发动机悬置系统解耦与新型半主动液压悬置设计的关键理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机悬置系统是连接动力总成与车辆底盘的主要用于隔离发动机振动的弹性装置。它通常由若干橡胶悬置或者液压悬置零部件组成,并且在现代轿车的隔振减振降噪性能上起着重要的作用。另一方面,良好的发动机悬置系统能降低结构的应力以提高结构的耐久性。主要通过优化方法来提高悬置系统相关的性能指标,而其中一个重要的性能是系统的解耦。解耦原理有两种:一种是与刚度中心相关的解耦,另一种的目的是使得激励力只激励出一个模态。利用刚度中心解耦原理优化发动机悬置系统,就是要使得悬置系统的刚度中心与发动机的质量中心重合,但是目前还没有文献对刚度中心进行详细的研究。对于另外一种解耦原理,已有文献[1]中的TRA(Torque RollAxis)方法只考虑了扭矩的影响,没有考虑力的作用,因此在理论上具有一定的局限性。
     传统的橡胶隔振器拥有几乎与频率无关的动刚度,它不能满足发动机复杂的工作情况要求。理想的悬置部件应该具有低频大刚度、高频小刚度的频变动刚度特性,而液压悬置拥有比橡胶悬置优秀的频变动刚度特性。由于判断隔振性能的共振曲线是针对传统与频率无关的单自由度系统,它不能快速的判断具有频变特性的隔振器的隔振性能,因此需要开发较为直观的方法。关于液压悬置的研究主要集中在这两个方面:研究既有液压悬置的性能和开发新型的液压悬置。
     本文从理论上对悬置系统的两种解耦原理进行研究,研究具有频变动刚度的液压悬置的动态特性,同时设计一种新型的半主动液压悬置。本文主要研究内容和创新性成果如下:
     (1)推导广义激励力只激励出一个系统模态的解耦准则。
     在平衡位置附近,建立由若干悬置支撑的发动机刚体在质量中心处的动力学方程组。经过Fourier变换,分别考虑非比例阻尼的作用和不考虑阻尼的作用,推导广义激励力(包括力和扭矩)只激励出一个系统模态时系统需要满足的解耦条件。而传统的TRA方法是在状态空间中应用Laplace变换推导而来的,并且只考虑了扭矩的作用。然后介绍这种新解耦准则的特点和物理意义。最后通过某悬置系统的优化算例发现:考虑非比例阻尼时,系统可以完全得到解耦;而不考虑阻尼时,系统不能够完全的得到解耦。
     (2)推导悬置系统刚度中心存在的充分必要条件和计算其位置的方法。
     刚度中心是这样的一个点:过该点的任意静力将使得刚体只发生平移运动,而绕刚度中心的力偶矩,系统在刚度中心处只有转动。在本文中该点称为严格定义的刚度中心(严格刚度中心)。
     利用发动机质心处的静力平衡方程,推导施加静力或者力偶矩位置处的静力学平衡方程。利用刚度中心的定义和反对称矩阵的性质,分别考虑静力和考虑力偶矩作用时,推导系统需要满足的条件。在文中定义一个对称的判断矩阵B,当且仅当B是零矩阵时,刚度中心才存在。并且给出计算严格刚度中心位置的方法。发现对称式配置的隔振系统的严格刚度中心不一定存在。
     (3)推导悬置系统弱刚度中心存在的充分必要条件和计算其位置的方法,并研究弱刚度中心存在时系统位移响应的类型。
     通常情况下严格刚度中心不存在,但是在一些情况下,过某些点的沿着特定方向的静力会使得系统只发生平移运动,这类点称为弱定义的刚度中心(弱刚度中心)。从这个定义出发,推导弱刚度中心存在时系统需要满足的条件,并且该条件是以判断矩阵B的特征值描述的。根据判断矩阵B的特征值的特征,在弱刚度中心存在时,系统位移响应归纳为若干形式,并介绍计算弱刚度中心位置的方法。通过算例计算系统弱刚度中心的位置,验证所提出的方法。
     (4)给出一种快速判断拥有频变动刚度的隔振器的隔振性能的图示法。
     利用单自由度隔振模型,介绍拥有频变刚度特性的隔振器的传递动刚度和驱动点动刚度的定义。利用传递动刚度和驱动点动刚度,推导隔振系统的力传递率。定义两条在频率域上描述的曲线:共振曲线和隔振曲线。在不同频段通过判断隔振器的同相动刚度与这两条曲线的关系,快速直观的判断系统性能的好坏。运用图示法,我们发现液压悬置在中频段的隔振性能比橡胶悬置的隔振性能优秀,而在高频段和低频段,前者的隔振性能没有后者的好,并得到验证。
     (5)设计一种新型的高性能半主动液压悬置。
     利用集总参数模型,推导液压悬置的动刚度表达式。通过比较被动TMD(Tuned Mass Damper)系统的动刚度与液压悬置的动刚度,得到它们之间的不同点与相同点。研究液压悬置的动刚度的三个关键频率点(下凸频率,共振频率和峰值频率)与影响其位置的物理参数(例如惯性通道长度、截面积等)的关系,得到了控制一种参数只能够在有限频段调节液压悬置的这几个关键频率点的结论。给出一种利用螺纹原理以同时控制惯性通道长度和截面积的新型半主动液压悬置的结构。这种液压悬置可以在[0,)范围内调节这三个关键频率点。给出两种节能策略(摩擦自锁和最优调节时机)以最大限度的降低能量消耗。最后通过优化算法计算最优的惯性通道长度和相应的动刚度。结果表明:使用最优的惯性通道参数,可以获得低频大刚度、高频小刚度的理想动刚度曲线。
Engine mounting system is elastic equipment which connects powertrain and thechassis of vehicle to isolate vibration of engine. It is composed of somecomponents, such as rubber mount and hydraulic engine mount, and plays animportant role in vibration isolation, vibration reduction and noise reductionperformance for modern passenger vehicle. On the other hand, better enginemounting system can also reduce the stress of structure to increase the durability ofthe components. The optimization is mainly carried out to improve relative indexesof engine mounting system’s performance, where the decoupling of the system isimportant performance. There are two kinds of decoupling principles: one is thedecoupling of the system associating with Center of Rigidity (CR), the other is toachieve that only one model shape is excited by the exciting force. Theoptimization of engine mounting system by the decoupling principle associatedwith CR is to make CR of engine mounting system coincide with center of mass ofthe engine, but there are no articles that study CR completely. For the otherdecoupling principle, the method called TRA (Torque Roll Axis) in current articlesonly considers the influence of torque without force, so it is limited in theory.
