概念开发阶段汽车车轮动态载荷预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的整车开发设计理念,在整车厂商在与零部件供应商同步开发的过程中,概念开发阶段仅仅保障整车和部件性能,而对于耐久性和可靠性则是在设计验证阶段考虑的。节能环保提出了新的轻量化的要求,汽车轻量化是当前汽车设计开发最重要的目标之一。为实现这个目标,整车厂商在与供应商同步开发过程中,不仅会要求其保证整车性能,还会提出可靠性和耐久性的要求;同样,总成厂家也会要求零部件开发商在保证总成特性的同时,还需要考虑部件的可靠性、耐久性。
     根据调研,供应商在概念开发阶段保障性能的同时无法考虑可靠性、耐久性主要问题是由于在这个阶段无法准确预测分析出系统边界和部件周边的动态载荷和位形。究其原因,主要是因为应用于概念开发阶段的整车厂商和零部件供应商同步开发汽车的重要工具基于总成特性的汽车动力学模型中缺少了影响动态载荷关键环节的建模。
     本文从目前最急需的车轮动态载荷出发,在调研了影响其精度的关键环节模型的基础上,重点研究了概念开发阶段车轮动态载荷关键环节的建模方法,研究如何在概念开发阶段使得车轮动态载荷更为接近实际。围绕上述目标,本文的研究工作主要从以下几个方面开展:
     首先,面向动态载荷的整车动力学模型研究改进。簧载质量的运动是整车动力学模型运动的基础,其它部件的运动大多是相对于簧载质量描述的,建立了簧载质量特性模型,为其他部件的运动奠定了基础。转向系统中绕主销的转动会使得轮轴位置和姿态发生变化,从而影响车轮动态载荷,面向齿轮齿条转向系统,建立了齿轮齿条转向系统特性模型,其中考虑了齿轮齿条动力学、转向助力特性、转向立柱的弹性特性以及主销处的干摩擦特性。非簧载质量相对车身只有垂直方向自由度,悬架是两者之间的纽带,本文建立了悬架导向机构二力杆传力模型,准确计算了导向机构向簧载质量传递的力和力矩。
     其次,考虑胎体非线性特性的气胎车轮模型。轮胎由天然橡胶、合成橡胶、纤维、炭黑等材料组成,再加上内部所充气体的共同作用,充气轮胎胎体特性十分复杂,是目前车轮模型中一直欠缺的。本文建立了适用于概念开发阶段车轮动态载荷仿真的车轮模型,将其简化为刚性环和轮辋,在刚性环与轮辋之间建立了考虑气胎胎体本身硫化橡胶和所充气体共同作用表现出的不对称性、非线性、迟滞特性的六个方向完备自由度的动力学模型,使模型可以仿真车轮受地面激励时胎体往复变形的不同特性、基于输入变化带来的滞后响应、车轮加载卸载迁变时的动态特性。针对所建立的气胎车轮胎体六向非线性模型,研究利用MTS悬架K&C试验台获取胎体动态特性数据的方法,通过假定整车由车轮与悬架串联,根据试验台测量的接地点和轮轴中心点的变形分离出了气胎车轮胎体六个方向的非线性特性。以气胎车轮胎体实验数据为依据,采用参数分离的方法对模型中的静态参数和动态参数分别进行辨识,通过仿真与实验对比验证了辨识方法的有效性。
     再次,悬架承载特性瞬态模型的建立。悬架承载特性是将悬架作为一个整体受到垂直方向激励时垂直载荷表现出来的特性。垂直运动是轮轴的主运动,轮轴相对于簧载质量只在垂直方向有自由度,其运动由悬架垂直动力学确定。传统的应用于操纵稳定性和平顺性分析的悬架承载特性模型没有考虑悬架承载系统的摩擦特性或者只考虑仅仅与位移有关的稳态摩擦力包络线模型,不能真实模拟悬架受到垂直激励时的特性。本文建立了考虑悬架螺旋弹簧、减震器、弹性限位装置、导向杆系、横向稳定杆、橡胶衬套mount、strut内部以及它们之间的间隙、耦合、摩擦表现出的非线性、不对称性、滞后特性、迟滞特性的悬架承载特性瞬态模型,通过微分方程实时求解悬架承载力。针对所建立的模型,设计了利用单轴式悬架综合试验台测量悬架垂直特性的静态和动态参数辨识实验并研究了模型的参数识别方法。
     然后,考虑不对称性的悬架KC修正模型的建立。不同长度和角度布置的悬架连杆决定了悬架运动学的变化规律,现有悬架大都通过橡胶衬套与底盘铰接点相连,悬架杆系受到轮轴作用力会产生弹性变形,所以车轮除了垂直自由度之外,在其他方向上需要考虑悬架K&C特性产生的附加变形,以更精确地描述轮轴的位置和姿态。传统的KC修正模型以线性或非线性穿越中心线对悬架运动学和弹性运动学引起的轮轴位形进行补偿,没有考虑由于悬架本身不对称性、杆件的柔性和弹性元件特性造成的迟滞区间。本文建立了考虑不对称性的悬架KC修正模型,采用反映迟滞环包络线的Fancher公式对运动学、弹性运动学引起的轮轴位置和姿态变化进行修正。针对采用分布获取和经验预估的方法获取Fancher模型参数时,在工程实施中会出现较大的随机性,提出了整体拟合的方法,一次性获取所有参数,减少了计算的误差,提高了模型的仿真精度。通过仿真与实验对比,证实了辨识方法的有效性。
     最后,概念开发阶段车轮动态载荷仿真研究。首先,在实验室性能动力学模型的基础上编制了用于概念开发阶段车轮动态载荷预测的考虑总成非线性的动力学模型程序;其次,利用总成台架实验结果对各总成系统的正确性进行了验证,验证了悬架承载特性、KC修正特性、转向系统干摩擦特性以及轮胎的力学特性。再次,选取典型工况对操纵稳定进行了验证,通过应用于车轮动态载荷的整车动力学模型的仿真结果与实车场地操纵稳定性试验结果进行对比,验证了所建模型在稳态性能上与实车的一致性,为进一步对动态载荷的仿真研究奠定了基础。最后,选取了激发关键环节的典型工况,在保证其它模型均相同的情况下改变关键环节模型特性并比较车轮动态载荷的变化,仿真结果表明所建立的模型已经有效描述了车轮动态载荷的关键环节和关键因素,揭示了关键环节模型对车轮动态载荷的影响,验证了模型的有效性。
