内蒙古高原湖泊碳(氮、磷、硅)的地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊碳循环是陆地生态系统碳循环的重要组成部分。湖泊是地球表层系统各圈层相互作用的联结点,它以高分辨率沉积物敏感地记录着区域气候环境的变化历史。C、N、P、Si等生源要素在湖泊水-沉积物界面及其附近发生剧烈的生物地球化学循环,并控制C、N、P、Si等在上覆水体和沉积物间的物质平衡、形态转化和沉积剖面分布。湖泊水-沉积物界面的碳通量和碳过程及其变化直接影响沉积物的碳源汇功能。沉积物是全球碳的重要源与汇,在全球碳循环中扮演重要角色。碳形态及其变化对湖泊水-沉积物界面的碳通量及碳过程起关键控制作用,沉积物中碳形态是探讨碳循环的重要基础和前提。
     内蒙古高原湖泊湿地资源丰富,类型多样,在我国湖泊湿地的整体研究中占有重要位置。在内蒙古高原西部湖泊中,以乌梁素海和岱海的富营养化类型及湖水盐度的差异性最为明显,是探讨富营养化类型和水平对湖泊水-沉积物界面碳通量和碳过程及碳的源/汇功能等影响机制的典型区域。然而,有关该区湖泊湿地生态系统碳循环的研究迄今尚属空白。
     本文以碳形态研究为基础,以湖泊水-沉积物界面碳通量和碳过程的影响机制研究为主线,深入探讨了2个不同类型湖泊水-沉积物系统中碳形态分布的差异性,阐释了无机碳形态对2个湖泊生态系统碳循环的贡献,判识了2个湖泊沉积物的碳源/汇功能,取得了如下主要成果和进展。
     1.开展了内蒙古高原西部湖泊水-沉积物界面DIC交换通量的模拟实验研究,判识了浅水草型和深水藻型等2个不同类型湖泊沉积物的碳源汇功能。该项研究成果对评价内蒙古高原西部干旱半干旱地区湖泊沉积物的碳源汇功能和强度,厘定内蒙古高原西部湖泊碳的时空分布格局等具有重要意义。
     2.发现了恢复湖泊古环境古气候新的有效代用指标,拓展了古环境古气候恢复研究的方法和思路,利用陆源有机碳和形态无机碳成功恢复与重建了浅水草型和深水藻型等2个不同类型湖泊的古环境古气候。
     3.对比总结了浅水草型和深水藻型等2个不同类型湖泊沉积物中无机碳形态分布的关键控制因子。研究发现,湖泊富营养化类型、湖泊初级生产力、C-N-P-Si的耦合作用、氮的硝化与反硝化作用及水-沉积物界面的扰动等均是影响沉积物中无机碳形态分布及水-沉积物界面碳通量和过程的重要机制。
     4.给出了浅水草型和深水藻型等2个不同类型湖泊沉积物中无机碳的主导形态,探讨了无机碳形态对湖泊生态系统碳循环的贡献及其差异性机制,阐释了无机碳形态对水-沉积物界面碳通量和碳过程及沉积物碳源/汇功能的控制作用机理。
     5.利用BSi,结合湖泊水体营养状况及生产力水平,反演了浅水草型和深水藻型等2个不同类型湖泊的富营养化进程。
     6.以无机碳形态研究为基础,紧密围绕湖泊水-沉积物界面碳源/汇功能及其转化机制这条主线,首次系统开展了内蒙古高原西部湖泊水-沉积物系统的碳循环研究,填补了该区湖泊碳循环研究的空白。
     上述研究成果对厘定内蒙古高原湖泊碳源汇的时空分布格局,为干旱半干旱区湖泊沉积物碳源汇功能的研究提供借鉴,为与湿润区湖泊的对比研究积累基础资料,为湖泊湿地资源的合理开发与保护利用提供科学依据等均有重要意义。
Carbon (C) shares with nitrogen (N) and phosphorus (P) the characteristic of being the major chemical elements in the global biosphere, and the photosynthetic fixation of C by phytoplankton is accompanied by the uptake of major chemical elements such as N and P for diatoms. So the chemical, geological, biological, and physical processes of carbon are important to many fundamental geochemical processes. Interest in the biogeochemical cycles of important elements like C, N, P and trace elements has been heightened by issues associated with global, regional and local environmental problems caused by increased fluxes of C, N and P compounds arising from anthropogenic activities. Due to concern associated with the increase of atmospheric CO_2 concentrations and a future enhanced greenhouse effect, numerous studies have focused on the global carbon cycling. This increase has led researchers worldwide to examine the sources and sinks of carbon and to calculate carbon balances. Apart from the binding of carbon in peat lands, mineral soils and the tree layer vegetation, it is also present in large quantities in lake sediments, which constitute one of the few permanent sinks in the global carbon cycle.
     Therefore, this study was carried out on the Wuliangsuhai Lake (WLSH) and the Daihai Lake (DH) based on their representativeness on the mechanism and characteristic of eutrophication, and on the different mechanism of carbon form distribution in the water/sediment system. Based on the theories and methods of environmental geochemistry, biogeochemistry, pollution ecology and limnology, the form distribution, the geochemistry characters and the contribution to carbon cycling of carbon in the Wuliangsuhai Lake and the Daihai Lake are researched in this paper.
     To say concretely, the patter of horizontal distribution of dissolved inorganic carbon (DIC), total inorganic carbon (TIC), dissolved organic carbon (DOC) and total organic carbon (TOC) in overlying water and the form distribution of inorganic carbon (IC) in sediment of the two lakes are studied, which includes the impacts of environmental factors on the form distribution of inorganic carbon, the pulling function to the carbon cycling of the lake ecosystem by the eutrophication status and types. Meanwhile, the form transformation of IC and their contribution to carbon cycling in sediment, and the DIC fluxes across water-sediment interface in the two lakes are also discussed. In addition, based on accurate interpretation of the information of IC form distribution, allochthonous organic carbon (OC) and BSi archived in sediment cores, the palaeoenvironment and palaeoclimate of the two lakes and their catchments basins were well reconstructed, which may provide valuable database for the studies of environmental geochemical cycle and function transformation of source/sink of carbon in lakes sediment. The results are described as follows:
     1. Based on the calculation of fluxes of DIC across the water-sediment interface, there about 2.64×10~4t DIC is released from sediment to overlying water in WLSH in summer (90 days); there about 1.70×10~4t DIC is released from sediment to overlying water in DH's shoal water zone, while there about 2.00×10~4t DIC transfers into sediment from overlying water across the water-sediment interface in DH's deepwater area, thus there about 0.30×10~4t DIC transfers into sediment in DH.
     2. For the first time, based on the accurate interpretation of the information of allochthonous OC and NH_2OH-HC1 form IC archived in sediment cores, the palaeoenvironment and palaeoclimate of the Daihai Lake and its catchment basin in recent 250 and 550 years are well reconstructed respectively. So the research does some significative works in rinding new effective indexes of palaeoenvironment and palaeoclimate studies.
     3. Because of the impacts of lake types especially eutrophication level and character, the key factors affecting the form distribution of IC are TOC, TN, Org-N, NH_4~+-N and NO_3~--N in WLSH sediment, while TOC, TN, Org-N, water ratio, BSi, TP and inorganic phosphorus (IP) in DH sediment.
     The content of IC from biogenic origin and organic matter decomposition controlled by TOC, TN and Org-N, the pulling function to carbon cycling by coupling effects of C-N-P-Si and the exchange function of pore water are the key mechanisms affecting the forms distribution in sediments and the fluxes and processes of IC across the water-sediment interface.
     The nitrification and denitrification in sediment of shallow lake, the eutrophication character, the disturbance intension of water-sediment interface, the primary conductivity and the mass action law also play important roles in affecting the forms distribution in sediments and the fluxes and processes of IC across the water-sediment interface.
     4. The contributions to carbon cycling of IC forms rank as: NaCl form > NaOH form and NH_3-H_2O form > NH_2OH-HC1 form > HC1 form.
     Further, at a certain extent, the HCl form of IC also contributes to carbon cycling of IC, which is related to the rhizosphere environment of submerged macrophyte and emergent plant in WLSH; while the HCl form of IC does not contribute to carbon cycling of IC because of DH's sediment lacking of impacts by aquatic organisms.
     5. The dominant forms of IC in sediment from WLSH and DH are NH_2OHHCl form and HCl form indicating that calcite and aragonite, which are the main source of IC, are the dominant carbonate minerals in the two lake sediment.
     The differences of NaCl form, NH_3·H_2O form and NaOH form IC between WLSH and DH sediment reveal that form distribution of the three IC forms are the key controlled factors of the fluxes and processes of carbon across the water-sediment interface, which further affect the function transformation of sediment as carbon source/sink. Meanwhile, the difference of vertical distribution of the three IC forms of DH indicate that the sediment in different lake areas play different role in functioning as carbon source/sink.
     6. The DIC and TIC distributions in overlying water show that the contents of DIC and TIC in DH are higher markedly than those in WLSH, which mainly results from the photosynthetic fixation of DIC and TIC by submerged macrophyte of WLSH, stronger chemical weathering, more IC input by surface runoff and the enclosed character of DH and its catchment basin.
     The correlation between NH_4~+-N, NO_3~--N, DTP, DRP, SiO_3~(-2) and TIC, DIC, TOC, DOC indicate that the photosynthesis and respiration of phytoplankton in DH overlying water, which is related to the bio-geochemical cycling of carbon, is controlled by NH_4~+-N, DTP, DRP and SiO_3~(2-) revealing the pulling function to carbon cycling by eutrophication level.
     7. The concentration levels of SiO_3~(2-) and BSi in the overlying water and surface sediment reflect the difference of eutrophication character between the two lakes. Further, based on the vertical distribution of BSi, TN and TOC in the sediment cores, the past eutrophication trends of WLSH and DH is well reconstructed.
引文
[1] 袁道先,刘再华,蒋忠诚.碳循环与岩溶地质环境;北京:科学出版社,2003.
    