     Traditional rubber mount has nearly frequency-independent dynamic stiffness,and it cannot fulfill the complex work conditions of engine. Ideal engine mountshould have large stiffness at low frequency and small dynamic stiffness at highfrequency, and hydraulic engine mount has better frequency-dependent dynamicstiffness than rubber mount. Resonant curves which are used to judge the vibrationisolation performance are suitable for traditional frequency-independent systemwith single degree of freedom or they cannot be used to judge the performance offrequency-dependent isolator rapidly, so new method should be developed. The research on hydraulic engine mount focuses on: studying the performance ofcurrent hydraulic mount and developing novel hydraulic mount.
     The paper theoretically studies the two decoupling principles of enginemounting system, researches the dynamic characteristic of hydraulic engine mountwith frequency-dependent dynamic stiffness and designs a novel semi-activehydraulic engine mount. The main contents and some creative conclusions in thepaper are as follows:
     (1) Derive decoupling criteria for a general exciting force to excite onlyone model shape.
     Dynamic equations are set up at the center of mass around equilibriumposition of the rigid engine which is supported by some mounts. Considering or notconsidering the influence of disproportional damping respectively, the decouplingcriteria that the system should meet are derived through Fourier transformation sothat a general exciting force (including force and torque) excites only one modelshape. Traditional TRA method is derived through Laplace transformation in statespace and only considers the influence of torque without force. Then the featuresand physical meaning of the decoupling criteria are introduced. Throughoptimization of engine mounting system, the system can be fully decoupledconsidering the influence of disproportional damping, whereas the system cannotbe fully decoupled without considering the influence of damping.
     (2) Derive the sufficient and necessary condition for the existence of CRand the method to calculate the location of CR.
     Center of rigidity is a point: arbitrary static force along CR can make the rigidbody have only translational displacement, whereas the torque along CR can makethe rigid body have only rotational angles at CR. This kind of CR is called CR withstrict definition in the paper.
     Using equations of static equilibrium at center of mass of engine, theequations of static equilibrium are set up at the point where force and torque is applied. From the definition of CR and the characteristic of anti-symmetric matrix,the conditions that the system should meet are derived under static force conditionand torque condition respectively. A symmetric judging matrix B is defined in thepaper, and CR with strict definition exists only when matrix B is null. Themethod to calculate its position is given. It is found that CR with strict definitionfor the isolation system with the symmetric layout may not exist sometimes.
     (3) Derive the sufficient and necessary conditions for the existence of CRwith weak definition and the method to calculate its location, and research thecharacteristic of displacement response when CR with weak definition exists.
     Generally, CR with strict definition does not exist, but a static force alongcertain point may have only translational displacement of the system, and this kindof point is called CR with weak definition. From this definition, the conditions thatthe system should satisfy for the existence of CR with weak definition aredescribed by the eigenvalue of judging matrix B. According to the characteristicof eigenvalue of judging matrix B, when CR with weak definition exists, thebehaviors of displacement response are classified into some types and the methodto get the location of CR with weak definition is introduced. A sample is given tocalculate CR with weak definition of the system and validates the proposedmethod.
     (4) Give a graphical presentation method to rapidly judge the vibrationisolation performance for the isolator with frequency-dependent dynamicstiffness.
     Using vibration isolation model with single degree of freedom, the definitionsof transfer dynamic stiffness and drive-point dynamic stiffness of isolator withfrequency-dependent dynamic stiffness are introduced. The force transmissibility ofthe vibration isolation system is derived by using transfer dynamic stiffness anddrive-point dynamic stiffness. Two curves are defined in frequency domain:resonant curve and vibration isolation curve. The vibration isolation performance can be concluded rapidly by judging relationships between the dynamic stiffnessin-phrase of the isolator and the two defined curves in various frequency bands. Bythis graphical presentation method, we find that hydraulic engine mount can havebetter vibration isolation performance in middle frequency band whereas thevibration isolation performance for hydraulic mount is worse than that for rubbermount in low and high frequency band, and this conclusion is validated.
     (5) Design a novel semi-active hydraulic mount with high performance.
