分子取向与定向的超快操控和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒强激光脉冲在气体分子介质中传输时,脉冲与分子的相互作用将引起分子的取向或定向行为。通过调节飞秒脉冲的各个参量,可以实现对分子取向或定向行为的超快操纵与控制。与随机排列的各项同性的气体分子相比,被取向的分子介质呈现出各向异性的特点,具有许多特殊的光学性质,可以诱导出许多一般情况下难以观察到的物理效应,如分子取向诱导的双折射效应,空间聚焦-散焦效应等。所有这些基于分子取向的效应都有许多重要的应用价值,如基于分子取向的超快光学偏振门,基于分子取向的电离增强与高次谐波产生效率的提高,以及基于分子取向的脉冲传输的调制等。通过各种手段实现对分子取向与定向的操控就是为了实现各种与分子取向有关的应用。
     本论文围绕着利用超快光学技术操控分子的取向与定向展开讨论,同时从实验研究和理论计算两个方面展开研究,着眼于基于分子取向与定向效应的若干应用,具体工作可以分为以下几个部分:
     一、基于分子取向的双折射效应,分子取向可以作为超快频率分辨的光学门(molecular alignment based cross-correlation frequency resolved optical gating, MXFROG)加以使用。利用MXFROG技术,首次完整地测量了中心波长约为200nm的深紫外四次谐波;通过MXFROG技术,现实了对偏振相同的基波和三次谐波的同时测量;发展了MXFROG技术,将对椭圆偏振脉冲的诊断转化为对线偏振脉冲的诊断;借助斯托克斯参量,实现了对椭圆偏振飞秒脉冲的完整诊断,将MXFROG技术的使用范围从之前的线偏振超短脉冲拓展到任意偏振的超短脉冲。
     二、飞秒脉冲激发的分子取向与激发光强密切相关,空间分布为高斯型的取向光激发的分子取向将会产生空间聚焦-散焦效应。利用这种效应,在完全相同的实验条件下,实现了对乙炔分子C2H2和氧气分子02的分子取向信号的测量;同时,通过对比氧气和乙炔的分子取向信号,并根据已知的氧气分子的非线性参数(如极化率分量差),还原得出乙炔分子对应的未知非线性参数。该测量方法同样适用于其他线形分子的极化率分量差的测量。
     三、研究了飞秒双色场激发分子定向的机制与特点,以及双色场各个参数对分子定向度的影响,包括双色场的基波与二次谐波的相对强度、相对相位和双色场的光谱宽度。理论上证明了在双色场单脉冲能量一定的条件下,当双色场中基波与二次谐波强度比为2:1时,双色场所能激发的分子定向度达到最大;理论上证明了飞秒双色场激发的分子定向度与双色场的光谱宽度密切相关,而与双色场基波和二次谐波的中心波长无关。
     四、研究了飞秒双色场与少周期太赫兹场各自在激发分子定向的优势与不足,提出了将两者优势互补的操控分子定向的方案。理论计算证明,我们的方案能有效实现一氧化碳分子CO分子定向度的2倍增强,优于目前其他的双脉冲方案。通过适当调节飞秒双色场与太赫兹场的延时与太赫兹场的载波包络相位,本方案同样适用于转动周期较短的分子,实现对分子定向度的增强与控制。
The impulsive rotational Raman interaction between femtosecond laser pulse and molecules induces the molecular alignment or orientation phenomena when the laser field propagates in gaseous media. The ultrafast manipulation of molecular alignment or orientation can be realized via adjusting and controlling the parameters of femtosecond pulse. Comparing with random oriented molecules, aligned molecules show a lot of special optical properties and be able to induce many unusual physical phenomena, which are unobservable in ordinary condition, such as the alignment based birefringence, alignment induced spatial focusing and defocusing effect and so on. All these oriented-molecule based effects have tremenduous application potential, such as the alignment based inoinzation enhancement, the promotion of high harmonic generation efficiency, and the modulation of propagation of ultrashort laser pulse. The manipulation of molecular alignment and orieantion by various approaches is to realize all kinds of oriented-molecule based applications.
