小鼠角膜基质细胞的间充质干细胞样表型和多向分化潜能以及抑制树突状细胞成熟的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角膜基质细胞(corneal stroma cells, CSCs)是散在分布于角膜基质内神经嵴来源的细胞,对维持角膜透明性发挥着重要作用。在体CSCs数量稀少,所以在体外对细胞进行培养扩增是必经的研究路径。研究表明,培养于含胎牛血清(FBS)的完全培养基内的CSCs会丧失其原有的生物学特性。然而,当培养于无血清的基础培养基时,细胞虽能保持其特性不变,却无法进行有效增殖。因此,如何在保持细胞生物学特性不变的情况下高效扩增CSCs,是目前研究难点之一。
     研究表明,出生后增殖性CSCs的细胞数量会迅速减少。当睑裂打开后,所有CSCs的细胞周期进入G0期。最近研究证实,CSCs表达众多干细胞标记物,并且具有多向分化潜能,与间充质干细胞的生物学特性十分相似。然而,目前尚缺乏小鼠CSCs是否具有间充质干细胞特性的研究。
     树突状细胞(dendritic cells, DCs)是目前已知体内功能最强的抗原呈递细胞。成熟DCs可引发机体免疫反应,而未成熟DCs则会诱导机体免疫耐受。而且,角膜内的DCs广泛的参与了多种角膜相关疾病以及角膜移植免疫排斥反应,且以角膜内DCs为靶细胞的治疗方法已取得可喜的疗效。因此,对角膜内的DCs,尤其对DCs成熟状态的研究具有重要意义。
     最近研究表明,位于角膜中央区的DCs完全处于未成熟状态,而位于角膜周边区的DCs则大多处于成熟状态。局部微环境对DCs的成熟状态发挥着重要的调节功能。所以,我们推测CSCs可能具有影响角膜内DCs成熟状态的功能,然而至今尚未见相关报道。
     因此,本研究旨在探索如何在体外有效扩增小鼠CSCs以及对CSCs的间充质干细胞特性和抑制DCs成熟的功能进行探讨。如下:
     第一部分小鼠角膜基质细胞的提取、鉴定以及培养扩增
     目的:研究使用KSFM培养基能否获取具有增殖能力且保持生物学特性不变的小鼠CSCs。
     方法:将中央区角膜置于EDTA液(20mmol/L)内孵育45min后,用手术显微镊小心剥离角膜上皮层以及内皮层,并将获取的角膜基质置于含300U/mL I型胶原酶的溶液中消化4h。离心后采用DMEM基础培养基、DMEM完全培养基(含10% FBS)以及KSFM培养基重悬细胞,接种于培养瓶内常规培养,并采用含1U/mL分散酶的EDTA液消化传代细胞。同时,观察细胞并绘制细胞生长曲线;采用逆转录聚合酶链式反应(RT-PCR)检测细胞角膜蛋白多糖(keratocan)、乙醛脱氢酶(ALDH)、细胞角蛋白12(CK12)和神经元特异性烯醇化酶(NSE)等基因的表达情况;采用细胞免疫荧光染色以及蛋白质印迹方法检测细胞keratocan蛋白的表达情况。
     结果:通过胶原酶消化的方法可以从每只小鼠的角膜基质获取约1×104单个细胞。RT-PCR结果显示:原代细胞表达CSCs标记物keratocan和ALDH,不表达角膜上皮细胞标记物CK12以及角膜内皮细胞标记物NSE;免疫荧光染色和蛋白质印迹结果显示:原代细胞表达keratocan蛋白。因此,本实验获取的原代细胞为CSCs。培养于DMEM基础培养基内的原代CSCs无法增殖。培养于DMEM完全培养基内的CSCs可增殖,但第3代细胞不表达keratocan和ALDH基因以及keratocan蛋白。培养于KSFM培养基内的CSCs也可增殖,第3代细胞仍表达keratocan和ALDH基因以及keratocan蛋白,且与原代细胞相比,表达强度无统计学差异(P>0.05)。
     结论:KSFM培养基不仅能维持小鼠CSCs的生物学特性不变,还能有效促进细胞增殖。
     第二部分小鼠角膜基质细胞的间充质干细胞样表型以及多向分化潜能
     目的:研究KSFM培养基培养扩增后的小鼠CSCs是否具有间充质干细胞样表型以及多向分化潜能。