     The expression of dynamic stiffness of hydraulic is derived by making use oflumped parameter model. The differences and comparisons between passive TMD(Tuned Mass Damper) system and hydraulic engine mount are obtained bycomparing the two concepts of dynamic stiffness between them. The relationshipsbetween the three key frequency points (notch frequency, resonant frequency andpeak frequency) of dynamic stiffness for hydraulic mount and physical parameters(such as length or cross section of inertia track) that influence their locations areresearched, and it is concluded that tuning only one parameter can only tune thesaid frequency points in narrow frequency band. A novel configuration ofsemi-active hydraulic mount is given, and this mount can tune both cross sectionand length of inertia track with the help of screw thread at the same time. Thehydraulic mount can tune the three frequency points as wide as [0,). Two energyconservations (friction self-lock and optimal tuning time) are applied to decreaseenergy consumed. Finally, the optimal length of inertial track and correspondingdynamic stiffness are gotten by optimal algorithm. The result shows that: withoptimal length of inertial track, the ideal dynamic stiffness which is large at lowfrequency and small at high frequency can be gotten.
引文
[1] Jae-Yeol Park, Rajendra Singh. Effect of non-proportional damping on thetorque roll axis decoupling of an engine mounting system[J]. Journal ofSound and Vibration,2008,313(3-5):841-857.
    [2]史文库,林逸,吕振华,等.动力总成悬置元件特性对整车振动的影响[J].汽车工程,1997(02):103-107.
    [3] Michael Woon, Sidharth Nakra, Andrej Ivanco, et al. Series hydraulic hybridsystem for a passenger car: design, integration and packaging study[J]. SAE2012-01-1031,2012.
    [4]胡金芳.计及弹性基础的动力总成悬置系统特性分析与解耦研究[D].合肥:合肥工业大学,2012.
    [5] Nobutaka Tsujiuchi, Takayuki Koizumi, Koji Yamazaki, et al. Vibrationanalysis of engine supported by hydraulic mounts[J]. SAE2003-01-1465,2003.
    [6] Taeseok Jeong, Rajendra Singh. Analytical methods of decoupling theautomotive engine torque roll axis[J]. Journal of Sound and Vibration,2000,234(1):85-114.
    [7] Masahiro Akei, Kouichi Kouzato, Toshiyuki Uyama. Study of engine mountlayout for industrial diesel[J]. SAE2012-32-0108,2012.
    [8] Dhanaji Kalsule, David Hudson, Yogesh Yeola, et al. Structure borne noise andvibration reduction of a sports utility vehicle by body-mount dynamicstiffness optimization[J]. SAE2011-01-1599,2011.
    [9] P. E. Geck, R. D. Patton. Front wheel drive engine mount optimization[J]. SAE840736,1984.
    [10]梁天也,史文库,唐明祥.动力总成悬置隔振设计[J].噪声与振动控制,2007(06):39-41.
    [11]庞剑,谌刚,何华.汽车噪声与振动:理论与应用[M].北京:北京理工大学出版社,2006.
    [12] Mina M. S. Kaldas, Kemal al kan, Roman Henze, et al. The influence ofdamper top mount characteristics on vehicle ride comfort and harshness:parametric study[J]. SAE2012-01-0054,2012.
    [13]王敏,姚国凤,梁静文,等.基于流固耦合FEM的液压悬置关键参数提取[J].哈尔滨工业大学学报,2011(S1):158-162.
    [14] Sr., R. Racca. How to select power-train isolators for good performance andlong service life[J]. SAE821095,1982.
    [15] Caner Boral, Ender Cigeroglu, Ibrahim Korkmaz. Effect of intentionaldamping on the performance of an elastomeric engine mount[C].Proceedings of the ASME10TH Biennial Conference on EngineeringSystems Design and Analysis,2010, Vol.3:59-66.
    [16]王凌云.汽车动力总成液压悬置隔振降噪特性研究[D].镇江:江苏大学,2005.
    [17]宋才礼,黄鼎友.惯性通道解耦盘-膜式液压悬置动特性仿真[J].噪声与振动控制,2009(02):115-118.
    [18]吉向东,黄鼎友.汽车动力总成悬置系统的研究发展[J].噪声与振动控制,2005(01):10-13.
    [19]裘新,吕振华,田华,等.轿车液压悬置系统动态特性的分析[J].吉林工业大学学报,1996(02):5-10.
    [20]裘新,吕振华,林逸,等.轿车动力总成液压悬置及副车架系统隔振性能的研究[J].汽车工程,1999(03):151-157.
    [21]秦民,林逸,马铁利,等.汽车液压悬置系统动态特性研究[J].汽车工程,2001(06):381-384.
    [22] Yun He Yu, Saravanan M. Peelamedu, Naqi G. Naganathan, et al. Automotivevehicle engine mounting systems: A survey[J]. Journal of Dynamic SystemsMeasurement and Control-Transfactions of the ASME,2001,123(2):186-194.
    [23] Yun He Yu, Nagi G. Naganathan, Rao V. Dukkipati. A literature review ofautomotive vehicle engine mounting systems[J]. Mechanism and MachineTheory,2001,36(1):123-142.
    [24] Wen-Bin Shangguan. Engine mounts and powertrain mounting systems: areview[J]. International Journal of Vehicle Design,2009,49(4):237-258.
    [25]吴杰,周胜男.动力总成悬置系统频率和解耦率的稳健优化方法[J].振动与冲击,2012(04):1-7.
    [26] Ali El Hafidi, Bruno Martin, Alexandre Loredo, et al. Vibration reduction oncity buses: determination of optimal position of engine mounts[J].Mechanical Systems and Signal Processing,2010,24(7):2198-2209.
    [27] B. J. Kim. Three dimensional vibration isolation using elastic axes[D]. EastLansing: Michigan State University,1991.
    [28]阎红玉,徐石安.发动机-悬置系统的能量法解耦及优化设计[J].汽车工程,1993(06):321-328.