    [2] 陈泮勤,黄耀,于贵瑞.地球系统碳循环;北京:科学出版社,2004.
    
    [3] 陈宜瑜.中国全球变化的研究方向,地球科学进展,1999,14(004):319-323
    
    [4] 于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积;气象出版社,2003.
    
    [5] Elser, J. J.,Fagan, W. F.,Denno, R. F. et al. Nutritional constraints in terrestrial and freshwater food webs,Nature, 2000,408(6812): 578-580
    
    [6] Mackenzie, F. T. Our Changing Planet: An Introduction to Earth System Science and Global EnvironmentalChange; Prentice Hall, 2003.
    
    [7] 袁道先.地球系统的碳循环和资源环境效应,第四纪研究,2001,21(003):223-232
    
    [8] Houghton, J. T. Global Warming: The Complete Briefing; Cambridge University Press, 2004.
    
    [9] 刘文新.地球的新陈代谢:了解碳循环,人类环境杂志,1994,23(001):4-12
    
    [10] Battle, M.,Bender, M.,Sowers, T. et al. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 1996,383(6597): 231-235
    
    [11]叶笃正,陈泮勤.中国的全球变化预研究;北京:地震出版社,1992.
    
    [12] Plass, G N. The influence of the 15mu carbon-dioxide band on the atmospheric infra-red cooling rate, 1956,
    
    [13] Post, W. M. Report of a workshop on climate feedbacks and the role of peatlands, tundra, and borealecosystems in the global carbon cycle, Workshop on climate feedbacks and the role of peatlands, tundra,and boreal ecosystems in the global carbon cycle, 1990,4(6)
    
    [14]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用,地球科学进展,2001,16(001): 5-11
    
    [15]宋金明.中国近海沉积物-海水界面化学;北京:海洋出版社,1998.
    