     方法:在去除角膜上皮层以及内皮层后,通过胶原酶消化的方法获取小鼠中央区角膜来源的CSCs,并采用KSFM培养基对其培养扩增。收集第2代CSCs,将细胞与造血干细胞标记物抗体(CD34-FITC、CD45-PE)以及间质细胞标记物抗体(CD105-PE、CD90-FITC、CD71-FITC、CD29-APC)共孵育30min后,应用流式细胞技术进行检测。当培养于KSFM培养基内的CSCs达细胞融合后,更换成骨细胞诱导培养基(含10%FBS、100nmol/L地塞米松、10mmol/Lβ-磷酸甘油、50mg/L维生素C的DMEM培养基)、脂肪细胞诱导培养基(含10% FBS、0.5μmol/L地塞米松、0.5mmol/L 3-异丁基-1-甲基黄嘌呤、10mg/L胰岛素的DMEM培养基)以及对照培养基(含10% FBS的DMEM培养基),进行常规培养,每3d更换一次培养基。21d后,对培养于成骨细胞诱导培养基以及对照培养基内的细胞进行2%茜素红S染色,并通过RT-PCR检测细胞碱性磷酸酶和骨钙素等基因的表达情况;对培养于脂肪细胞诱导培养基以及对照培养基内的细胞进行0.3%油红O染色,并通过RT-PCR检测细胞脂蛋白脂酶和过氧化物酶增殖物激活受体γ等基因的表达情况。
     结果:应用流式细胞技术对第2代CSCs的表型特征进行分析,结果显示:细胞低表达CD34(3.68%±1.44%)以及CD45(9.56%±1.83%),高表达CD29(96.85%±1.91%)、CD90(93.62%±1.65%)、CD105(50.91%±2.56%)以及CD71(45.27%±3.56%)。在成骨诱导条件下,3d时,细胞形态仍然保持梭形,与对照组细胞无明显差别。7d时,细胞形态逐渐转变为多角形,胞浆内出现黑色颗粒。14d时,开始形成矿化结节,并逐渐增大,21d时,经茜素红S染色,结节呈现鲜红色。对照组细胞未显现出以上成骨细胞分化的形态学征象,且经茜素红S染色未见阳性结果。通过RT-PCR检测成骨细胞标记物基因的表达情况,结果显示:成骨诱导条件下细胞高表达碱性磷酸酶和骨钙素,而对照组细胞低表达碱性磷酸酶且不表达骨钙素。在脂肪诱导条件下,7d时,细胞形态逐渐由梭形转变为类圆形,胞浆内液滴也逐渐增多。14d时,细胞胞浆内满布液滴,经油红O染色,液滴被特异性染成橘红色。RT-PCR结果显示:脂肪诱导条件下细胞表达脂蛋白脂酶和过氧化物酶增殖物激活受体γ。而对照组细胞未显现出向脂肪细胞分化的任何征象。
     结论:经KSFM培养基培养扩增的小鼠中央区角膜来源的CSCs具有与间充质干细胞相似的表型特征,以及向成骨细胞和脂肪细胞分化的能力。
     第三部分小鼠角膜基质细胞培养上清液对树突状细胞成熟的抑制作用
     目的:研究小鼠CSCs培养上清液是否具有抑制脂多糖诱导的DCs成熟的作用。
     方法:通过尼龙毛柱法获取BALB/c小鼠脾脏来源的T细胞,并通过流式细胞技术检测细胞表面标记物CD3以测定T细胞纯度。原代小鼠CSCs(105/mL)培养于RPMI 1640基础培养基内,3d后半量换液,6d后收集培养上清液以备用。在裂解红细胞后,将由C57BL/6小鼠股骨获取的骨髓单核细胞培养于含10% FBS以及10ng/mL重组小鼠粒细胞-巨噬细胞集落刺激因子的RPMI 1640培养基内,2d后全量换液,4d后半量换液,6d后收集悬浮和半贴壁细胞,即为未成熟DCs。通过流式细胞技术检测细胞表面标记物CD11c以测定DCs纯度。向DCs培养液内加入脂多糖(1μg/mL),48h后未成熟DCs可被诱导成熟。为研究CSCs培养上清液对DCs成熟的作用,在DCs成熟过程中,不同浓度的培养上清液(25%、50%)被添加至DCs培养液中。而后,通过流式细胞技术检测DCs成熟状态标记物CD80、CD86和主要组织相容性抗原Ⅱ类分子(MHC-Ⅱ),以对DCs的表型成熟状态进行鉴定;通过混合淋巴细胞反应检测DCs刺激T细胞增殖能力以及通过FITC标记葡聚糖内吞实验检测抗原吞噬功能,以对DCs的功能成熟状态进行鉴定。
     结果:小鼠脾脏细胞经红细胞裂解以及尼龙毛柱筛选提取后,可得到大量单个悬浮的小细胞。经流式细胞技术检测,细胞高表达T细胞标记物CD3(93.97%±3.06%)。小鼠骨髓单核细胞诱导培养6d后,细胞集落明显,呈悬浮或半贴壁生长。细胞表面可见长短不一的毛刺状突起,且高表达CD11c(78.61%±4.27%),低表达CD80、CD86和MHC-Ⅱ。细胞经脂多糖刺激48h后,CD80、CD86和MHC-Ⅱ的表达明显上调。在DCs成熟过程中,将不同浓度的CSCs培养上清液(25%、50%)添加至DCs培养液后,与对照组相比,DCs CD80、CD86和MHC-Ⅱ的表达均降低(P<0.01),CD11c的表达无明显差异(P>0.05);刺激T细胞增殖能力降低(P<0.05);抗原吞噬功能增强(P<0.01)。此外,CSCs培养上清液抑制DCs成熟的作用还呈现出剂量依赖性(25% vs. 50%, P<0.05)。