    [29]龙岩,史文库,蒋凌山,等.动力总成悬置系统优化方法的对比研究[J].汽车工程,2011(10):875-879.
    [30] James E. Bernard, John M. Starkey. Engine mount optimization[J]. SAE830257,1983.
    [31] C. E. Spiekermann, C. J. Radcliffe, E. D. Goodman. Optimal design andsimulation of vibrational isolation systems[J]. Journal of Mechanisms,Transmission, and Automation in Design,1985,107:271-276.
    [32] H. Ashrafiuon. Design Optimization of Aircraft Engine-Mount Systems[J].Journal of Vibration and Acoustics,1993,115(4):463-467.
    [33] Jae-Yeol Park, Rajendra Singh. Role of spectrally varying mount properties ininfluencing coupling between powertrain motions under torque excitation[J].Journal of Sound and Vibration,2010,329(14):2895-2914.
    [34]刘献栋,张敏,单颖春.陀螺效应对发动机悬置系统TRA解耦的影响(英文)[J].汽车工程学报,2011(05):317-322.
    [35]王敏,姚国凤,赵靖洲,等.非比例阻尼作用下的发动机液压悬置系统优化设计[J].东北大学学报,2013,S2(34):296-300.
    [36] J. F. Hu, R. Singh. Improved torque roll axis decoupling axiom for apowertrain mounting system in the presence of a compliant base[J]. Journalof Sound And Vibration,2012,331(7):1498-1518.
    [37] J. F. Hu, W. W. Chen, H. Huang. Decoupling analysis for a powertrainmounting system with a combination of hydraulic mounts[J]. ChineseJournal of Mechanical Engineering,2013,26(4):737-745.
    [38] Avnish Gosain, Mugundaram Ravindran, Amit Gautam. Vibro-acousticsensitivity analysis of automotive engine mounts for NVH refinement[J].SAE2011-01-0494,2011.
    [39] Arash Keshavarz, Mohsen Bayani Khaknejad, Shahram Azadi. Improvingvehicle NVH behavior via tuning the engine mount stiffness using DOEmethod[J]. SAE2011-01-1510,2011.
    [40] Magnus Olsson, Mikael T rm nen, Sylvain Sauvage, et al. Systematicmulti-disciplinary optimization of engine mounts[J]. SAE2011-01-1674,2011.
    [41] Bong Ho Lee, Byung Hyuk. Lee, Jae Kwon Kim. Development of roll mountfor the movement control of powertrain and the improvement of NVHperformance[J]. SAE2011-28-0090,2011.
    [42] J. S. Tao, G. R. Liu, K. Y. Lam. Design optimization of marine engine-mountsystem[J]. Journal of Sound And Vibration,2000,235(3):477-494.
    [43] Denis Blanchet, Yvan Champoux. Comparison of objective functions forengine mounts optimization[C]. Proceedings of SPIE-the internationalsociety for optical engineering:631-636.
    [44] Eric Krueger, Patrick Monsere. Powertrain mount load mitigation on hybridand electric vehicles[J]. SAE2011-01-0949,2011.
    [45] Thomas Joseph Reilly. Multi frequency swept sine testing for automotivedurability testing of engine mounted components[J]. SAE2011-01-1658,2011.
    [46] Lu Ean Ooi, Zaidi Mohd Ripin. Dynamic stiffness and loss factormeasurement of engine rubber mount by impact test[J]. Materials&Design,2011,32(4):1880-1887.
    [47] H-X Li, W-S Yoo. Hydraulic mount design for a drum-type washingmachine[C]. Proceedings of the Institution of Mechanical Engineers PartK-Journal of Multi-Body Dynamics:167-178.
    [48] Sudhir Kaul, Anoop K. Dhingra. Engine mount optimisation for vibrationisolation in motorcycles[J]. Vehicle System Dynamics,2009,47(PII9055996684):419-436.
    [49] K. B. Dora, M. S. Anand Kumar, R. B. Anand, et al. Challenges in mufflermounting design for resilient mounted scooter engine[J]. SAE2011-32-0608,2011.
    [50] Alireza Farjoud, Florin Marcu, Eric Schumann. Multi-physics modeling of acab suspension system with fluid filled mounts[J]. SAE2012-01-1912,2012.
    [51] Zhi-yong Chen, Guang-ming Wu, Wen-ku Shi, et al. Finite element analysisof light vehicle cab's hydraulic mount based on fluid-structure interactionmethod[J]. SAE2011-01-1604,2011.
    [52] Glen Jr Prater, Ali M. Shahhosseini, Gary M. Osborne, et al. Simulationstudies for determining the response characteristics of a hydraulic hybridpowertrain subframe[J]. International Journal of Heavy Vehicle Systems,2010,17(2):99-118.
    [53] The Nguyen, Mohammad Elahinia, Walter W. Olson, et al. A6-DOF vibrationisolation system for hydraulic hybrid vehicles-art. no.61690G[C].Proceedings of the Society of Photo-Opticak Instrumentation Engineers(SPIE): G1690.
    [54] A. J. Hillis. Multi-input multi-output control of an automotive active enginemounting system[C]. Proceedings of the Institution of Mechanical EngineersPart D-Journal of Automobile Engineering:1492-1504.
    [55] Jie Wu, Wen-Bin Shangguan. Dynamic optimization for vibration systemsincluding hydraulic engine mounts[J]. Journal of Vibration and Control,2010,16(11):1577-1590.
