~274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700