     结论:小鼠CSCs培养上清液可以抑制脂多糖诱导的DCs表型以及功能成熟,且呈剂量依赖性。因此,我们推测CSCs可以通过分泌可溶性免疫调节因子抑制DCs成熟。
     第四部分小鼠角膜基质细胞通过分泌转化生长因子β2以及前列腺素E2抑制树突状细胞成熟
     目的:探索小鼠CSCs是否通过分泌转化生长因子β2(TGF-β2)、前列腺素E2(PGE2)、白介素10(IL-10)以及巨噬细胞集落刺激因子(M-CSF)抑制DCs成熟。
     方法:采用RT-PCR检测原代小鼠CSCs TGF-β2、IL-10、M-CSF以及前列腺素内过氧化物合酶2(PTGS2)等基因的表达情况。据此,通过酶联免疫吸附实验(ELISA)测定CSCs培养上清液以及新鲜RPMI 1640培养基内PGE2和TGF-β2的含量。而后,通过应用TGF-β2中和抗体(15μg/mL)以及PGE2受体阻滞剂AH6809(100μmol/L),对CSCs是否通过分泌TGF-β2以及PGE2抑制DCs成熟作进一步鉴定。在DCs成熟过程中,分别作以下不同处理:1,LPS;2,LPS+50% CSCs培养上清液;3,LPS+50% CSCs培养上清液+AH6809;4,LPS+50% CSCs培养上清液+中和抗体;5,LPS+50% CSCs培养上清液+AH6809+中和抗体。然后,应用流式细胞技术检测DCs CD11c、CD80、CD86和MHC-Ⅱ的表达情况,通过混合淋巴细胞反应检测刺激T细胞增殖能力,以及通过FITC标记葡聚糖内吞实验检测抗原吞噬功能。
     结果:RT-PCR结果表明:原代小鼠CSCs高表达TGF-β2和PTGS2,低表达M-CSF,不表达IL-10;ELISA数据显示:与新鲜RPMI 1640培养基相比,CSCs培养上清液内含有较高浓度的TGF-β2(1.46±0.38 ng/mL)和PGE2(21.27±0.94 ng/mL)。向CSCs培养上清液中加入TGF-β2中和抗体,可以不同程度的逆转CSCs培养上清液对DCs表型以及功能成熟的抑制作用(P<0.05或P<0.01)。使用AH6809预处理未成熟DCs同样可以不同程度的逆转CSCs培养上清液对DCs功能成熟的抑制作用(P<0.05),以及对CD86和MHC-Ⅱ表达的抑制作用(P<0.05或P<0.01),但不能逆转对CD80表达的抑制作用(P>0.05)。同时应用TGF-β2中和抗体以及AH6809,可以提高DCs MHC-Ⅱ的表达和刺激T细胞增殖能力,且存在交互作用(P<0.05);同时可以提高DCs CD80和CD86的表达以及降低DCs抗原吞噬功能,但不存在交互作用(P>0.05)。此外,同时应用TGF-β2中和抗体以及AH6809未完全逆转CSCs培养上清液对DCs成熟的抑制作用(P<0.05或P<0.01)。
     结论:在体外,小鼠CSCs可以通过分泌TGF-β2以及PGE2抑制DCs成熟,且此两种细胞因子可发挥叠加效应。
Corneal stroma cells (CSCs), a unique population of neural crest-derived cells embedded in the corneal stroma, play a major role in maintaining corneal transparency. Since the cell number in vivo is scarce, CSCs must be expanded in vitro. Previous studies have indicated that when cultured in the complete medium (containing fetal bovine serum, FBS), CSCs readily lost their biological characteristic and transformed into some other cells. Unfortunately, CSCs cultured in the serum-free medium do not proliferate. Therefore, expanding CSCs while maintaining their normal biological characteristic in vitro is very desirable.