In traditional vehicle development and design philosophy, during the synchronousdevelopment process of vehicle manufacturers and parts suppliers, the performance ofvehicle and component is considered during concept development stage, while the durabilityand reliability are protected during design validation stage. Energy-saving proposes newrequirements of lightweight, which is one of the most important goals of currentautomobile design and development. To achieve this goal, the performance、durability andreliability must be considered at the same time.
     According to our survey, the main problem that supplier cannot consider durability andperformance simultaneously is that dynamic load of the system boundaries and componentssurrounding cannot be accurately predicted during the concept development stage. The mainreason of the problem is that vehicle dynamic model based on characteristic lack the keyaspects of dynamic load model.
     In this paper, the wheel dynamic load which is the most urgent need is discussed. Onthe basis of investigation of the status of the relevant models affecting the accuracy of wheeldynamic load, we focus on exploring the modeling approach of wheel dynamic load invehicle dynamic model based on characteristic and studying how to improve the accuracy ofwheel dynamic load during concept development stage. The main contents of this paperconsist of the following five areas.
     First,the study and improvement of vehicle dynamic model based on dynamic loads.The movement of sprung mass is the basis of the movement of vehicle, and the movement ofother parts is almost described relative to sprung mass. The sprung mass characteristics model is established to lay the foundation for the movement of other parts. Rotating aroundkingpin will make the position and attitude of the spindle change in steering system. For therack and pinion steering system, the characteristics model of rack and pinion steering systemis established. According to theory of roll center, suspension guiding-mechanism model isestablished to accurately calculate the forces and moments transferred to sprung masssystem.