    [56] A. R. Ohadi, G. Maghsoodi. Simulation of engine vibration on nonlinearhydraulic engine mounts[J]. Journal of Vibration and Acoustics-Transcationsof the ASME,2007,129(4):417-424.
    [57] G. Kim, R. Singh. A study of passive and adaptive hydraulic engine mountsystems with emphasis on non-linear characteristics[J]. Journal of Sound andVibration,1995,179(3):427-453.
    [58] Quoc Thanh Truong, Kyoung Kwan Ahn, Young Kong Ahn. Optimalparameter control for multi-signal of semi-active engine mount[C]. IFOST2006:1st International Forum on Strategic Technology, Proceedings:E-Vehicle Technology:20-23.
    [59]张伟,上官文斌.某商用车发动机悬置静刚度的计算及实验测试[J].噪声与振动控制,2012(01):72-76.
    [60] Qiang Zhang, Xiaoxiong Jin, Wei Peng. A Non-linear Finite Element Analysisof Car Engine Mounting System Rubber Components[C]. SecondInternational Symposium on Computational Intelligence and Design, Vol.1,Proceedings:132-135.
    [61] Yasuhiro Goshima. Enhanced heat resistance and durability of engine mountrubber[J]. SAE2011-01-0249,2011.
    [62] Christopher Robert Hartley, Jaehwan Choi. Finite element overlay techniquefor predicting the payne effect in a filled-rubber cab mount[J]. SAE2012-01-0525,2012.
    [63]吴杰,上官文斌,潘孝勇.采用超弹性—粘弹性—弹塑性本构模型的橡胶隔振器动态特性计算方法[J].机械工程学报,2010(14):109-114.
    [64] Ludovic Chauvet. Trelleborg weight reduction strategy-utilization of platicfor structural components for power train mounting system[J]. SAE2012-28-0017,2012.
    [65]王亚楠,吕振华.几种特殊弹性参数对动力总成-悬置系统固有振动特性的影响[J].清华大学学报(自然科学版),2012(01):102-107.
    [66] W. B. Shangguan, Z. H. Lu. Modelling of a hydraulic engine mount withfluid-structure interaction finite element analysis[J]. Journal of Sound andVibration,2004,275(1-2):193-221.
    [67] W. B. Shangguan, Z. H. Lu. Experimental study and simulation of a hydraulicengine mount with fully coupled fluid-structure interaction finite elementanalysis model[J]. Computers&Sturctures,2004,82(22):1751-1771.
    [68] F. Daneshmand, P. Saketi, A. Khajepour.3D finite element analysis of ahydraulic engine mount including fluid-structure interaction[C].3rdInternational Conference on Fluid Structure Interaction/8th InternationalConference on Computational Modelling and Experimental Measurements ofFree and Moving Boundary Problems:165-174.
    [69] J. Christopherson, G. N. Jazar. Dynamic behavior comparison of passivehydraulic engine mounts. Part2: Finite element analysis[J]. Journal of Soundand Vibration,2006,290(3-5):1071-1090.
    [70]范让林,吕振华,冯振东,等.橡胶悬置动特性试验方法探讨[J].汽车技术,1995(11):21-24.
    [71] Ranglin Fan, Zhenhua Lu. Fixed points on the nonlinear dynamic properties ofhydraulic engine mounts and parameter identification method: Experimentand theory[J]. Journal of Sound and Vibration,2007,305:703-727.
    [72] Reza N. Jazar, M. Mahinfalah, J. Christopherson. Suspended DecouplerDesign of Hydraulic Engine Mount[C]. ASME Conference Proceedings:555-561.
    [73] A. R. Ohadi, V. Fakhari. Effect of bell plate on vibration behavior ofautomotive engine supported by hydraulic engine mounts[J]. SAE2007-01-2364,2007.
    [74]范让林,吕振华,刘立,等.液阻悬置节流盘的作用机理[J].工程力学,2009(03):229-234.
    [75] Nader Vahdati. Double-notch single-pumper fluid mounts[J]. Journal of Soundand Vibration,2005,285(3):697-710.
    [76] Jun Hwa Lee, Rajendra Singh. Critical analysis of analogous mechanicalmodels used to describe hydraulic engine mounts[J]. Journal of Sound andVibration,2008,311(3-5):1457-1464.
    [77] Benjamin Barszcz, Jason T. Dreyer, Rajendra Singh. Experimental study ofhydraulic engine mounts using multiple inertia tracks and orifices: Narrowand broad band tuning concepts[J]. Journal of Sound and Vibration,2012,331:5209-5223.
    [78] C. D. Singh, R. C. Singh. Computerized instrumentation system formonitoring the tractor performance in the field[J]. Journal ofTerramechanics,2011,48(5):333-338.
    [79] Jong-Yun Yoon, Rajendra Singh. Estimation of interfacial forces in amulti-degree of freedom isolation system using a dynamic load sensingmount and quasi-linear models[J]. Journal of Sound and Vibration,2011,330(18-19):4429-4446.
    [80] Jong-Yun Yoon, Rajendra Singh. Indirect measurement of dynamic forcetransmitted by a nonlinear hydraulic mount under sinusoidal excitation withfocus on super-harmonics[J]. Journal of Sound and Vibration,2010,329:5249-5272.
    [81] Yoon Jong-Yun, Rajendra Singh. Dynamic force transmitted by hydraulicmount: Estimation in frequency domain using motion and/or pressuremeasurements and quasi-linear models[J]. Noise Control EngineeringJournal,2010,58(4):403-419.