     This dissertation mainly focus on the ultrafast manupation of molecular alignment and orientation, with the aim of realizing some oriented-molecule based applications. We carry out research through experiments as well as throretical calculation, mainly including the following:
     1. The characterization of fourth harmonic wave is performed via the technique of molecular alignment based cross-correlation frequency resolved optical gating (MXFROG). Meanwhile, The measurement of fundermental wave and third harmonic wave is realized simultaneously by MXFROG. Moreover, we managed to realized the complete characterization of elliptically polarized feotosecond laser pulse by introducing the Stokes parameters in the experiments, and therefore extend the scope of application of MXFROG.
     2. The molecular alignment singal is closely related to the intensity of incidence field so that the alignment singal created by Gaussian-shaped femtosecond laser field would induce spatial focusing and defocusing effect. By making use of such effect, we measure the alignment singals of oxygen and acetylene under the identical experimental conditions. With the available nonlinear parameters of oxygen, we managed to retrieve the corresponding unknown parameters of acetylene by comparing the molecular alignment singals of oxygen and acetylene.
     3. Theoretical investigation on the mechanism and properties of the interaction between femtosecond dual-color field and polar molecules has been performed. The influence of the parameters of the dual-color field upon the molecular orientation degree is also discussed. It is also theoretically proved that if the energy of dual-color pulse is given, when the intensity ratio between fundamental wave and second harmonic wave equals2, the dual-color field can induced maximum molecular orientation degree.
     4. Comparison investigation between dual-color field and terahertz field in creating molecular orientation has been performed. It is theoretically proposed that the combination of dual-color field and terahertz field can make good use of their respective advantages, and the calculation shows that the combination fields can enhance the molecular orientation degree by a factor of2. The proposal is suitable both to the molecules with longer and the shorter revival periods.
引文
1. T. H. Maiman, "Stimulated optical radiation in ruby", Nature 187,493 (1960).
    2. J. E. Bjorkholm, "Optical Second-Harmonic Generation Using a Focused Gaussian Laser Beam", Phys. Rev.142,126 (1966).
    3. J. F. Ward and G. H. C. New, "Optical Third Harmonic Generation in Gases by a Focused Laser Beam", Phys. Rev.185,57 (1969).
    4. J. F. Young, G. C. Bjorklund, A. H. Kung, R. B. Miles, and S. E. Harris, "Third-Harmonic Generation in Phase-Matched Rb Vapor", Phys. Rev. Lett.27, 1551 (1971).
    5. R. Velotta, N. Hay, M. B. Mason, M. Castillejo, and J. P. Marangos, "High-Order Harmonic Generation in Aligned Molecules", Phys. Rev. Lett.87,183901 (2001).
    6. J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Controlling high harmonic generation with molecular wave packets", Phys. Rev. Lett.94,123902 (2005).
    7. T. Kanai, S. Minemoto, and H. Sakai, "Quantum interference during high-order harmonic generation from aligned molecules", Nature 435,470 (2005).
    8. Philippe Antoine, Anne L'Huillier, and Maciej Lewenstein," Attosecond Pulse Trains Using High-Order Harmonics", Phys. Rev. Lett.77,1234 (1996).
    9. Ivan P. Christov, Margaret M. Murnane, and Henry C. Kapteyn, High-Harmonic Generation of Attosecond Pulses in the "Single-Cycle" Regime, Phys. Rev. Lett.78,1251(1997).
    10. Dong Gun Lee, Hyun Joon Shin, Yong Ho Cha, Kyung Han Hong, Jung-Hoon Kim, and Chang Hee Nam, "Selection of high-order harmonics from a single quantum path for the generation of an attosecond pulse train", Phys. Rev. A 63, 021801(R)(2001).
    11. S. Mirzanejad and M. Salehi, "Two-color high-order-harmonic generation: Relativistic mirror effects and attosecond pulses", Phys. Rev. A 87,063815 (2013).
    12. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun.56,219 (1985).
    13. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourn, "Self-channeling of high-peak-power femtosecond laser pulse in air", Opt. Lett.20,73 (1995).
    14. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Korsareva, and V. P. Kandidov, "Moving focus in the propagating of ultrashort laser in air", Opt. Lett. 22,304(1997).