     Second, pneumatic tire model considered nonlinear characteristic of carcass. Tire ismade from natural rubber、synthetic rubber、fiber、carbon black and so on, plus the combinedeffect of the gas inside, the characteristic of tire carcass is very complicated, which is thewheel model lack of currently. The nonlinear characteristic pneumatic tire model of completefreedom in six directions which can characterize the properties of asymmetry、nonlinearityand hysteresis is established. For the nonlinear carcass model established, the experiment ofsteady-state and dynamic characteristic of pneumatic tire is designed by KC suspension testrig. Assuming vehicle is connected with wheel and suspension in series, the nonlinearcharacteristics of carcass in six directions are isolated according to the deformation of theground and the center of spindle. According to the experimental data, the acquisition methodof the model parameter is researched, and the validity of identification method is confirmedthrough simulation and experimental comparison.
     Third, suspension bearing characteristic transient model is established. Suspensionbearing characteristic is the characteristic of the suspension as a whole subject shown whensuffered vertical excitation. Traditional suspension bearing characteristic model applied tohandling stability and ride comfort does not consider the friction characteristic of thesuspension or just consider the steady-state friction envelope model only associated with thevertical displacement. Adopting the idea of separation of static and dynamic friction, thesuspension bearing transient characteristic model is established and suspension loads arecalculated by differential equations in real time. For the model established, the static anddynamic parameter identification experiment of the suspension is designed through uniaxialsuspension comprehensive test bench, and the acquisition method of the model parameter is researched.
     Fourth, hysteresis characteristic suspension KC correction model is established.Suspension rod of different length determines the variation of the suspension kinematics; dueto extensive use of rubber bushing, when subjected to external force, suspension rod willproduce elastic deformation which called compliance. The traditional KC correction modeluse linear or non-linear centerline to describe the deformation caused by kinematics andcompliance. In this paper, Borrowing Fancher formula, hysteresis characteristic suspensionKC correction model is established. To obtain the parameters of the Fancher model with thestep method and experiments often leads to large randomness in the engineering praxis. Aone-time non-linear fitting method to obtain all parameters without estimation is proposed toreduce the calculation error, and the validity of identification method is confirmed throughsimulation and experimental comparison.
     Last, the research on simulation of wheel dynamic load during concept developmentstage. The correctness of each assembly system is verified by using assembly bench testresults. By the comparison with the results of the actual vehicle handling and stability test,the consistency of the model is verified on the steady-state performance. In other models areguaranteed the same circumstances, the characteristic of key model is changed to comparethe wheel dynamic load, the simulation results show that the key characteristics of the modelaffect the wheel dynamic load significantly, verifying the validity of the model.
引文
[1] MAURICE J P, PACEJKA H B. Relaxation length behavior of tyres[J]. Vehicle System Dynamics,1997,27(supplement):339-342.
    [2] MASTIUM G, GAIAZZI S, MONTANAKO F, et al. A semi-analytical tyre model forsteady-and-transient-state simulations [J]. Vehicle System Dynamics,1997,27,(supplement):2-21.
    [3]施普尔克劳舍著,宁汝新等译.虚拟产品开发技术[M].北京:机械工业出版社,2002.
    [4]中国汽车工程学会,中国汽车技术研究中心.我国汽车行业自主品牌培育与自主开发能力建设的措施研究.2005.10.
    [5] Michael Blundell, Damian Harty. The Multibody Systems Approach to Vehicle Dynamics[M].Maple-Vail,2004.
    [6] Michael W. Sayers. A Generic Multibody Vehicle Model for Simulating Handling and Braking[J].Vehicle System Dynamics,1996,25(S1):599-613.
    [7]洪嘉振.计算多体系统动力学[M].高等教育出版社,1999.
    [8]余志生等,汽车理论[M].北京:机械工业出版社.2004第三版
    [9] Weir, D. H., Shortwell, C. P., Johnson W. A. Dynamics of the Automobile Related to Driver Control,SAE Paper No.680194, February1967.
    [10] Ellis, J. R., Vehicle Dynamics, Business Books Limited, London,1969.
    [11] SAE J670d. Vehicle Dynamics Terminology [J].1965.
    [12] A.G. THOMPSON. Steady State Steering Response[J]. Vehicle System Dynamics,1977,6(1):37-40
    [13] Hans B. Pacejka, Simplified Analysis of Steady-state Turning Behaviour of Motor Vehicles. Part1.Handling Diagrams of Simple Systems[J]. Vehicle System Dynamics,1973,2(3):161-172.