    [16] Melillo, J. M.,Callaghan, T. V.,Woodward, F. I. et al. Effects on ecosystems, Climate Change: The IPCCScientific Assessment, 1990: 283-310
    
    [17] Raynaud, D.3arnola, J. M. An Antarctic ice core reveals atmospheric CO_2 variations over the past fewcenturies, Nature, 1985, 315(6017): 309-311
    
    [18] Etheridge, D. M.,Pearman, G I.,de Silva, F. Atmospheric trace-gas variations as revealed by air trapped inan ice core from Law Dome, Antarctica, Annals of Glaciology, 1988,10: 28-33
    
    [19] Siegenthaler, U.,Friedli, H.,Loetschewr, H. et al. Stable-isotope ratios and concentration of CO_2 in air frompolar ice cores, Annals of Glaciology, 1988,10: 151-156
    
    [20] Wahlen, M.,Allen, D.,Deck, B. et al. Initial measurements of CO_2 concentrations (1530 to 1940 AD) in airoccluded in the GISP 2 ice core from central Greenland, Geophysical Research Letters, 1991, 18(8):1457-1460
    
    [21] Barnola, J. M.,Anklin, M.,Porcheron, J. et al. CO_2 evolution during the last millennium as recorded byAntarctic and Greenland ice, Tellus B, 1995,47(1): 264
    
    [22] Etheridge, D.,Steele, L. P.,Langenfelds, R. L. et al. VI, 1996: Morgan Natural and anthropogenic changes inatmospheric CO_2 over the last 1000 years from air in Antarctic ice and firn, JGR, 101:4115-4128
    
    [23] Prentice, I. C.,Farquhar, G D.,Fasham, M. J. R. et al. The carbon cycle and atmospheric carbon dioxide,Climate Change, 2001: 183-237
    
    [24] Houghton, R. A.,Davidson, E. A.,Woodwell, G M. Missing sinks, feedbacks, and understanding the role ofterrestrial ecosystems in the global carbon balance, Global Biogeochemical Cycles, 1998,12(1): 25-34
    
    [25] McCarthy, J. J. Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press,2001.
    
    [26] Steffen, W.,Noble, L.Canadell, J. et al. The terrestrial carbon cycle: implications for the Kyoto Protocol,Science, 1998,280(5368): 1393-1394
    
    [27]张佳华,卞林根,延晓冬et al.碳循环及对气候变化和人类生存环境的影响,气象科学,2006,26(003): 350-354
    
    [28] Dahlmanh, R. Strategies for measuring and modelling carbon dioxide and water vapour fluxes overterrestrial ecosystems, Global Change Biology, 1996,2:159-168
    
    [29] Fan, S.,Gloor, M.,Mahlman, J. et al. A Large Terrestrial Carbon Sink in North America Implied byAtmospheric and Oceanic Carbon Dioxide Data and Models, Science, 1998,282(5388): 442
    
    [30] Goodale, C. L.,Apps, M. J.,Birdsey, R. A. et al. Forest Carbon Sinks in the Northern Hemisphere,Ecological Applications, 2002,12(3): 891-899
    
    [31] Holland, E. A. North American Carbon Sink, Science, 1992,256: 70
    
    [32] Aubinet, M.,Grelle, A.,Ibrom, A. et al. Estimates of the annual net carbon and water exchange of forests: theEUROFLUX methodology, Advances in Ecological Research, 2000, 30(1): 1-13
    
    [33] Canadell, J. G,Dickinson, R.,Hibbard, K. R. M. et al. Global Carbon Project. Science Framework andImplementation, Global Carbon Project. Science Framework and Implementation. Earth System Science??Partnership, 2006: 80P
    
    [34] Houghton, J. T.,Jenkins, G. J.,Ephraums, J. J. et al. Climate Change: The IPCC Scientific Assessment;Cambridge University Press, 1990.
    
    [35] Schlesinger, W. H. Biochemistry: an analysis of global change; Academic Press, 1997.
    
    [36] Lal, R. World soils and greenhouse effect, IGBP Global Change Newsletter, 1999,37:4-5
    
    [37] Watson, R. T.,Noble, I. R. Carbon and the science-policy nexus: the Kyoto challenge, Challenges of aChanging Earth. Proceedings of the Global Change Open Science Conference. Berlin: Springer, 2001,64
    
    [38]黄耀.关于中国陆地生态系统碳循环研究的几点思考,世界科技研究与发展,2001,23(001):66-68
    
    [39]黄耀.中国陆地和近海生态系统碳收支研究,中国科学院院刊,2002,17(002):104-107
    
    [40] Murata, A.,Takizawa, T. Summertime CO_2 sinks in shelf and slope waters of the western Arctic Ocean,Continental Shelf Research, 2003,23(8): 753-776
    
    [41] Thomas, H.,Bozec, Y.,Elkalay, K. et al.; American Association for the Advancement of Science, 2004; Vol.304, pp 1005-1008.
    
    [42] Cai, W. J.,Dai, M.; American Association for the Advancement of Science, 2004; Vol. 306, pp 1477-1477.
    
    [43] Treguer, P. Silica and the cycle of carbon in the ocean, Comptes rendus-Geoscience, 2002,334(1): 3-11
    
    [44] Ogrinc, N.,Faganeli, J.,Pezdic, J. Determination of organic carbon remineralization in near-shore marinesediments (Gulf of Trieste, Northern Adriatic) using stable carbon isotopes, Organic Geochemistry, 2003,34(5): 681-692
    
    [45] Accornero, A.,Picon, P.,Bovee, F. et al. Organic carbon budget at the sediment-water interface on the Gulfof Lions continental margin, Continental Shelf Research, 2003,23(1): 79-92
    
    [46] Sasai, Y.,Ikeda, M. A model study for the carbon cycle in the upper layer of the North Pacific, MarineChemistry, 2003,81(1-2): 71-88
    
    [47] Brostrom, G. The role of the annual cycles for the air-sea exchange of CO_2, Marine Chemistry, 2000,72(2-4): 151-169
    
    [48] Falkowski, R.Scholes, R. J.,Boyle, E. et al. The Global Carbon Cycle: A Test of Our Knowledge of Earth asa System, Science, 2000,290(5490): 291-296
    
    [49] Dixon, R. K.,Solomon, A. M.,Brown, S. et al. Carbon Pools and Flux of Global Forest Ecosystems, Science,1994,263(5144): 185-190
    
    [50] Brix, H.,Sorrell, B. K.,Lorenzen, B. Are Phragmites-dominated wetlands a net source or net sink ofgreenhouse gases?, Aquatic Botany, 2001,69(2-4): 313-324
    
    [51] Bond, G,Broecker, W.,Johnsen, S. et al. Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 1993, 365(6442): 143-147
    
    [52]庄亚辉,李长生,高拯民.复合生态系统元素循环;北京:中国环境科学出版社,1996.
    