    [82] Rajendra Singh, Jong-Yun Yoon. Dynamic force transmitted by a nonlinearhydraulic engine mount[C].20th International Congress on Acoustics2010,ICA2010-Incorporating the2010Annual Conference of the AustralianAcoustical Society, August23,2010-August27,2010:2173-2182.
    [83] Jun Hwa Lee, Rajendra Singh. Nonlinear frequency responses of quartervehicle models with amplitude-sensitive engine mounts[J]. Journal of Soundand Vibration,2008,313(3-5):784-805.
    [84] Jun Hwa Lee, Rajendra Singh. Existence of super-harmonies inquarter-vehicle system responses with nonlinear inertia hydraulic trackmount given sinusoidal force excitation[J]. Journal of Sound and Vibration,2008,313(3-5):367-374.
    [85] Song He, Rajendra Singh. Discontinuous compliance nonlinearities in thehydraulic engine mount[J]. Journal of Sound and Vibration,2007,307(3-5):545-563.
    [86] Song He, Rajendra Singh. Approximate step response of a nonlinear hydraulicmount using a simplified linear model[J]. Journal of Sound and Vibration,2007,299(3):656-663.
    [87] S. He, R. Singh. Estimation of amplitude and frequency dependent parametersof hydraulic engine mount given limited dynamic stiffness measurements[J].Noise Control Engineering Journal,2005,53(6):271-285.
    [88] Song He, Rajendra Singh. Improved estimation of linear and nonlinearhydraulic mount models for transient responses[J]. SAE2005-01-2411,2005.
    [89] Song He, Rajendra Singh. Prediction of high frequency responsecharacteristics of hydraulic mounts[J]. SAE2005-01-2410,2005.
    [90] H. Adiguna, M. Tiwari, R. Singh, et al. Transient response of a hydraulicengine mount[J]. Journal of Sound and Vibration,2003,268(2):217-248.
    [91] M. Tiwari, H. Adiguna, R. Singh. Experimental characterization of a nonlinearhydraulic engine mount[J]. Noise Control Engineering Journal,2003,51(1):36-49.
    [92] R. Singh, H. Adiguna, M. Tiwari, et al. Transient response evaluation of ahydraulic engine mount[J]. Sound and Vibration,2002,36(7):30-35.
    [93] T. Jeong, R. Singh. Inclusion of measured frequency-andamplitude-dependent mount properties in vehicle or machinery models[J].Journal of Sound and Vibration,2001,245(3):385-415.
    [94] R. Singh. Dynamic design of automotive systems: Engine mounts andstructural joints[J]. SADHANA-ACADEMY PROCEEDINGS INENGINEERING SCIENCES,2000,25(Part3):319-330.
    [95] C. M. Richards, R. Singh. Comments on "Identification ofmulti-degree-of-freedom non-linear systems under random excitations by the'reverse path' spectral method" Authors' reply[J]. JOURNAL OF SOUNDAND VIBRATION,2000,237(2):358-360.
    [96] Gun Kim, Rajendra Singh. Nonlinear Analysis of Automotive HydraulicEngine Mount[J]. Journal of Dynamic Systems, Measurement, and Control,1993,115(3):482-487.
    [97] R. Singh, G. Kim, P. V. Ravindra. Linear analysis of automotivehydro-mechanical mount with emphasis on decoupler characteristics[J].Journal of Sound and Vibration,1992,158(2):219-243.
    [98] G. N. Jazar, M. F. Golnaraghi. Nonlinear modeling, experimental verification,and theoretical analysis of a hydraulic engine mount[J]. Journal of Vibrationand Control,2002,8:87-116.
    [99]龙岩,史文库,骆联盟,等.橡胶主簧的有限元分析及对液阻悬置性能的影响[J].机电工程,2008(04):48-51.
    [100]陈志勇,史文库,王清国,等.基于液固耦合有限元分析的驾驶室液压悬置结构参数[J].吉林大学学报(工学版),2011(S2):98-103.
    [101]史文库,郑瑞清.主动控制电致伸缩液压悬置隔振特性仿真[J].吉林大学学报(工学版),2005(02):116-121.
    [102]史文库,林逸,吕振华,等. CA7221轿车动力总成液力悬置隔振性能及其对整车舒适性影响的试验研究[J].汽车技术,1996(03):32-35.
    [103]梁天也,董桂军,唐心龙,等.基于模糊控制的发动机主动悬置研究[J].噪声与振动控制,2008(03):13-16.
    [104]梁天也,史文库,马闯.汽车动力总成液压悬置橡胶主簧静特性有限元分析[J].振动与冲击,2007(09):155-157.
    [105] Q. Li, J. C. Zhao. Experimental study on the vibration isolationcharacteristics of hydraulic engine mounts[J]. Experimental Techniques,2010,34(1):34-39.
    [106] A. Kyprianou, J. Giacomin, K. Worden, et al. Differential evolution basedidentification of automotive hydraulic engine mount model parameters[C].Proceedings of the Institution of Mechanical Engineers Part D-Journal ofAutomobile Engineering:249-264.
    [107] M. F. Golnaraghi, G. N. Jazar. Development and analysis of a simplifiednonlinear model of a hydraulic engine mount[J]. Journal of Vibration andControl,2001,7(4):495-526.
    [108] A. Geisberger, A. Khajepour, F. Golnaraghi. Non-linear modelling ofhydraulic mounts: Theory and experiment[J]. Journal of Sound andVibration,2002,249(2):371-397.
    [109] Y. K. Ahn, J. D. Song, B. S. Yang, et al. Optimal design of nonlinearhydraulic engine mount[J]. Journal of Mechanical Science and Technology,2005,19(3):768-777.