    15. F. Krausz, T. Brabec, M. Schnurer, and C. Spielmann, "Extreme nonlinear optics: Exploring matter to a few periods of light", Opt. Photon. News 9,46 (1998).
    16. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air", Opt. Lett.23,382 (1998).
    17. Xuan Yang, Jian Wu, Yan Peng, Yuqi Tong, Shuai Yuan, Liang'en Ding, Zhizhan Xu, and Hep ing Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air", Appl. Phys. Lett.95,111103 (2009).
    18. Xuan Yang, Jian Wu, Yan Peng, Yuqi Tong, Peifen Lu, Liang'en Ding, Zhizhan Xu, and Heping Zeng, "Plasma waveguide array induced by filament interaction", Opt. Lett.34,3806 (2009).
    19. Jia Liu, Peifen Lu, Yuqi Tong, Haifeng Pan, Xuan Yang, Jian Wu, and Heping Zeng, "Two-dimensional plasma grating by noncollinear femtosecond filament interaction in air," Appl. Phys. Lett.99,151105 (2011).
    20. K. Sattler, J. Muhlbach, O. Echt, P. Pfau, and E. Recknagel, "Evidence for Coulomb Explosion of Doubly Charged Microclusters", Phys. Rev. Lett.47, 160(1981).
    21. H. Stapelfeldt, E. Constant, and P. B. Corkum, "Wave Packet Structure and Dynamics Measured by Coulomb Explosion", Phys. Rev. Lett.74,3780 (1995).
    22. D. Mathur, F. A. Rajgara, A. R. Holkundkar, and N. K. Gupta, "Strong-field ionization and Coulomb explosion of argon clusters by few-cycle laser pulses", Phys. Rev. A 82,025201 (2010).
    23. Irina Bocharova, Reza Karimi, Emmanuel F. Penka, Jean-Paul Brichta, Philippe Lassonde, Xiquan Fu, Jean-Claude Kieffer, Andre D. Bandrauk, Igor Litvinyuk, Joseph Sanderson, and Francois Legare, "Charge Resonance Enhanced Ionization of CO2 Probed by Laser Coulomb Explosion Imaging", Phys. Rev. Lett.107, 063201 (2011).
    24. Andreas Zumbusch, Gary R. Holtom, and X. Sunney Xie, "Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering", Phys. Rev. Lett.82,4142 (1999).
    25. Taro Ichimura, Norihiko Hayazawa, Mamoru Hashimoto, Yasushi Inouye, and Satoshi Kawata, "Tip-Enhanced Coherent Anti-Stokes Raman Scattering for Vibrational Nanoimaging", Phys. Rev. Lett.92,220801 (2004).
    26. Andreas Volkmer, Ji-Xin Cheng, and X. Sunney Xie, "Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy", Phys. Rev. Lett.87,023901 (2001).
    27. Hao Li, Wenxue Li, Yahui Feng, Jia Liu, Haifeng Pan, and Heping Zeng, "Measurement of molecular polarizability anisotropy via alignment-induced spatial focusing and defocusing", Phys. Rev. A 85,052515 (2012).
    28. E. Hamilton, T. Seideman, T. Ejdrup, M. D. Poulsen, C. Z. Bisgaard, S.S. Viftrup, and H. Stapelfeldt, "Alignment of symmetric top molecules by short laser pulses", Phys. Rev. A,72,043402 (2005).
    29. J. G. Underwood, B. J. Sussman, and A. Stolow, "Field-free three dimensional molecular axis alignment", Phys. Rev. Lett.94,143002 (2005).
    30. N. Xu, C. Wu, J. Huang, Z. Wu, Q. Liang, H. Yang, and Q. Gong, "Field-free alignment of molecules at room temperature", Opt. Express 14,4992 (2006).
    31.徐楠,飞秒激光诱导的分子一维取向,北京大学博士研究生学位论文,2008。
    32. F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, "Rotational Raman effects in the wake of optical filamentation", Phys. Rev. Lett.100,123006 (2008).
    33. Robert boyd, Nonlinear Optics,2nd edition, ACADEMIC PRESS.
    34. Hao Li, Wenxue Li, Yahui Feng, Haifeng Pan, and Heping Zeng, "Field-free molecular orientation by femtosecond dual-color and single-cycle THz fields", Phys. Rev. A 88,013424 (2013).