    [53]方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化,环境科学学报,1998,18(002):113-121
    
    [54]方精云,刘国华,徐嵩龄.中国陆地生态系统碳库,现代生态学的热点问题研究,1996,267
    
    [55]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量与碳平衡,植物生态学报,2000,24(5):518-522
    
    [56]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环;气象出版社,2002.
    
    [57]王效科,冯宗炜.中国森林生态系统的植物碳储量和碳密度研究,应用生态学报,2001,12(001):13-16
    
    [58] Ni, J. Carbon Storage in Terrestrial Ecosystems of China: Estimates at Different Spatial Resolutions and Their Responses to Climate Change, Climatic Change, 2001,49(3): 339-358
    
    [59]王绍强,朱松丽.中国土壤有机碳库及空间分布特征分析,地理学报,2000,55(005):533-544
    
    [60] Siegenthaler, U.,Sarmiento, J. L. Atmospheric carbon dioxide and the ocean, Nature, 1993, 365(6442):119-125
    
    [61] Houghton, J. T. Climate Change 2001: The Scientific Basis; Cambridge University Press Cambridge, 2001.
    
    [62] Sundquist, E. T. The global carbon dioxide budget, Science, 1993,259(5097): 934-941
    
    [63] Lee, K.,Millero, F. J.,Byrne, R. H. et al. The recommended dissociation constants for carbonic acid inseawater, Geophysical research letters, 2000,27(2): 229-232
    
    [64] Sarmiento, J. L. Oceanic uptake of anthropogenic CO_2: The major uncertainties, Global BiogeochemicalCycles, 1991,5(4): 309-313
    
    [65] Thomas, H.,Bozec, Y.,Elkalay, K. et al.; American Association for the Advancement of Science, 2004; Vol.306, pp 1477-1477.
    
    [66] Handson, R. B.,Ducklow, H. W.,Field, J. G The Changing Ocean Carbon Cycle: A midterm of the JGOFS;London: Cambridge University Press, 2000.
    
    [67] Sharp, J. H.,Benner, R.,Bennett, L. et al. Analyses of dissolved organic carbon in seawater: the JGOFSEqPac methods comparison, Marine Chemistry, 1995,48(2): 91-108
    
    [68] Thomas, C.,Cauwet, G.,Minster, J. F. Dissolved organic carbon in the equatorial Atlantic Ocean, MarineChemistry, 1995,49(2-3): 155-169
    
    [69] Wiebinga, C. J.,de Baar, H. J. W. Determination of the distribution of dissolved organic carbon in the Indiansector of the Southern Ocean, Marine Chemistry, 1998,61(3-4): 185-201
    
    [70] Ogawa, H.,Fukuda, R.,Koike, I. Vertical distributions of dissolved organic carbon and nitrogen in the??Southern Ocean, Deep-Sea Research Part 1,1999,46(10): 1809-1826
    
    [71] Sardessai, S.,de Sousa, S. N. Dissolved organic carbon in the INDEX area of the Central Indian Basin,Deep-Sea Research Part II, 2001,48(16): 3353-3361
    
    [72] Hung, J. J.,Lin, P. L.,Liu, K. K. Dissolved and paniculate organic carbon in the southern East China Sea,Continental Shelf Research, 2000,20(4-5): 545-569
    
    [73] Otto, S.,Balzer, W. Release of dissolved organic carbon (DOC) from sediments of the NW EuropeanContinental Margin (Goban Spur) and its significance for benthic carbon cycling, Progress in Oceanography,1998,42(14): 127-144
    
    [74] Meybeck, M. Riverine transport of atmospheric carbon: Sources, global typology and budget, Water, Air, &Soil Pollution, 1993,70(1): 443-463
    
    [75] Hedges, J. I.,Keil, R. G,Benner, R. What happens to terrestrial organic matter in the ocean?, OrganicGeochemistry, 1997,27(5-6): 195-212
    
    [76] Schafer, J.31anc, G,Lapaquellerie, Y. et al. Ten-year observation of the Gironde tributary fluvial system:fluxes of suspended matter, particulate organic carbon and cadmium, Marine Chemistry, 2002, 79(3-4):229-242
    
    [77] Louanchi, F.,Metzl, N.,Poisson, A. Modelling the monthly sea surface fCO_2 fields in the Indian Ocean,Marine Chemistry, 1996,55(34): 265-279
    
    [78] Metzl, N.,Louanchi, F.,Poisson, A. Seasonal and interannual variations of sea surface carbon dioxide in thesubtropical Indian Ocean, Marine Chemistry, 1998,60(1-2): 131-146
    
    [79] Kantha, L. H. A general ecosystem model for applications to primary productivity and carbon cycle studiesin the global oceans, Ocean Modelling, 2004,6(3-4): 285-334
    
    [80]邢如楠.带生物泵三维全球海洋碳循环模式,大气科学,2000,24(003):333-340
    
    [81] Freeman, C.,Evans, C. D.,Monteith, D. T. et al. Export of organic carbon from peat soils, Nature, 2001, 412(6849): 785
    
    [82]万国江,白占国.洱海近代沉积物中碳-氮-硫-磷的地球化学记录,地球化学,2000,29(002):189-197
    
    [83]杨洪,易朝路,谢平et al.人类活动在武汉东湖沉积物中的记录,中国环境科学,2004,24(003):261-264
    
    [84] Wetzel, R. G Limnology, second edition; Cambridge University Press: London, 1983.
    