    [14] Hans B. Pacejka, Simplified Analysis of Steady-state Turning Behaviour of Motor Vehicles. Part2:Stability of the Steady-State Turn [J]. Vehicle System Dynamics,1973,2(4):18-183.
    [15] David W. Whitcomb, William F. Milliken. Design implications of a general theory of automobilestability and control[C]. Proceeding of the Institution of Mechanical Engineers AutomobileDivision,1956:367-425.
    [16]白艳.汽车易驾驶性评价的随机驾驶员模型方法[D].长春:吉林大学博士学位论文,2012.
    [17] L.Segel. Theorectical Prediction and Experimental Substantiation of the Response of theAutomobile to Steering Control[J]. Proceeding of the Institution of Mechanical EngineersAutomobile Division,1956(7):310-330.
    [18] C.D. PERKINS and R.E. HAGE Airplane Performance, Stability and Control. New York:JohnWiley and Sons, Inc..
    [19] L.Segel (1966). On the Lateral Stability and Control of the Automobile as Influences by theDynamics of the Steering System, Transactions of the ASME: Journal of Engineering for Industry,August1966. Series B(3):283-294.
    [20] Weir, David H., C. P. Shortwell, and W. A. Johnson. Dynamics of the automobile related to drivercontrol. Transactions of the Society of Automotive Engineers, SAE680194.
    [21] T. Okada, T. Takiguchi, M. Nishioka and G. Utsumomiya. Evaluation of Vehicle Handling andStability by Computer Simulation at the First Stage of Vehicle Planning[C]. SAE paper730525,1973
    [22]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.2
    [23] Speckhart, Frank H. A Computer Simulation for Three-Dimensional Vehicle Dynamics[C]. SAEpaper730526,1973.
    [24] C. B. Lee, K. T. Kye, Y. J. Kim. Vehicle Dynamic Analysis using ADAMS/CSM. Korea ADAMSUser Conference,2001.11.8~9, P.2/8.
    [25] Jindra, F. Mathematical Model of Four-Wheeled Vehicle for Hybrid Computer Vehicle HandlingProgram. Deparment of Transportation-National Highway Traffic Safety Administration, DOTHS-801-800, January1976.
    [26] Murphy, R. W., A Hybrid Computer System for the Simulation of Vehicle Dynamics, SAETechnical Paper Series700154,1970.
    [27] Hickner, G. B., Elliot, J. G., and Cornell, G. A., Hybrid Computer Simulation of the DynamicResponse of a Vehicle With Four-Wheel Adaptive Brakes, SAE Technical Paper Series, Paper710225,1971.
    [28] Erik M. Lowndes. Development of an Intermediate DOF Vehicle Dynamics Model for OptimalDesign Studies[D] North Carolina State University.1998.
    [29] Sayers, M. W. a. P. S. F., Hierarchy of Symbolic Computer-Generated Real-Time Vehicle DynamicsModels, Transportation Research Record, vol.1403, pp.88-97,1993.
    [30] ADI Technical Staff. Seventeen-Degree-of-Freedom Motor Vehicle Simulation[R]. ApplicationReport,1976.
    [31] W. Riley Garro Heydinger, Gary J. A Methodology for Validating Vehicle Dynamics Simulations,SAE Technical Paper Series900128.
    [32] ADI Technical Staff. Applied Dynamics International. Real-time Seventeen-DOFs Motor VehicleSimulation: ADI Application Report.1990.
    [33] Yang Dejun, Lin Baizhong. A Real-time Dynamics Simulation Model for Vehicle Powertrain.Qichegongcheng,2006, vol:28,5.
    [34] Qing Liu, Konghui Guo. Analysis of Automotive Handling Based on Tire Cornering Properties inNon-Steady State Conditions. SAE Technical Paper Series1999-01-3758.
    [35] Konghui Guo, Lei Ren. A Non-steady and Non-linear Tire Model Under Large Lateral SlipCondition. SAE Technical Paper Series2000-01-0358.
    [36] Konghui Guo and Lei Ren. A Unified Semi-Empirical Tire Model with Higher Accuracy and LessParameters. SAE Technical Paper Series1999-01-0785.
    [37]王鹏.汽车实时动力学仿真中转向回正特征建模方法的研究[D].长春:吉林大学博士学位论文,2008.
    [38] Georg Rill. Vechile Dynamics Lecture Notes[R]. Fachhochschule Regensburg,2006.