     Recent studies have shown that between birth and eyelid opening, the number of proliferating CSCs decreases dramatically, and at the time of eyelid opening, CSCs have withdrawn from the cell cycle, remaining in G0 rather than undergoing complete terminal differentiation. Moreover, CSCs express stem cell markers and have transdifferentiation potency, which are similar to mesenchymal stem cells. However, the study on the mesenchymal stem cell characteristic of murine CSCs is rare.
     Dendritic cells (DCs) are the most efficient antigen-presenting cells that initiate or control adaptive immune responses to invading pathogens, and are found in two distinct functional states. Immature DCs can uptake antigens and induce immunity tolerance; mature DCs are uniquely able to stimulate naive T cell responses efficiently. Since corneal DCs play a critical role in corneal transplantation and corneal disorders, and some approaches targeted DCs have been applied, further studies on regulation of DCs maturation should be required.
     Recent studies have demonstrated that DCs are uniformly immature in the central cornea, but mainly mature in the peripheral region. And local microenvironment has been widely recognized as an important regulator for DCs maturation. Therefore, we deem that CSCs should have regulative effect on DCs maturation. However, to date, no systematic study has been performed.
     Consequently, this study was carried out to explore how to expand murine CSCs, and to investigate the mesenchymal stem cell characteristic and the inhibitory effect on DCs maturation of murine CSCs. As follows: Part 1 Isolation, identification, cultivation, and expansion of murine corneal stroma cells
     Objective: To investigate whether murine CSCs expanded in the KSFM medium still hold the original biological characteristic.
     Methods: After incubated in EDTA solution (20mmol/L) for 45 minutes, the corneal epithelium and endothelium were carefully peeled away from the corneal stroma with fine forceps. And then, central corneal stromas were digested with collagenase I (300U/mL) for 4 hours. Following centrifugation, isolated single cells were harvested, and seeded on plastic in the DMEM basic medium (serum-free) or the DMEM complete medium (containing 10% FBS), or in the KSFM medium. The cells were cultured at 37℃in a 5% CO2 atmosphere, and subcultured with EDTA solution (containing 1U/mL dispase). Meanwhile, the cells were observed and further the cell growth curve was drawn; the gene expression of keratocan, aldehyde dehydrogenase (ALDH), cytokeratin 12 (CK12), and neuron-specific enolase (NSE) was examined by reverse transcription polymerase chain reaction (RT-PCR); the protein expression of keratocan was analyzed by immunofluorescence and Western Blot.
     Results: After collagenase digestion, cell suspension obtained from two murine corneal stromas yielded about 1×10~4 single cells. The data of RT-PCR indicated that the primary cell exhibited positive expression of keratocan and ALDH, which are considered as hallmarks for keratocytes, and negative expression of CK12 and NSE, which are expressed in corneal epithelium and endothelium respectively; the data of immunofluorescence and Western Blot further showed that these cells expressed keratocan protein. And thus, the primary cells in this study were of stromal origin. In the DMEM basic medium, primary CSCs could not proliferate; in the DMEM complete medium, CSCs proliferated, but passage 3 cells lost the gene expression of ALDH and keratocan and the protein expression of keratocan; in the KSFM medium, CSCs also proliferated, and passage 3 cells still maintained the gene expression of ALDH and keratocan and the protein expression of keratocan, with no significant difference compared with primary CSCs (P>0.05).