    [85] Striegl, R. G,Kortelainen, R.Chanton, J. P. et al. Carbon Dioxide Partial Pressure and ^~(13)C Content of NorthTemperate and Boreal Lakes at Spring Ice Melt, Limnology and Oceanography, 2001,46(4): 941-945
    
    [86] Bade, D. L.,Carpenter, S. R.,Cole, J. J. et al. Controls of d ~(13)C-DIC in lakes: Geochemistry, lake metabolism,??and morphometry, Limnol. Oceanogr, 2004,49(4): 1160-1172
    
    [87]李思亮,刘丛强,陶发祥et al.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中 的应用,地球化学,2004,33(002):165-170
    
    [88] Telmer, K.,Veizer, J. Carbon fluxes, pCO_2 and substrate weathering in a large northern river basin, Canada:carbon isotope perspectives, Chemical Geology, 1999,159(1-4): 61-86
    
    [89] Aucour, A. M.,Sheppard, S. M. F.,Guyomar, O. et al. Use of ~(13)C to trace origin and cycling of inorganiccarbon in the Rhone river system, Chemical Geology, 1999,159(1-4): 87-105
    
    [90] Amiotte-Suchet, P.,Aubert, D.,Probst, J. L. et al. δ~(13)C pattern of dissolved inorganic carbon in a smallgranitic catchment: the Strengbach case study (Vosges mountains, France), Chemical Geology, 1999,159(1-4): 129-145
    
    [91] Richey, J. E.,Wissmar, R. C.,Devol, A. H. et al. Carbon Flow in Four Lake Ecosystems: A StructuralApproach, Science, 1978,202(4373): 1183-1186
    
    [92] Rich, P. H.,Devol, A. H. Analysis of five North American lake ecosystems VII. Sediment processing, Verh.Internat. Verein. Limnol, 1978,20: 598-601
    
    [93] Downing, J. P.,Meybeck, M.,Orr, J. C. et al. Land and water interface zones, Water, Air, & Soil Pollution,1993,70(1): 123-137
    
    [94]杨洪.武汉东湖碳循环过程和碳收支研究,硕士学位论文,中国科学院研究生院,2004
    
    [95]严国安,刘永定.水生生态系统的碳循环及对大气CO_2的汇,生态学报,2001,21(005):827-833
    
    [96] Carpenter, S. R.,Caraco, N. F.,Correll, D. L. et al. Nonpoint Pollution of Surface Waters with Phosphorusand Nitrogen, Ecological Applications, 1998,8(3): 559-568
    
    [97] Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadianfreshwaters in the new millennium, Canadian Journal of Fisheries and Aquatic Sciences, 2001,58(1): 18-29
    
    [98] Huttunen, J. T.,Alm, J.,Liikanen, A. et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreallakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 2003,52(3): 609-621
    
    [99] Kling, G W.,Kipphut, G W.,Miller, M. C. The flux of CO_2 and CH_4 from lakes and rivers in arctic Alaska,Hydrobiologia, 1992,240(1): 23-36
    
    [100] Cole, J. J.,Caraco, N. F.,Kling, G W. et al. Carbon Dioxide Supersaturation in the Surface Waters of Lakes,Science, 1994,265(5178): 1568-1570
    
    [101]黄绍基,赵海洲.质量衡算模型计算太湖底泥磷的交换量,环境科学,1992,13(001):83-84
    
    [102] Seiki, T.,Izawa, H.,Date, E. Benthic nutrient retnineralization and oxygen consumption in the coastal area ofHiroshima Bay, Water Research, 1989, 23(2): 219-228
    
    [103] Austin, E. R.,Lee, G F. Nitrogen release from lake sediments, J Wat Pollut Control Fed, 1973,45: 870-879
    
    [104] Boers, P. C. M.,van Hese, O. Phosphorus Release from the Peaty Sediments of the Loosdrecht Lakes(TheNetherlands), Water Research WATRAG, 1988,22(3)
    
    [105] Markert, B. E.,Tesmer, M. G,Parker, P. E. In situ sediment oxygen demand sampler, Water research, 1983,17(4): 603-605
    
    [106] McDuff, R. E.,Ellis, R. A. Determining diffusion coefficients in marine sediments; a laboratory study of thevalidity of resistivity techniques, American Journal of Science, 1979,279(6): 666
    
    [107]范成新,秦伯强.梅梁湖和五里湖水-沉积物界面的物质交换,湖泊科学,1998,10(001):73-78
    
    [108] Vreca , P. Carbon cycling at the sediment-water interface in a eutrophic mountain lake (Jezero na Planinipri Jezeru, Slovenia), Organic Geochemistry, 2003, 34(5): 671-680
    
    [109] Jin, X.,Jiang, X.,Yao, Y. et al. Effects of light and oxygen on the uptake and distribution of phosphorus atthe sediment-water interface, Science of the Total Environment, The, 2006,357(1-3): 231-236
    
    [110] Liikanen, A.,Martikainen, P. J. Effect of ammonium and oxygen on methane and nitrous oxide fluxes acrosssediment-water interface in a eutrophic lake, Chemosphere, 2003,52(8): 1287-1293
    
    [111] Soto-Jimenez, M. F.,Paez-Osuna, F.,Bojorquez-Leyva, H. Nutrient cycling at the sediment-water interfaceand in sediments at Chiricahueto marsh: a subtropical ecosystem associated with agricultural land uses,Water Research, 2003,37(4): 719-728
    
    [112]李学刚,李宁,宋金明.海洋沉积物中不同结合态无机碳的测定,分析化学,2004,32(004):425-429
    
    [113] Wu, L.,Varshney, P. K.,Prakash Babu, C. et al. Distribution of organic carbon in surface sediments along theeastern Arabian Sea: a revisit, Marine Geology, 1999,162(1): 91-103
    
    [114] Hulth, S.,Hall, P. O. J.,Blackburn, T. H. et al. Arctic sediments (Svalbard): pore water and solid phasedistributions of C, N, P and Si, Polar Biology, 1996,16(6): 447-462
    
    [115] Palanques, A.,Isla, E.,Puig, P. et al. Annual evolution of downward particle fluxes in the Western BransfieldStrait (Antarctica) during the FRUELA project, Deep-Sea Research Part II, 2002,49(4-5): 903-920
    
    [116] Isla, E.,Masque, P.,Palanques, A. et al. Sediment accumulation rates and carbon burial in the bottomsediment in a high-productivity area: Gerlache Strait (Antarctica), Deep-Sea Research Part II, 2002,49(16):3275-3287
    
    [117]杨作升,范德江.东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析,沉积学报,2002,??20(001):1-6
    
    [118]袁华茂,孙云明.自然粒度下渤海沉积物中有机碳的地球化学特征,环境化学,2003,22(002):115-120
    
    [119]邢莲莲.内蒙古乌梁素海鸟类志;内蒙古大学出版社,呼和浩特,1996.
    