    [39]管迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述[J].汽车工程,2004(2):162-167
    [40] Fromm, H.Kuzer Berichte ueber die Geschichte der Theorie des Radflatterns. Ber.Lilienthal Ges.14053(1941).
    [41] Fiala E.Seitenkrafte am rollenden luftreifen Zeitcrift der VDI,1954,96(29).
    [42] YASUTAKE K, FUJIMOTO K. Influence of tires and their variables on passenger car steeringcharacteristics[J]. J. SAE Japan,1961,15(4).
    [43] Frank F. Grundlagen zur Berechnung der Seitenfuhrungskennlinien von reifen, kautschuk undgummi, Kunstotuffe,1965(8).
    [44] Pacejka H B. The wheel shimmy phenomenon [Doctoral thesis]. Delft University of Technology,1966.
    [45] BAKKER E, NYBORG L, PACEJKA H B. Tyre modeling for use in vehicle dynamicsstudies[C].SAE Technical Paper,870421,1987.
    [46] Pacejka H B, Basselink I J M. The Magic Formula Tyre Model[J]. Vehicle System Dynamics,1911,21(supplement):1-18.
    [47] Pacejka H B, Besselink I J M. Magic Formula Tyre Model with Transient Properties[J]. VehicleSystem Dynamics,1997,27(supplement):234–249.
    [48] Maurice J P, Pacejka H B. Relaxation Length Behavior of Tyres[J]. Vehicle SystemDynamics,1997(27):339-342.2.
    [49] BAYLE P, FORISSIER J F, LAFON S. A new tire model for vehicle dynamicssimulations[J].Automotive Technology International,1993:193-198.
    [50] PACEJKA H B, Tyre and vehicle dynamics[M]. Oxford: Butterworth-Heinemann,2002.
    [51]郭孔辉,王裕民,刘蕴博,等.轮胎侧偏特性的半经验模型[J].汽车工程,1986,(2):44-54.
    [52]郭孔辉.纵滑与侧偏联合工况下的轮胎力学模型[R].长春汽车研究所研究报告,1986.
    [53] GUO K H. A unified tire model for vehicle dynamic simulation relating to steering braking anddriving[C]. Proc of IPC-5,1989.
    [54] GUO K, SUI J. A theoretical observation on empirical expression of tire shear forces[J]. VehicleSystem Dynamics,1996,25(supplement):263-274.
    [55]许男.复合工况下轮胎稳态模型研究[D].长春:吉林大学博士学位论文,2012.
    [56] Gong S. A Study of In-Plane Dynamics of Tires[D]. Delft University of Technology, TheNetherlands,1993.
    [57] I.J.M. Besselink, H.B. Pacejka. The SWIFT tyre model: overview and application[C]. AVEC paper,2004:525-530.
    [58] Gipser M. A New Fast Tire Model for Ride Comfort Simulations[J]. International Adams UsersConference,Berlin,Germany,1999.
    [59] M.Gipser. Ftire-the tire simulation model for all applications related to vehicle dynamics[J].Vehicle System Dynamics,2007,45(1):139-151.
    [60] Michael Gipser. FTire: a physically based application-oriented tyre model for use with detailedMBS and finite-element suspension models [J]. Vehicle System Dynamics,2005,43(supplement):76-91.
    [61]管迪华,彭会,范成建.轮胎模态试验分析的研究[J].汽车工程,2005.
    [62]范成建,管迪华.利用试验模态参数对轮胎包容特性的建模及试验验证[J].汽车工程,2006.
    [63]管迪华,李宝江.轮胎模态参数模型及滚动阻力模拟[J].清华大学学报(自然科学版),2011.
    [64]管欣.汽车整车集成与性能匹配的虚拟样机技术[C].汽车底盘集成匹配设计高级研修班讲义.2007
    [65] Dixon J. C. Tires, Suspension and handling [J]. Cambridge University Press,1991.
    [66] Mechanical Simulation Corporation: Carsim Reference Manual, Version6.03,2005.
    [67] M.Kamel Salaani. Modeling and Implementation of Steering System Feedback for the NationalAdvanced Driving Simulator.SAE.2002-01-1573.