     Conclusion: KSFM medium can maintain the biological characteristic of murine CSCs while promoting cell proliferation.
     Part 2 The mesenchymal stem cell-like phenotype and multilineage potential of murine corneal stroma cells
     Objective: To investigate whether murine CSCs, cultured and expanded in the KSFM medium, share the same phenotype and multilineage potential with mesenchymal stem cell.
     Methods: The central region of murine cornea was treated with collagenase digestion after the epithelium and endothelium were removed. Then the single cells were cultured and expanded in the KSFM medium. Passage 2 CSCs were harvested and incubated with hematopoietic marker antibodies (CD34-FITC, CD45-PE) and mesenchymal marker antibodies (CD105-PE, CD90-FITC, CD71-FITC, CD29-APC) for 30 minutes at 4℃in dark. Then the stained cells were analyzed on a flow cytometer. CSCs were maintained in the KSFM medium. At day 2 post-confluence, the medium was changed with the osteogenic differentiation medium (DMEM supplemented with 10% FBS, 100nmol/L dexamethasone, 10mmol/Lβ-glycerophosphate, and 50mg/L ascorbic acid), the adipogenic differentiation medium (DMEM supplemented with 10% FBS, 0.5μmol/L dexamethasone, 0.5mmol/L isobutylmethylxanthine, and 10mg/L insulin), or the control medium (DMEM supplemented with 10% FBS). The medium was changed every other day. After 21 days, the cells, cultured in the osteogenic differentiation medium and the control medium, were stained with 2% alizarin red S solution, and the gene expression of alkaline phosphatase and osteocalcin was examined by RT-PCR; and the cells, cultured in the adipogenic differentiation medium and the control medium, were stained with 0.3% oil red O solution, and the gene expression of lipoprotein lipase and peroxisome proliferator activated receptorγwas examined by RT-PCR.
     Results: The phenotypic characterization of passage 2 CSCs was analyzed by flow cytometry. Data showed that cells were negative for CD34 (3.68%±1.44%) and CD45 (9.56%±1.83%); but positive for CD29 (96.85%±1.91%), CD90 (93.62%±1.65%), CD105 (50.91%±2.56%), and CD71 (45.27%±3.56%). Within 3 days after osteoblastic induction, cells continued to exhibit fibroblast-like morphology similar to cells maintained in the control medium. After 7 days, cells had transformed to a many-horned shape, with black particles appeared in cytoplasm. One week later, center of the colony increased gradually and finally formed mineralization nodules, which were stained by alizarin red S. Cells cultured in the control medium did not show any morphological sign of osteoblastic differentiation and were not stained by alizarin red S. Moreover, the expression of osteoblast-specific markers was analyzed by RT-PCR. Data showed that, cells under osteoblastic conditions exhibited positive expression of alkaline phosphatase and osteocalcin, whereas cells cultured in the control medium showed lower expression of alkaline phosphatase and negative expression of osteocalcin. After 7 days under adipogenic conditions, cells changed their shape from spindle to round, coincided with the accumulation of intracellular droplets. Two weeks after initial induction, the cytoplasm was completely filled with lipid rich vacuoles, which were stained positively by oil red O. Differentiation was demonstrated further by RT-PCR analysis. The lipoprotein lipase and peroxisome proliferator activated receptorγmRNA were both detected. These changes were not found in cells cultured in the control medium.
     Conclusion: Similar to mesenchymal stem cells, the murine central cornea-derived CSCs, cultured and expanded in the KSFM medium, have special phenotypic marker expression profile and can differentiate into adipocytes and osteoblasts.
     Part 3 The inhibitory effect of murine corneal stroma cells culture supernatant on dendritic cells maturation
     Objective: To investigate whether murine CSCs culture supernatant can inhibit lipopolysaccharide-induced DCs maturation.