    35. B. Friedrich, D. Herschbach, "On the possibility of orienting rotationally cooled polar molecules in an electric field", Z. Phys. D,18,153(1991).
    36. B. Friedrich and D. Herschbach, "Alignment and trapping of molecules in intense laser fields", Phys. Rev. Lett.74,4623 (1995).
    37. T. Seideman, "Rotational excitation and molecular alignment in intense laser fields", J. Chem. Phys.103,7887 (1995).
    38. T. Seideman, "On the dynamics of rotationally broad, spatially aligned wave packets", J. Chem. Phys.115,5965 (2001).
    39. B. Friedrich, D.Herschbach, "Polarization of molecules induced by intense non-resonant laser fields, J. Phys. Chem,99,15686 (1995).
    40. Hirofumi Sakai, C. P. Safvan, Jakob Juul Larsen, Karen Marie Hilligso, Kasper Hald and Henrik Stapelfeldt, "Controlling the alignment of neutral molecules by a strong laser field", J. Chem. Phys,110,10235 (1999).
    41. F. Rosca-Pruna and M. J. J. Vrakking, "Experimental observation of revival structures in picosecond laser-induced alignment of I2", Phys. Rev. Lett.87, 153902(2001).
    42. F. Legare, and A. D. Bandrauk, "Enhancement of laser-induced molecular alignment by simultaneous photodissociation", Phys. Rev. A 64,031406(R) (2001).
    43. C. Z. Bisgaard, M. D. Poulsen, E. Peronne, S. S. Viftrup, and H. Stapelfeldt, "Observation of enhanced field-free molecular alignment by two laser pulses", Phys. Rev. Lett.92,173004 (2004).
    44. M. J. J. Vrakking and S. Stolte, "Coherent control of molecular orientation", Chem. Phys. Lett.271,209 (1997).
    45. Tsuneto Kanai and Hirofumi Sakai,"Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields", J. Chem. Phys.115, 5492 (2001)。
    46. A. Matos-Abiague and J. Berakdar, "Sustainable orientation of polar molecules induced by half-cycle pulses", Phys. Rev. A,68,063411 (2003).
    47. R. Tehini and D. Sugny, "Field-free molecular orientation by nonresonant and quasiresonant two-color laser pulses", Phys. Rev. A 77,023407 (2008).
    48. K. Kitano, N. Ishii, and J. Itatani, "High degree of molecular orientation by a combination of THz and femtosecond laser pulses", Phys. Rev. A 84,053408 (2011).
    49. H. Yun, H. T. Kim, C. M. Kim, C. H. Nam, and J. Lee, "Parity-selective enhancement of field-free molecular orientation in an intense two-color laser field", Phys. Rev. A 84,065401 (2011).
    50. O. Ghafur, A. Rouzee, A. Gijsbertsen, W. Siu, S. Stolte, and M. J. J. Vrakking, "Impulsive orientation and alignment of quantum-state-selected NO molecules", Nature Phys.5,289 (2009).
    51. Kenta Kitano, Nobuhisa Ishii,Natsuki Kanda,Yoshiyuki Matsumoto,Teruto Kanai,Makoto Kuwata-Gonokami,and Jiro Itatani, "Orientation of jet-cooled polar molecules with an intense single-cycle THz pulse", Phys. Rev. A,88, 061405(R) (2013).
    52. P. R. Brooks, E. M. Jones, "Reactive scattering of K atoms from oriented CH3I molecules", J.Chem. Phys.,45,3449 (1966).
    53. R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets", Phys. Rev. Lett.88,013903 (2001).
    54. R. A. Bartels, N. L. Wagner, M. D. Baertschy, J. Wyss, M. M. Murnane, and H. C. Kapteyn, "Phase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases", Opt. Lett.28,346 (2003).
    55. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Tomographic imaging of molecular orbitals", Nature 432,867 (2004).
    56. A. Rouzee, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, "Optical gratings induced by field-free alignment of molecules", Phys. Rev. A 75,013419 (2007).