    [68] M.Kamel Sslssni,Gary J.Heydinger,Paul A.Grygier. Closed Loop Steering System Model for theNational Advanced Driving Simulator.SAE.2004-01-1072.
    [69] M.Kamel Salaani. Modeling and Implementation of Steering System Feedback for the NationalAdvanced Driving Simulator.SAE.2002-01-1573.
    [70] M.Kamel Sslssni, Gary J.Heydinger, Paul A.Grygier. Closed Loop Steering System Model for theNational Advanced Driving Simulator.SAE.2004-01-1072.
    [71] Carsim version8.02. user help.2009.
    [72] Zbigniew Lozia, Dariusz Zardecki. Vehicle Dynamics Simulation with Inclusion of Freeplay andDry Friction in Steering System. SAE2002-01-0619.
    [73] Zbigniew Lozia, Dariusz Zardecki. Dynamics of Steering System with Freeplay and DryFriction-Comparative Simulation Investigation for2WS and4WS Vehicles.SAE.2005-01-1261.
    [74] W.Keith Adams, Richard W. Topping. The Steering Characterizing Functions(SCFs) and Their Usein Steering System Specification, Simulation, and Synthesis.2001-01-1353.
    [75]陈家瑞.汽车构造(第三版)[M].北京:机械工业出版社,2002.
    [76]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学汽车工程学院,2008.
    [77]管欣,张威,林柏忠.车辆实时动态仿真模型的研究[J].江苏大学学报(自然科学版),2004(05):203-207.
    [78] Armstrong B, Dupont P. A survey of models, analysis tools and compensation methods for thecontrol of machines with friction[J]. Automatic,1994,30(7):1038-1183.
    [79]松原清著.李明怀,庄志译.摩擦学—摩擦、润滑及磨损的科学技术[M].西安:西安交通大学出版社,1988.
    [80]陆大雄.摩擦学导论[M].北京:北京出版社,1990.
    [81] Berger E J. Friction modeling for dynamic system simulation. ASME Appl Mech Rev,2002,55(6):535-577.
    [82] Awrejcewic J, Olejnik P. Analysis of dynamic systems with various friction laws. ASME ApplMech Rev,2005,58:380-410.
    [83] Canudas de Wit C, Olsson H, Lischinsky P. A new model for control of systems with friction. IEEETransactions on Automatic Control,1995,40(3):419-425.
    [84] Mostaghel N, Davis T. Representations of Coulomb friction for dynamic analysis. EarthquakeEngineering and Structural Dynamics,1997,26(5):85-88.
    [85] D.Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems. ASMEJournal of Dynamic Systems, Measurement and Control, Mar.1985,107:100-103.
    [86] Iurian C. Identification of a system with dry friction:[dessertation]. Catalunya: UniversityPolitenica de catalunya,2005.45-49.
    [87] Ravanbod-Shirazi L, Besancon-Voda A. Friction identification using the karnopp model, applied toan electropneumatic actuator. Journal of Systems and Control Engineering,2003,217:123-138.
    [88]孔辉.汽车操纵动力学[M].吉林:吉林科学技术出版社,1991
    [89]董波.主动悬架最优控制整车模型的研究.汽车工程.2002098(Vol.24No.5)
    [90] Dixon J C. Suspension Geometry and Computation[M].John Wiley&Sons LtdPublication,2009:160-165.
    [91] Mitchell W C. Asymmetric Roll Centers.[C]//SAE Technical Paper Series.USA: SAE PublicationGroup,983085.
    [92]管欣,王鹏,詹军.金属弹性车轮的建模与动态仿真研究[J].中国机械工程,2007,18(21).
    [93]林柏忠. SWIFT轮胎模型动力学方程的建立[R].吉林大学汽车动态模拟国家重点实验室技术报告,2004.
    [94] Iwan WD. The dynamics r esponse of bilinear hysteretic System. California: California Institute ofTechnology,1961
    [95] Bouc R, Forced Vibration of Mechanical System with Hysteresis. Abstract, Proceedings of4thConference on Nonlinear Oscillation, Prague,1967
    [96] Badrakhan F. Rational study of hysteretic systems under stationary random excitation[J]. Int. J.Nonlinear Mechanics,1987,22(4)∶312~315.