     Methods: Splenic T cells from BALB/c mice were collected by nylon wool columns, and the purity of cultured T cells was determined by flow analysis of surface CD3 staining. Three days after primary murine CSCs (105/mL) were cultured in the serum-free RPMI 1640 medium, the medium was semi-changed. Three days later, the culture supernatant was harvested and tested. Bone marrow mononuclear cells were prepared from C57BL/6 mouse femur bone marrow suspension by depletion of red cells and then cultured in the RPMI 1640 medium supplemented with 10% FBS and 10ng/mL recombinant murine granulocyte macrophage colony stimulating factor. The medium was wholly changed on day 3 and semi-changed on day 5. On day 7, nonadherent and loosely adherent cells were harvested as immature DCs, the purity of which was tested by flow cytometry with anti-CD11c antibody staining. To induce DCs maturation, lipopolysaccharide (1μg/mL) was added for another 48 hours of culture. To explore the effect of CSCs culture supernatant on DCs maturation, various concentrations of culture supernatant (25%, 50%) was added into the culture medium during the DCs maturation stage. And then, to evaluate the phenotypic maturation of DCs, the cellular surface markers for maturation, including CD80, CD86 and major histocompatibility complex classⅡ(MHC-Ⅱ) were analyzed by flow cytometry. Furthermore, to evaluate the functional maturation of DCs, the capability of stimulating the proliferation of T lymphocytes was measured by allogeneic mixed lymphocyte reactions and the function of endocytosis was assessed by fluorescein isothiocyanate-dextran uptake.
     Results: For T cells, following lysis of red cells, splenic cells were passed through nylon wool columns and nonadherent small cells were harvested. Phenotypic analysis by flow cytometry indicated that these cells were positive for CD3 (93.97%±3.06%), which is considered as a hallmark for T cells. For DCs, on day 7 of culture, bone marrow mononuclear cells generated many distinctive cell clusters with nonattachment and loose attachment to plate bottoms. These cells displayed different protruding veils, and expressed high level of CD11c (78.61%±4.27%), but low levels of the maturation markers CD80, CD86, and MHC-Ⅱ. An additional 48 hours of stimulation with lipopolysaccharide later, the levels of the maturation markers were increased. In the next step, the effect of CSCs culture supernatant on DCs maturation was explored. After adding the culture supernatant (25%, 50%) during the mature stage of DCs, compared with the control group, the expression of CD80, CD86, and MHC-Ⅱwas down-regulated (P<0.01), and the expression of CD11c was not altered (P>0.05); the capability of stimulating the proliferation of T lymphocytes was decreased (P<0.05); and the function of endocytosis was increased (P<0.01). Furthermore, the inhibitory effect seemed in a dose-dependent manner (25% vs. 50%, P<0.05). Conclusion: Murine CSCs culture supernatant can inhibit lipopolysaccharide-induced phenotypic and functional maturation of DCs dose-dependently. And thus, we speculate that CSCs could inhibit DCs maturation via secretion of soluble immunomodulatory cytokines.
     Part 4 Murine corneal stroma cells inhibit dendritic cells maturation partially through transforming growth factorβ2 and prostaglandin E2-mediated mechanism in vitro
     Objective: To explore which kind of immunomodulatory cytokines secreted by murine CSCs inhibits DCs maturation.
     Methods: The gene expression of transforming growth factorβ2 (TGF-β2), macrophage colony stimulating factor (M-CSF), interleukin 10 (IL-10), and prostaglandin endoperoxide synthase 2 (PTGS2) in primary murine CSCs was examined by RT-PCR. After that, the levels of TGF-β2 and prostaglandin E2 (PGE2) in CSCs culture supernatant and the fresh RPMI 1640 medium were analyzed by enzyme linked immunosorbent assay (ELISA). Then, to further identify whether TGF-β2 and PGE2 are involved in the inhibitory effect on DCs maturation mediated by CSCs, the neutralizing TGF-β2 antibody and the EP2 receptor antagonist AH6809 were applied. During the DCs maturation stage, different treatments were executed: 1, LPS; 2, LPS + 50% CSCs culture supernatant; 3, LPS + 50% CSCs culture supernatant + AH6809; 4, LPS + 50% CSCs culture supernatant + antibody; 5, LPS + 50% CSCs culture supernatant + AH6809 + antibody. Subsequently, the cellular surface markers for DCs, including CD11c, CD80, CD86, and MHC-Ⅱ, were analyzed by flow cytometry; the capability of stimulating the proliferation of T lymphocytes was evaluated by allogeneic mixed lymphocyte reactions and the function of endocytosis was assessed by fluorescein isothiocyanate-dextran uptake.