    [120]内蒙古湖泊恢复治理项目-乌梁素海综合整治研究.中国-瑞典-挪威合作项目.
    
    [121]孙惠民,何江,吕昌伟et al.乌梁素海氮污染及其空间分布格局,地理研究,2006,25(6):1003-1012
    
    [122]金相灿.中国湖泊富营养化;中国环境科学出版社:北京,1990,509-512.
    
    [123]尚士友,杜健民,李旭英et al.草型富营养化湖泊生态恢复工程技术的研究——内蒙古乌梁素海生态 恢复工程试验研究,生态学杂志,2003,22(006):57-62
    
    [124]叶雪梅,郝吉明.中国主要湖泊营养氮沉降临界负荷的研究,环境污染与防治,2002,24(001):54-58
    
    [125]于瑞宏,李畅游,刘廷玺et al.乌梁素海湿地环境的演变,地理学报,2004,59(6):948-955
    
    [126]孙惠民,何江,高兴东et al.乌梁素海沉积物中全磷的分布特征,沉积学报,2006,24(4):579-584
    
    [127]王苏民,吴瑞金,余源盛.岱海-湖泊环境与气候变化;中国科学技术大学出版社:合肥,1990.
    
    [128]周云凯,姜加虎,黄群et al.内蒙古岱海水体营养状况分析,干旱区地理,2006,29(001):42-46
    
    [129]昝成功.内蒙古岱海湖泊生态环境问题,内蒙古环境保护,2001,13(002):25-27
    
    [130]孙千里,肖举乐.岱海沉积物粒度特征及其古环境意义,海洋地质与第四纪地质,2001,21(001):93-95
    
    [131]于兴河,王德发,孙志华.湖泊辫状河三角洲岩相、层序特征及储层地质模型-内蒙古岱海湖现代三角洲 沉积考察,沉积学报,1995,13(1):48-58
    
    [132]李悦,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义,海洋环境科学,1998, 17(001):15-20
    
    [133] Ruttenberg, K. C. Development of a Sequential Extraction Method for Different Forms of Phosphorus inMarine Sediments, Limnology and Oceanography, 1992,37(7): 1460-1482
    
    [134] Zhu, G W.,Qin, B. Q.,Zhang, L. et al. Geochemical Forms of Phosphorus in Sediments of Three Large,Shallow Lakes of China, Pedosphere, 2006,16(6): 726-734
    
    [135]叶曦雯,刘素美,赵颖翡et al.东,黄海沉积物中生物硅的分布及其环境意义,中国环境科学,2004, 24(003):265-269
    
    [136]刘敏,侯立军,许世远et al.潮滩“干湿过程”模式下营养盐的迁移,转化微观实验模拟,海洋学报, 2006,28(001):169-175
    
    [137] Michalopoulos, P.,Aller, R. c. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage, Geochimica et Cosmochimica Acta, 2004,68(5): 1061-1085
    
    [138]韩舞鹰.海水化学要素调查手册,北京:海洋出版社,1986,
    
    [139] Liu, S. M.,Ye, X. W.,Zhang, J. et al. Problems with biogenic silica measurement in marginal seas, MarineGeology, 2002,192(4): 383-392
    
    [140] Stallard, R. F.,Edmond, J. M. Geochemistry of the Amazon 2. The influence of geology and weatheringenvironment on the dissolved load, Journal of Geophysical Research, 1983,88(C14): 9671-9688
    
    [141] Stallard, R. F.,Edmond, J. M. Geochemistry of the amazon 3. weathering chemistry and limits to dissolvedinputs, Journal of Geophysical Research, 1987,92(C8): 8293-8302
    
    [142] Sarin, M. M.,Krishnaswami, S.,Dilli, K. et al. Major ion chemistry of the Ganga-Brahmaputra river system:Weathering processes and fluxes to the Bay of Bengal, Geochim. Cosmochim. Acta, 1989,53: 997-1009
    
    [143] Elderfield, H.,Upstill-Goddard, R.,Sholkovitz, E. R. The rare earth elements in rivers, estuaries, and coastalseas and their significance to the composition of ocean waters, Geochimica et Cosmochimica Acta, 1990,54(4): 971-991
    
    [144] Palmer, M. R.,Edmond, J. M. Controls over the strontium isotope composition of river water, Geochim.Cosmochim. Acta, 1992,56(5): 2099-2111
    
    [145] Zhang, J.,Takahashi, K.,Wushiki, H. et al. Water geochemistry of the rivers around the Taklimakan Desert(NW China): Crustal weathering and evaporation processes in arid land, Chemical Geology, 1995,119(1-4):225-237
    
    [146] Huh, Y.,Tsoi, M. Y.,Zaitsev, A. et al. The fluvial geochemistry of the rivers of Eastern Siberia: I. tributariesof the Lena River draining the sedimentary platform of the Siberian Craton, Geochimica et CosmochimicaActa, 1998,62(10): 1657-1676
    
    [147] Gaillardet, J.,Dupre, B.Allegre, C. J. et al. Chemical and physical denudation in the Amazon River Basin,Chemical Geology, 1997,142(3-4): 141-173
    
    [148] Gaillardet, J.,Dupre, B.,Louvat, P. et al. Global silicate weathering and CO_2 consumption rates deducedfrom the chemistry of large rivers, Chemical Geology, 1999,159(1-4): 3-30
    
    [149] Viers, J.,Dupre, B.3raun, J. J. et al. Major and trace element abundances, and strontium isotopes in theNyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transportmechanisms in humid tropical environments, Chemical Geology, 2000,169(1-2): 211-241
    
    [150] Qin, J.,Huh, Y.,Edmond, J. M. et al. Chemical and physical weathering in the Min Jiang, a headwatertributary of the Yangtze River, Chemical Geology, 2006,227(1-2): 53-69
    
    [151] Lu, C.,He, J.,Sun, H. et al. Application of allochthonous organic carbon and phosphorus forms in theinterpretation of past environmental conditions, Environmental Geology, 2008, DOI:??10.1007/s00254-007-1076-0
    