    [97] Sj berg M. Rubber isolators-measurements and modeling using fractional derivatives and friction[J]. SAE Technical Paper Serials,2000-01-3518,2000.
    [98] Sj berg M. Non-linear behavior of a rubber isolator system using fractional derivatives [J]. VehicleSystem Dynamics,2002,37(3):217―236.
    [99] Stawomir Dzierzek. Experiment-based modeling of cylindrical rubber bushings for the simulationof wheel suspension dynamic behavior [J].SAE Technical Paper Serials2000-01-0095,2000.
    [100] Berg M. A model for rubber Springs in the dynamic analysis of rail vehicle [J]. Proceeding of theInstitution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,1997
    [101] BERG M.A non-linear rubber spring model for rail vehicle dynamics analysis,vehicle systemdynamics[J].1998,30:197-212.
    [102] Wamaka G E.Effects of Dynamic Strain Amplitude on the Dynamic Mechanical Properties ofPolymers. ASME Rubber and Plastics Div,1962,Pre-print62.WA:323.
    [103]卢荡.轮胎力学特性试验报告[汽车动态模拟国家重点实验室报告].长春:吉林大学.
    [104]郭孔辉,刘蕴博,扬阳.轮胎试验技术的开发研究及其在汽车性能研究中的应用前景[J].汽车工程,1990,(1):1-9.
    [105] MTS Kinematic And Compliance Deflection Measurement System Provides [R]. MTS company,2007.11.
    [106] Lang H. H. A study of the characteristics of automotive hydraulic dampers at high strokingfrequencies[D]. USA: The University of Michigan,1977.
    [107] Besinger F. H., Cebon D, Cole D. J. Damper models for heavy vehicle ride dynamics [J]. VehicleSystem Dynamics,1995,24:35-64.
    [108]郑明军,橡胶件的静、动态特性及有限元分析[D].北京:北方交通大学硕士学位论文,2002.
    [109] A.M.A. Soliman, S.A.A. Allah, A.A. EI-Beter, et al. Effect of suspension spring stiffness on vehicledynamics[J]. International Journal of Heavy Vehicle Systems,2001,8(3/4): p.316-334.
    [110] Thomas D. Gillespie. Fundamentals of Vehicle Dynamics[M]. Warrendale: Society of AutomotiveEngineers, Inc.,1992
    [111] Jornsen Reimpell. The Automotive Chassis: Engineering Principles [M]. London: Arnold,1997.
    [112] Giampiero Mastinu. Optimal Design of Complex Mechanical Systems with Applications to VehicleEngineering[M]. Springer,2006.
    [113] Best T, Neads S J, Whitehead J P and Willows I R.Design and Operation of a New VehicleSuspension Kinematics and Compliance Facility[J]. SAE Paper No.970096.
    [114] Lotus Engineering. K&C PCFs USER GUIDE[R],2004.
    [115] Guan Hsin, He Rong, Guo Rui. Hysteresis characteristic model of suspension for vehicledynamics simulation.[C]. MIM2013, v706-708.
    [116] Fancher P.S., Ervin R. D., MacAdam C. C., Winkler C. B. Measurement and Representation of theTruck Leaf Springs[C]//SAE Paper,800905.
    [117] D. Cebon. Simulation of the Response of leaf springs to broad band random excitation [J]. VehicleSystem Dynamics,1986,15:375-392.
    [118]车轮矢量传感器说明书.德国考休斯达特朗传感器系统有限公司中国代表处.
    [119]何荣,郭睿,管欣,彭立恩.钢板弹簧Fancher模型物理机理及参数辨识[J].吉林大学学报(工学版),2013,43(Jan.1):12-16.
    [120] Madsen K, Nielesn H B, Tingleff O. Methods for non-linear least squares problems [D]. Lyngby:Technical University of Denmark,2004
    [121]姬鹏,杨树凯.导向机构对悬架定位参数影响的仿真分析[J].拖拉机与农用运输车2008,02(15) P22-23.
    [122] William F. Milliken, Douglas L. Milliken. Chassis Design Principles and Analysis[M]. SAEInternational,2002.
    [123] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法方向盘角阶跃输入.
    [124] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法方向盘角脉冲输入.
    [125] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法蛇形试验.
    [126] GB/T5902-86汽车平顺性脉冲输入行驶试验方法.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700