    [110] J. Christopherson, G. N. Jazar. Dynamic behavior comparison of passivehydraulic engine mounts. Part1: Mathematical analysis[J]. Journal of Soundand Vibration,2006,290(3-5):1040-1070.
    [111] Yunxia Zhang, Jianwu Zhang, Wenbin Shangguan, et al. Modeling andExperimental study of a passive hydraulic engine mount with inertia anddirect-decoupler[J]. Chinese Journal of Mechanical Engineering,2008,21(3):31-35.
    [112] R. A. Ibrahim. Recent advances in nonlinear passive vibration isolators[J].Journal of Sound and Vibration,2008,314(3-5):371-452.
    [113] Suryarghya Chakrabarti, Marcelo J. Dapino. Coupled Axisymmetric FiniteElement Model of a Magneto-hydraulic Actuator for Active EngineMounts[J]. Finite Elements in Analysis and Design,2012,2012:25-34.
    [114] S. B. Choi, K. S. Kim. Fatigue properties of smart electrorheologicalmaterials[J]. Key Engineering Materials,2005,297-300:1172-1177.
    [115] Ling Zheng, Yinong Li, Zhaoxue Deng. Electromagnetic design ofmagneto-rheological mount and its open-loop semi-active control[C].Proceedings of SPIE.
    [116] S. B. Choi, Y. T. Choi, C. C. Cheong, et al. Performance evaluation of amixed mode ER engine mount via hardware-in-the-loop simulation[J].Journal of Intelligent Material Systems and Structures,1999,10(8):671-677.
    [117] E. Wendt, K. W. Busing. A new type of hydraulic actuator usingelectrorheological fluids[J]. International Journal of Modern Physics B,1999,13(Nos.14,15&16):2176-2182.
    [118] Y. T. Choi, N. M. Wereley, Y. S. Jeon. Semi-active vibration isolation usingmagnetorheological isolators[J]. Journal of Aircraft,2005,42(5):1244-1251.
    [119] D. E. Barber, J. D. Carlson, R. Wilder. Prototype MR Mounts UtilizingGlycol-Based MR Fluids[J]. Actuator08, Conference Proceedings,2008:830-833.
    [120] S. Arzanpour, M. F. Golnaraghi. A novel semi-active magnetorheologicalbushing design for variable displacement engines[J]. Journal of IntelligentMaterial Systems and Structures,2008,19(9):989-1003.
    [121] H. Mansour, S. Arzanpour, M. F. Golnaraghi, et al. Semi-active enginemount design using auxiliary magneto-rheological fluid compliancechamber[J]. Vehicle System Dynamics,2011,49(PII9271643823):449-462.
    [122] R. Tikani, N. Vahdati, S. Ziaei-Rad, et al. A new hydraulic engine mountdesign without the peak frequency[J]. Journal of Vibration and Control,2011,17(11):1644-1656.
    [123] M. S. Foumani, A. Khajepour, M. Durali. Application of sensitivity analysisto the development of high performance adaptive hydraulic engine mounts[J].Vehicle System Dynamics,2003,39(4):257-278.
    [124] M. S. Foumani, A. Khajepour, M. Durali. A new high-performance adaptiveengine mount[J]. Journal of Vibration and Control,2004,10(1):39-54.
    [125] Thanh Quoc Truong, Kyoung Kwan Ahn. A new type of semi-activehydraulic engine mount using controllable area of inertia track[J]. Journal ofSound and Vibration,2010,329(3):247-260.
    [126] M. Wang, G. F. Yao, J. Z. Zhao, et al. A novel design of semi-activehydraulic mount with wide-band tunable notch frequency[J]. Journal ofSound and Vibration,2014,8(333):2196-2211.
    [127] Y. Q. Zhang, W. B. Shangguan. A novel approach for lower frequencyperformance design of hydraulic engine mounts[J]. Computers&Sturctures,2006,84(8-9):572-584.
    [128] Nader Vahdati, Somayeh Heidari. A novel semi-active fluid mount using amulti-layer piezoelectric beam[J]. Journal of Vibration and Control,2010,16(14):2215-2234.
    [129] M. Azadi, S. Behzadipour, G. Faulkner. Introducing a new semi-activeengine mount using force controlled variable stiffness[J]. Vehicle SystemDynamics,2013,51(5):721-736.
    [130] Y. Nakaji, S. Satoh, T. Kimura, et al. Development of an active controlengine mount system[J]. Vehicle System Dynamics,1999,32(2-3):185-198.
    [131] Guo-Chun Sun, Yan-Tao Tian, Dong-Mei Zhang. Active vibration control ofvehicle engine-body system using H infinity control method[C]. Proceedingsof2006International Conference on Machine Learning and Cybernetics,Vols1-7:402-407.
    [132] Guochun Sun, Yantao Tian, Dongmei Zhang. Vibration control ofautomotive engine using active mounts system[J]. Dynamics of ContinuousDiscrete and Impulsive Systems-Series B-Applications&Algorithms,2006,13ES(Part6):2982-2987.
    [133] A. W. Andika, J. D. Fadly, Wahyudi, et al. Natural logarithm-based slidingmode control for two DOF active engine mounting system[C]. ICICI-BME:2009International conference on Instrumentation, Communication,Information Technology, and Biomendical Engineering:128-131.
    [134] Bo-Ha Lee, Chong-Won Lee. Model based feed-forward control ofelectromagnetic type active control engine-mount system[J]. Journal ofSound and Vibration,2009,323(3-5):574-593.