    [152] Ford, T. E.,Ford, S. A.,Lock, M. A. et al. Dissolved organic carbon concentrations and fluxes along theMoisie River, Quebec, Freshwater biology. Oxford, 1990,24(1): 35-42
    
    [153] Wetzel, R. G Limnology: Lake and River Ecosystems, New York, 2001,
    
    [154] Anad6n, R.,Estrada, M. The FRUELA cruises. A carbon flux study in productive areas of the AntarcticPeninsula (December 1995-February 1996), Deep-Sea Research Part II, 2002,49(4-5): 567-583
    
    [155] Mucci, A.,Sundby, B.,Gehlen, M. et al. The fate of carbon in continental shelf sediments of eastern Canada:a case study, Deep-Sea Research Part II, 2000,47(3-4): 733-760
    
    [156]范德江,杨作升.长江,黄河沉积物中碳酸盐组成及差异,自然科学进展,2002,12(001):60-64
    
    [157]牛丽凤,李学刚,宋金明et al.辽东湾柱状沉积物中无机碳的形态,海洋科学,2006,30(011):17-22
    
    [158]李学刚.近海环境中无机碳的研究,博士学位论文,中国科学院研究生院,2005
    
    [159] Birks, H. J. B.,Birks, H. H. Quaternary palaeoecology, Edward Arnold London, 1980.
    
    [160] Branvall, M. L.,Bindler, R.,Emteryd, O. et al. Four thousand years of atmospheric lead pollution in northernEurope: a summary from Swedish lake sediments, Journal of Paleolimnology, 2001,25(4): 421-435
    
    [161] Herczeg, A. L.,Smith, A. K.,Dighton, J. C. A 120 year record of changes in nitrogen and carbon cycling inLake Alexandrina, South Australia: C:N, δ~(15)N and δ~(13)C in sediments, Applied Geochemistry, 2001, 16(1):73-84
    
    [162] Jia, G D.,Peng, P. A. Temporal and spatial variations in signatures of sedimented organic matter in LingdingBay (Pearl estuary), southern China, Marine Chemistry, 2003,82(1): 47-54
    
    [163] Lindstrom, M.,Jonsson, A.,Brolin, A. A. et al. Heavy Metal Sediment Load from the City of Stockholm,Water, Air, & Soil Pollution: Focus, 2001,1(3): 103-118
    
    [164] Meyers, P. A. Applications of organic geochemistry to paleolimnological reconstructions: a summary ofexamples from the Laurentian Great Lakes, Organic Geochemistry, 2003,34(2): 261-289
    
    [165] Ostlund, P.,Stembeck, J. Total Lead and Stable Lead Isotopes in Stockholm Sediments, Water, Air, & SoilPollution: Focus, 2001,1(3): 229-239
    
    [166] Preda, M.,Cox, M. E. Trace metal occurrence and distribution in sediments and mangroves, Pumicestoneregion, southeast Queensland, Australia, Environment International, 2002,28(5): 433-449
    
    [167] Renberg, I.,Brannvall, M. L.,Bindler, R. et al. Stable lead isotopes and lake sediments--a useful combinationfor the study of atmospheric lead pollution history, The Science of The Total Environment, 2002, 292(1-2):45-54
    
    [168] Routh, J.,Meyers, P. A.,Gustafsson, O. et al. Sedimentary geochemical record of human-inducedenvironmental changes in the Lake Brunnsviken watershed, Sweden, Limnology and Oceanography, 2004,49(5): 1560-1569
    
    [169] Sternbeck, J.,Ostlund, P. Metals in Sediments from the Stockholm Region: Geographical Pollution Patternsand Time Trends, Water, Air, & Soil Pollution: Focus, 2001,1(3): 151-165
    
    [170] Kendall, C.,Silva, S. R.,Kelly, V. J. Carbon and nitrogen isotopic compositions of particulate organic matterin four large river systems across the United States, Hydrological Processes, 2001,15(7): 1301-1346
    
    [171] Meyers, P. A.Jshiwatari, R. Lacustrine organic geochemistry-an overview of indicators of organic mattersources and diagenesis in lake sediments, Organic Geochemistry, 1993,20(7): 867-900
    
    [172] Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimaticprocesses, Organic Geochemistry, 1997,27(5): 213-250
    
    [173] Perdue, E. M.,Koprivnjak, J.-F. Using the C/N ratio to estimate terrigenous inputs of organic matter toaquatic environments, Estuarine, Coastal and Shelf Science, 2007,73(1-2): 65-72
    
    [174] Qian, J. L.,Wang, S. M.,Xue, B. et al. A method of quantitatively calculating amount of allochthonousorganic carbon in lake sediments, Chinese Science Bulletin (in Chinese), 1997,42(21): 1821-1823
    
    [175]王苏民,冯敏.内蒙古岱海湖泊环境变化与东南季风强弱的关系,中国科学(B辑),1991,21(7): 759-768
    
    [176]金章东,王苏民,沈吉.小冰期弱化学风化的湖泊沉积记录,中国科学(D辑),2001,31(3):221-225
    
    [177]金章东,王银喜.湖泊沉积物Sr同位素记录的小冰期,科学通报,2002,47(019):1512-1516
    
    [178]沈吉,Matsumoto,R.内蒙古岱海古水温定量恢复及其古气候意义,中国科学:D辑,2001,31(012): 1017-1023
    
    [179] Xiao, J. L.,Nakamura, T.,Lu, H. Y. et al. Holocene climate changes over the desert/loess transition ofnorth-central China, Earth and Planetary Science Letters, 2002,197(1-2): 11-18
    
    [180] Shen, J.,Houyuan, L.,Sumin, W. et al. A 2.8 Ma record of environmental evolution and tectonic eventsinferred from the Cuoe core in the middle of Tibetan Plateau, 中国科学 D 辑 (英文版), 2004, 47(11):1025-1034
    
    [181] Shen, J.,Liyuan, Y.,Xiangdong, Y. et al. Lake sediment records on climate change and human activitiessince the Holocene in Erhai catchment, Yunnan Province, China, Science in China Series D-Earth Sciences,2005,48(3): 353-363
    
    [182] Goni, M. A.,Ruttenberg, K. C.,Eglinton, T. I. Sources and contribution of terrigenous organic carbon to??surface sediments in the Gulf of Mexico, Nature(London), 1997, 389(6648): 275-278
    