     Results: The data of RT-PCR indicated that primary murine CSCs exhibited high positive expression of TGF-β2 and PTGS2, low positive expression of M-CSF, and negative expression of IL-10; and the data of ELISA showed a higher concentration of TGF-β2 (1.46±0.38 ng/mL) and PGE2 (21.27±0.94 ng/mL) in murine CSCs culture supernatant than in the fresh RPMI 1640 medium. After adding neutralizing TGF-β2 antibody into CSCs culture supernatant, the phenotypic and functional modifications mediated by the supernatant were partially reversed (P<0.05 or P<0.01). After pretreating immature DCs with AH6809, the functional modification (P<0.05) and inhibition of CD86 and MHC-Ⅱexpression (P<0.05 or P<0.01) mediated by CSCs culture supernatant were also partially reversed, but the expression of CD80 was not altered (P>0.05). After applying AH6809 and neutralizing TGF-β2 antibody simultaneously, the expression of MHC-Ⅱand the capability of stimulating the proliferation of T lymphocytes were up-regulated, with statistical difference in interaction (P<0.05); the expression of CD86 and CD80 was elevated and the function of endocytosis were down-regulated, with no statistical difference in interaction (P>0.05). Furthermore, simultaneous application of AH6809 and neutralizing TGF-β2 antibody could not reversed the modification mediated by CSCs culture supernatant completely (P<0.05 or P<0.01).
     Conclusion: TGF-β2 and PGE2 contribute to the inhibitory effect on DCs maturation mediated by murine CSCs in vitro, and further have additive effect on the immunosuppression of DCs.
引文
1 Zieske JD. Corneal development associated with eyelid opening. Int J Dev Biol, 2004, 48(8-9): 903~911
    2 Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res, 2010, 91(3): 326~335
    3 West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol, 2006, 38(10): 1625~1631
    4 Manzer AK, Lombardi-Borgia S, Sch?fer-Korting M, et al. SV40- transformed human corneal keratocytes: optimisation of serum-free culture conditions. ALTEX, 2009, 26(1): 33~39
    5 Berryhill BL, Kader R, Kane B, et al. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Invest Ophthalmol Vis Sci, 2002, 43(11): 3416~3421
    6 Funderburgh ML, Mann MM, Funderburgh JL. Keratocyte phenotype is enhanced in the absence of attachment to the substratum. Mol Vis, 2008, 14: 308~317
    7 Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A, 2009, 15(8): 2001~2013
    8 Kao WW, Liu CY. Roles of lumican and keratocan on corneal transparency. Glycoconj J, 2002, 19(4-5): 275~285
    9 Liu CY, Birk DE, Hassell JR, et al. Keratocan-deficient mice display alterations in corneal structure. J Biol Chem, 2003, 278(24): 21672~21677
    10 Jester JV, Lee YG, Huang J, et al. Postnatal corneal transparency, keratocyte cell cycle exit and expression of ALDH1A1. Invest Ophthalmol Vis Sci, 2007, 48(9): 4061~4069
    11 Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol, 2008, 19(2): 82~93
    12唐光霞,陈建苏,徐锦堂,等.房水对培养的角膜基质细胞的影响.中华实验眼科杂志, 2010, 28(5): 416~419
    13 Tanifuji-Terai N, Terai K, Hayashi Y, et al. Expression of keratin 12 and maturation of corneal epithelium during development and postnatal growth. Invest Ophthalmol Vis Sci, 2006, 47(2): 545~551
    14 B?hnke M, Vogelberg K, Engelmann K. Detection of neurone-specific enolase in long-term cultures of human corneal endothelium. Graefes Arch Clin Exp Ophthalmol, 1998, 236(7): 522~526
    15 Poole CA, Brookes NH, Clover GM. Confocal imaging of the human keratocyte network using the vital dye 5-chloromethylfluorescein diacetate. Clin Experiment Ophthalmol, 2003, 31(2): 147~154
    16 Funderburgh JL, Funderburgh ML, Mann MM, et al. Proteoglycan expression during transforming growth factor beta-induced keratocyte- myofibroblast transdifferentiation. J Biol Chem, 2001, 276(47): 44173~44178
    17 Tandon A, Tovey JC, Sharma A, et al. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med, 2010, 10(6): 565~578