    57. Cheng Chen, Jian Wu, and Heping Zeng, "Nonadiabatic molecular orientation by polarization-gated ultrashort laser pulses", Phys. Rev. A 82,033409 (2010).
    58. I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, "Alignment-dependent strong field ionization of molecules", Phys. Rev. Lett.90,233003 (2003).
    59. R. Velotta, N. Hay, M. B. Mason, M. Castillejo, and J. P. Marangos, "High-order harmonic generation in aligned molecules", Phys. Rev. Lett.87,183901 (2001).
    60. D. Pavicic, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, "Direct measurement of the angular dependence of ionization for N2, O2, and CO2", Phys. Rev. Lett.98,243001 (2007).
    61. D. Pinkham and R. R. Jones, "Intense laser ionization of transiently aligned CO", Phys. Rev. A 72,023418 (2005).
    62. M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight, "Role of the intramolecular phase in high-harmonic generation", Phys. Rev. Lett.88,183903 (2002).
    63. Hua Cai, Jian Wu, Hao Li, Xueshi Bai, and Heping Zeng, "Elongation of femtosecond filament by molecular alignment in air", Optics Express 17,21060 (2009).
    64. Hua Cai, Jian Wu, Arnaud Couairon, and Heping Zeng, "Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals", Opt. Lett.34, 827 (2009).
    65. Hua Cai, Jian Wu, Xueshi Bai, Haifeng Pan, and Heping Zeng, "Molecular alignment assisted high-energy supercontinuum pulse generation in air", Opt. Lett.,35,49 (2010).
    66. Hua Cai, Jian Wu, Yan Peng, and Heping Zeng, "Comparison study of supercontinuum generation by molecular alignment of N2 and O2", Optics Express 17,5822 (2009).
    67. Hua Cai, Jian Wu, Peifen Lu, Xueshi Bai, Liangen Ding, and Heping Zeng, "Attraction and repulsion of parallel femtosecond filaments in air", Physical Review A (Rapid Communication) 80,051802 (2009).
    68. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer and C. K. Rhodes, "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases," J. Opt. Soc. Am. B 4,595 (1987).
    69. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulse", Opt. Commun.56,219 (1985).
    70. F. J. McClung and R. W. Hellwarth, "Giant optical pulsations from ruby," J. Appl. Phys.33,828 (1962).
    71. X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee and R. Lopez-Martens, " Generation of 4.3 fs,1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber," Opt. Lett.34, 1588(2009).
    72. M. Nisoli, S. De Silvestri and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett.68,2793 (1996).
    73. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser", Opt. Lett.16,42 (1991).
    74. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, "Tailoring a 67 attosecond pulse through advantageous phase-mismatch," Opt. Lett.37,3891 (2012).
    75. M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers", Rep. Prog. Phys,60,389 (1997).
    76. E. P. Ippen and C. V. Shank, "Ultrashort Light Pulses-Picosecond Techniques and Applications," Springer, Berlin. (1977).
    77. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapieo, and K. W. Wecht, "Two photon excitation of fluorescence by picoseconds light pulses," Appl. Phys. Lett. 11,216(1967).
    78. M. Maier, W. Kaiser, and J. A. Giordmaine, "Intense light bursts in the stimulated raman effect," Phys. Rev. Lett.17,1275 (1966).
    79. K. W. DeLong, R. Trebino, Daniel J. Kane, J. Opt. Soc. Am B 11,1595 (1994).
    80. C. Iaconis and I.A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses", IEEE J. Quan. Elec.35,501 (1999).
    81. C. Iaconis and I.A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses", Opt. Lett.23,792 (1998).
    82. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. C. Bandulet, H. Pepin, J. C. Kieffer, R. Dorner, D. M. Villeneuve, P. B. Corkum, "Laser-induced electron tunneling and diffraction", Science 320,1478 (2008).
    83. J. G. Underwood, B. J. Sussman, and A. Stolow, "Field-free three dimensional molecular axis alignment", Phys. Rev. Lett.94,143002 (2005).
    84. J. Wu, H. Cai, H. Zeng, and A. Couairon, "Femtosecond filamentation and pulse compression in the wake of molecular alignment", Opt. Lett.33,2593 (2008).