    [183] Lehmann, M. F.,Bernasconi, S. M.,Barbieri, A. et al. Preservation of organic matter and alteration of itscarbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis,Geochimica et Cosmochimica Acta, 2002,66(20): 3573-3584
    
    [184] Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter,Chemical Geology, 1994,114(3-4): 289-302
    
    [185] Milliman, J. D.,Boyle, E. Biological Uptake of Dissolved Silica in the Amazon River Estuary, Science,1975, 189(4207): 995-997
    
    [186] Shipe, R. F.,Curtaz, J.,Subramaniam, A. et al. Diatom biomass and productivity in oceanic andplume-influenced waters of the western tropical Atlantic ocean, Deep-Sea Research Part I, 2006, 53(8):1320-1334
    
    [187] Schluter, M.,Sauter, E. Biogenic silica cycle in surface sediments of the Greenland Sea, Journal of MarineSystems, 2000,23(4): 333-342
    
    [188] Bauerfeind, E.,Bodungen, B. Underestimation of biogenic silicon flux due to dissolution in sediment trapsamples, Marine Geology, 2006,226(3-4): 297-306
    
    [189] Corvaisier, R.,Treguer, P.,Beucher, C. et al. Determination of the rate of production and dissolution ofbiosilica in marine waters by thermal ionisation mass spectrometry, Analytica Chimica Acta, 2005, 534(1):149-155
    
    [190] Khalil, K.,Rabouille, C.,Gallinari, M. et al. Constraining biogenic silica dissolution in marine sediments: Acomparison between diagenetic models and experimental dissolution rates, Marine Chemistry, 2007,106(1-2): 223-238
    
    [191] Nelson, D. M.,Treguer, P.3rzezinski, M. A. et al. Production and dissolution of biogenic silica in the ocean:Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, GlobalBiogeochemical Cycles, 1995,9(3): 359-372
    
    [192] Conley, D. J.,Schelske, C. L.,Stoermer, E. F. Modification of the biogeochemical cycle of silica witheutrophication, Mar. Ecol. Prog. Ser, 1993,101: 179-192
    
    [193] Charles, C. D.,Froelich, P. N.,Zibello, M. A. et al. Biogenic opal in Southern Ocean sediments over the last450,000 years: Implications for surface water chemistry and circulation, Paleoceanography, 1991, 6(6):697-728
    
    [194] Romero, O.,Hebbeln, D. Biogenic silica and diatom thanatocoenosis in surface sediments below the??Peru-Chile Current: controlling mechanisms and relationship with productivity of surface waters, MarineMicropaleontology, 2003,48(1-2): 71-90
    
    [195]黄永建,王成善,汪云亮.古海洋生产力指标研究进展,地学前缘,2005,12(002):163-170
    
    [196] Ryu, E.,Yi, S.,Lee, S. J. Late Pleistocene-Holocene paleoenvironmental changes inferred from the diatomrecord of the Ulleung Basin, East Sea (Sea of Japan), Marine Micropaleontology, 2005,55(3-4): 157-182
    
    [197] Leng, M. J.3arker, P. A. A review of the oxygen isotope composition of lacustrine diatom silica forpalaeoclimate reconstruction, Earth Science Reviews, 2006,75(1-4): 5-27
    
    [198]曹建廷,沈吉.内蒙古岱海湖泊沉积记录的小冰期气候环境,湖泊科学,2000,12(002):97-104
    
    [199]曹建廷,王苏民.内蒙古岱海地区近千年气候环境演变的初步研究,海洋地质与第四纪地质,2000, (002):15-20
    
    [200]曹建廷,王苏民.近千年来内蒙古岱海气候环境演变的湖泊沉积记录,地理科学,2000,20(005): 391-396
    
    [201]金章东,王苏民,沈吉et al.全新世岱海流域化学风化及其对气候事件的响应,地球化学,2004, 33(001):29-36
    
    [202]宋金明,李学刚,李宁et al.一种海水中溶解无机碳的准确简易测定方法,分析化学,2004,32(012): 1689-1692
    
    [203]范成新,张路.湖泊沉积物氮磷内源负荷模拟,海洋与湖沼,2002,33(004):370-378
    
    [204]钱君龙,陈如松.湖泊沉积研究中的一种定量估算陆源有机碳的方法,科学通报,1997,42(015): 1655-1658
    
    [205]付永清,周易勇.沉积物磷形态的分级分离及其生态学意义,湖泊科学,1999,11(4):376-381
    
    [206] Fox, L. E.,Sager, S. L.,Wofsy, S. C. Factors Controlling the Concentrations of Soluble Phosphorus in theMississippi Estuary, Limnology and Oceanography, 1985,30(4): 826-832
    
    [207] Fox, L. E. Phosphorus chemistry in the tidal Hudson River, Geochimica et Cosmochimica Acta, 1991, 55(6):1529-1538
    
    [208] Fox, L. E.,Sager, S. L.,Wofsy, S. C. The chemical control of soluble phosphorus in the Amazon estuary,Geochimica et Cosmochimica Acta, 1986,50(5): 783-794
    
    [209] Froelich, P. N. Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on thePhosphate Buffer Mechanism, Limnology and Oceanography, 1988, 33(4): 649-668
    
    [210] Hearn, P. P. Controls on phosphorus mobility in Potomac river near the Blue Plains waste water treatmentplant, US Geological Survey Water Supply Paper, 1995,2231:46
    
    [211]朱广伟,秦伯强,高光et al.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系,环境科学学 报,2004,24(3):381-388
    
    [212] Filippelli, G M.,Delaney, M. L. Phosphorus geochemistry of equatorial Pacific sediments, Geochimica etCosmochimica Acta, 1996,60(9): 1479-1495
    
    [213] Ruttenberg, K. C.,Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling,continental margin environments, Geochimica et Cosmochimica Acta, 1993,57(5): 991-1007
    
    [214] Sundby, B.,Gobeil, C.,Silverberg, N. et al. The Phosphorus Cycle in Coastal Marine Sediments, Limnologyand Oceanography, 1992,37(6): 1129-1145
    
    [215]刘培桐,王华东.岱海盆地的水文化学地理,地理学报,1965,31(1):36-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700