    [135] Tian-ye Liang, Tian-ye Liang, Wen-Ku Shi. Study on ElectromagneticActuator Active Engine Mount with Fuzzy Control[C]. Proceeding of2009IEEE International Conference on mechatronics and automation,August9-12, Changchun, China:3010-3014.
    [136] Hyunki Park, Bo-Ha Lee, Chong-Won Lee. Design of an Active ControlEngine Mount Using a Direct Drive Electrodynamic Actuator[C]. ASMEConference Proceedings:103-108.
    [137] Hyunki Park, Bo-Ha Lee, Chong-Won Lee. Design of an active controlengine mount using a direct drive electrodynamic actuator[C]. Proceedingsof the ASME2007International Design Engineering Technical Conferences&Computers and Information in Engineering Conference, September4-7,2007, Las Vegas, Nevada, USA:1-6.
    [138] Fadly Jashi Darsivan, Wahyudi Martono, Waleed F. Faris. Active enginemounting control algorithm using neural network[J]. Shock and Vibration,2009,16(4):417-437.
    [139] Adam Bryant, Joseph Beno, Damon Weeks. Benefits of electronicallycontrolled active electromechanical suspension systems (EMS) for mastmounted sensor packages on large off-road Vehicles[J]. SAE2011-01-0269,2011.
    [140] Suryarghya Chakrabarti, Marcelo J. Dapino. Hydraulically amplifiedmagnetostrictive actuator for engine mounts[C]. SMASIS2008: Proceedingsof the ASME conference on smart materials, Adaptive Structures andIntelligent Systems-2008, VOL1:795-802.
    [141] Suryarghya Chakrabarti, Marcelo J. Dapino. A dynamic model for adisplacement amplified magnetostrictive driver for active mounts[J]. SmartMaterials&Structures,2010,19(0550095).
    [142] Arjon Turnip, Keum-Shik Hong, Seonghun Park. Modeling of a hydraulicengine mount for active pneumatic engine vibration control using theextended Kalman filter[J]. Journal of Mechanical Science and Technology,2009,23(1):229-236.
    [143] Farbod Khameneifar, Siamak Arzanpour, Mehrdad Moallem. Piezo-ActuatedActive Decoupler Hydraulic Engine Mount[C]. ASME ConferenceProceedings:195-200.
    [144] S. Arzanpour, M. F. Golnaraghi. Development of an active compliancechamber to enhance the performance of hydraulic bushings[J]. Journal ofVibration and Acoustics-Transcations of the ASME,2010,132.
    [145] H. Mansour, S. Arzanpour, M. F. Golnaraghi. Active decoupler hydraulicengine mount design with application to variable displacement engine[J].Journal of Vibration and Control,2011,17(10):1498-1508.
    [146] Hossein Mansour, Siamak Arzanpour, Farid Golnaraghi. Design of asolenoid valve based active engine mount[J]. Journal of Vibration andControl,2012,18(8):1221-1232.
    [147] J. Marzbanrad, P. Poozesh, M. Damroodi. Improving vehicle ride comfortusing an active and semi-active controller in a half-car model[J]. Journal ofVibration and Control,2013,19(9):1357-1377.
    [148] S. Veera Ragavan, Jeya Mithra Kumar, S. G. Ponnambalam. Design of aMechatronic Drive train with Regenerative Braking[J]. Mechanical andAerospace Engineering,2012,110-116:5111-5117.
    [149] Lin Xu. Structure designs and evaluation of performance simulation ofhydraulic transmission electromagnetic energy-regenerative activesuspension[J]. SAE2011-01-0760,2011.
    [150] Omid Mohareri, Siamak Arzanpour. Vibration Energy Harvesting of aHydraulic Engine Mount Using a Turbine[C]. ASME ConferenceProceedings:257-264.
    [151] Farbod Khameneifar, Siamak Arzanpour, Mehrdad Moallem. VibrationEnergy Harvesting From a Hydraulic Engine Mount via PZT Decoupler[C].ASME Conference Proceedings:201-208.
    [152]朱石坚,楼京俊,何其伟,等.振动理论与隔振技术[M].北京:国防工业出版社,2008.
    [153]万里翔,吴杰,上官文斌.液阻悬置动特性建模及汽车动力总成悬置系统振动控制优化[J].振动与冲击,2008(07):4-7.
    [154]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [155] P. J. Gamez-Montero, E. Codina. Flow characteristics of a trochoidal-gearpump using bond graphs and experimental measurement. Part1[C].Proceedings of the Institution of Mechanical Engineers Part I-Journal ofSystems and control Engineering:331-346.
    [156] P. J. Gamez-Montero, E. Codina. Flow characteristics of a trochoidal-gearpump using bond graphs and experimental measurement. Part2[C].Proceedings of the Institution of Mechanical Engineers Part I-Journal ofSystems and control Engineering:347-363.
    [157] T. K. Bera, A. K. Samantaray, R. Karmakar. Bond graph modeling of planarprismatic joints[J]. Mechanism and Machine Theory,2012,49:2-20.
    [158] Yunxia Zhang, Ting Hao, Wen-Bin Shangguan, et al. Comparison Study ofThree Diverse Passive Hydraulic Engine Mounts[C].2009IEEEInternational Conference on Industrial Engineering and Engineeringmanagement, Vols1-4:1785-1789.
    [159] Constantin Ciocanel, The Nguyen, Mohammad Elahinia. Design andmodeling of a mixed mode magnetorheological (MR) fluid mount[C].Proceedings of the Society of Photo-Optical Instrumentation Engineers(SPIE): c9281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700