    85. D. Daems, S. Guerin, E. Hertz, H. R. Jauslin, B. Lavorel, and O. Faucher, "Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses", Phys. Rev. Lett.95,063005 (2005).
    86. J. J. Larsen, K. Hald, N. Bjerre, and H. Stapelfeldt, "Three dimensional alignment of molecules using elliptically polarized laser fields", Phys. Rev. Lett.85,2470 (2000).
    87. Hao Li, Wenxue Li, Jia Liu, Haifeng Pan, Jian Wu, and Heping Zeng, "Characterization of elliptically polarized femtosecond pulses by molecular-alignment-based frequency resolved optical gating", Appl. Phys. B 108, 761 (2012).
    88. Hao Li, Jia Liu, Yahui Feng, Cheng Chen, Haifeng Pan, Jian Wu, and Heping Zeng, "Temporal and phase measurements of ultraviolet femtosecond pulses at 200 nm by molecular alignment based frequency resolved optical gating," Appl. Phys. Lett.99,011108 (2011).
    89. Peifen Lu, Jia Liu, Hao Li, Haifeng Pan, Jian Wu, and Heping Zeng, "Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement", Appl. Phys. Lett.97, 061101(2010).
    90. J. Liu, Y. Feng, Hao Li, P. Lu, H. Pan, Jian Wu, and Heping Zeng, "Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating", Opt. Express.19,40 (2011).
    91. L. Xu, P. Schlup, O. Masihzadeh, R. A. Bartels, and R. Trebino, "Analysis of the measurement of polarization-shaped ultrashort laser pulses by tomographic ultrafast retrieval of transverse light E fields", J. Opt. Soc. Am. B 26,2363 (2009).
    92. R. Trebino, K. W. DeLong, D. N. Fittnghoff, J. N. Sweetser, M. A. Krubugel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating", Rev. Sci. Instrum.68,3277 (1997).
    93. K. W. DeLong, R. Trebino, and W. E. White, "Simultaneous recovery of two ultrashort laser pulses from a single spectrogram", J. Opt. Soc. Am. B 12,2463 (1995).
    94. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999).
    95. N. Dudovich, J. Levesque, O. Smirnova, D. Zeidler, D. Comtois, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Attosecond Temporal Gating with Elliptically Polarized Light", Phys. Rev. Lett.97,253903 (2006).
    96. R. Ramprasad and N. Shi, "Polarizability of phthalocyanine based molecular systems:A first-principles electronic structure study", Appl. Phys. Lett.88, 222903 (2006).
    97. Berta Fernandez, Sonia Coriani, Antonio Rizzo, "MCSCF polarizability and hyperpolarizabilities of HCl and HBr", Chem. Phys. Lett.288,677 (1998).
    98. David M. Bishop and Patrick Norman, " Effects of vibration on the polarizability and the first and second hyperpolarizabilities of HF, HC1, and HBr", J. Chem. Phys. 111,3042 (1999).
    99. Marcello F. Costa, Tertius L. Fonseca, Orlando A.V. Amaral, Marcos A. Castro, "Calculations of the polarizability and hyperpolarizability of the NaH molecule including vibrational corrections", Physics Letters A 263,186 (1999).
    100. George Maroulis, Manolis Menadakis, " Polarizability and hyperpolarizability of COS and NNO", Chem. Phys. Lett.494,144 (2010).
    101. R. I. Keir, D. W. Lamb, G. L. D. Ritchie and J. N. Watson, Chem. Phys. Lett. 279,22(1997).
    102. T. C. English, K. B. Macadam, Phys. Rev. Lett.24,555 (1970).
    103. V. Renard, O. Faucher, and B. Lavorel, "Measurement of laser-induced alignment of molecules by cross defocusing", Opt. Lett.30,70 (2005).
    104. A. Couairon, and A. Mysyrowicz, "Femtosecond filamentation in transparent media", Phys. Rep.441,47 (2007).
    105. V. Renard, M. Renard, S. Guerin, Y. T. Pashayan, B. Lavorel, O. Faucher and H. R. Jauslin, "Postpulse Molecular Alignment Measured by a Weak Field Polarization Technique", Phys. Rev. Lett.90,153601 (2003).
    106. J. Wu, H. Cai, Y. Tong, H. Zeng, "Measurement of field-free molecular alignment by cross-defocusing assisted polarization spectroscopy", Opt. Express 17,16300(2009).
    107. J. W. Hahn and E. S. Lee, "Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique", J. Opt. Soc. Am. B,12,1021 (1995).
    108. F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, "Generation of tunable and broadband far-infrared laser pulses during two-color filamentation", Phys. Rev. A 81,033821 (2010).
    109. Leonardo Brugnera, David J. Hoffmann, Thomas Siegel, Felix Frank, Amelle Zaiir, John W. G. Tisch, and Jonathan P. Marangos, "Trajectory Selection in High Harmonic Generation by Controlling the Phase between Orthogonal Two-Color Fields", Phys. Rev. Lett.107,153902.
    110. D. Meshulach and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses", Phys. Rev. A 60,1287 (1999).
    111. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media", Phys. Rev. Lett.53,1555(1984),
    112. Ch. Fattinger and D. Grischkowsky, "Point source terahertz optics", Appl. Phys. Lett.53,1480 (1988).
    113. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves", Optics Letters,20, 1716(1995).
    114. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, K. Kawase, "Terahertz sensing method for protein detection using a thin metallic mesh", Applied Physics Letters 91,253901 (2007).
    115. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, "Terahertz surface-wave resonant sensor with a metal hole array," Optics Letters,31,1118(2006).
    116. A. Dobroiu, Y. Sasaki, T. Shibuya, C. Otani and K. Kawase, "THz-wave spectroscopy applied to the detection of illicit drugs in mail (Invited Review)," Proceedings of the IEEE,95,1566 (2007).
    117. S. Fleischer, Yan Zhou, Robert W. Field, and Keith A. Nelson, "Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses", Phys. Rev. Lett. 107,163603(2011).
    118. J. Yang, M. Chen, J. Yu, and S.L. Cong, "Efficient field-free orientation of CO molecules using a three-step excitation scheme", Eur. Phys. J. D 66,102 (2012).
    119. J. Ortigoso, "Mechanism of Molecular Orientation by Single-cycle Pulses", J. Chem. Phys.137,044303 (2012).
    120. M. Lapert and D. Sugny, "Field-free molecular orientation by terahertz laser pulses at high temperature", Phys. Rev. A 85,063418 (2012).
    121. S.-L. Liao, T.-S. Ho, H. Rabitz and S.-I. Chu, "Maximum attainable field-free molecular orientation of a thermal ensemble with near-single-cycle THz pulses", Phys. Rev. A 87,013429 (2013).
    122. J. Wu and H. Zeng, "Field-free molecular orientation control by two ultrashort dual-color laser pulses", Phys. Rev. A 81,053401 (2010).
    123. M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, "Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off', Phys. Rev. A 79,011403 (R) (2009).
    124. K. Kitano, N. Ishii, and J. Itatani, "High degree of molecular orientation by a combination of THz and femtosecond laser pulses", Phys. Rev. A 84,053408 (2011).
    125. H. Stapelfeldt and T. Seideman, "Colloquium:Aligning molecules with strong laser pulses", Rev. Mod. Phys.75,543 (2003).
    126. T. Seideman and E. Hamilton, "Nonadiabatic alignment by intense pulses. Concepts, theory, and directions", Adv. At. Mol. Opt. Phys.52,289 (2006).
    127. D. Tunega, J. Noga, "Static electric properties of LiH:explicitly correlated coupled cluster calculations", Theor. Chem. Acc.100,78 (1998).
    128. H. Yun, H. T. Kim, C. M. Kim, C. H. Nam, and J. Lee, "Parity-selective enhancement of field-free molecular orientation in an intense two-color laser field", Phys. Rev. A 84,065401 (2011).
    129. D. Meshulach and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses", Phys. Rev. A 60,1287 (1999).
    130. Sharly Fleischer, Robert. W. Field, and Keith A. Nelson, " Commensurate Two-Quantum Coherences Induced by Time-Delayed THz Fields", Phys. Rev. Lett.109,123603(2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700