    18 Huang S, Maher VM, McCormick J. Involvement of intermediary metabolites in the pathway of extracellular Ca2+-induced mitogen- activated protein kinase activation in human fibroblasts. Cell Signal, 1999, 11(4): 263~274
    19 Romero JR, Rivera A, Lan?a V, et al. Na+/Ca2+ exchanger activity modulates connective tissue growth factor mRNA expression in transforming growth factor beta1- and Des-Arg10-kallidin-stimulated myofibroblasts. J Biol Chem, 2005, 280(15): 14378~14384
    20 Long CJ, Roth MR, Tasheva ES, et al. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem, 2000, 275(18): 13918~13923
    21 Maltseva O, Folger P, Zekaria D, et al. Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci, 2001, 42(11): 2490~2495
    22 Musselmann K, Alexandrou B, Kane B, et al. Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin. J Biol Chem, 2005, 280(38): 32634~32639
    23 Musselmann K, Kane B, Alexandrou B, et al. Stimulation of collagen synthesis by insulin and proteoglycan accumulation by ascorbate in bovine keratocytes in vitro. Invest Ophthalmol Vis Sci, 2006, 47(12): 5260~5266
    24 Yoshida S, Shimmura S, Shimazaki J, et al. Serum-free spheroid culture of mouse corneal keratocytes. Invest Ophthalmol Vis Sci, 2005, 46(5): 1653~1658
    25 Myrna KE, Pot SA, Murphy CJ. Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Vet Ophthalmol, 2009, 12(Suppl1): 25~27
    1 Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells, 2004, 6(4): 369~374
    2 Izadpanah R, Trygg C, Patel B, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem, 2006, 99(5): 1285~1297
    3 In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4): 1548~1549
    4 Lee MW, Yang MS, Park JS, et al. Isolation of mesenchymal stem cells from cryopreserved human umbilical cord blood. Int J Hematol, 2005, 81(2): 126~130
    5 da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006, 119 (Pt11): 2204~2213
    6 Zieske JD. Corneal development associated with eyelid opening. Int J Dev Biol, 2004, 48(8-9): 903~911
    7 Yamagami S, Ebihara N, Usui T, et al. Bone marrow-derived cells in normal human corneal stroma. Arch Ophthalmol, 2006, 124(1): 62~69
    8 Funderburgh ML, Du Y, Mann MM, et al. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J, 2005, 19(10): 1371~1373
    9 Du Y, Funderburgh ML, Mann MM, et al. Multipotent stem cells in human corneal stroma. Stem Cells, 2005, 23(9): 1266~1275
    10 Mimura T, Amano S, Yokoo S, et al. Isolation and distribution of rabbit keratocyte precursors. Mol Vis, 2008, 14: 197~203
    11 SosnováM, Bradl M, Forrester JV. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells, 2005, 23(4): 507~515
    12 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potentialclinical uses. EXP Hematol, 2000, 28(8): 875~884
    13 Choong PF, Mok PL, Cheong SK, et al. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy, 2007, 9(3): 252~258
    14 Polisetty N, Fatima A, Madhira SL, et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis, 2008, 14: 431~442
    15 Brandl C, Florian C, Driemel O, et al. Identification of neural crest-derived stem cell-like cells from the corneal limbus of juvenile mice. Exp Eye Res, 2009, 89(2): 209~217
    16 Berryhill BL, Kader R, Kane B, et al. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Invest Ophthalmol Vis Sci, 2002, 43(11): 3416~3421
    17 Schl?tzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res, 2005, 81(3): 247~264
    18 Yoshida S, Shimmura S, Nagoshi N, et al. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells, 2006, 24(12): 2714~2722
    19 Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem, 2009, 106(6): 984~991
    20 Du Y, Sundarraj N, Funderburgh ML, et al. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci, 2007, 48(11): 5038~5045
    21 Du Y, Carlson EC, Funderburgh ML, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells, 2009, 27(7): 1635~1642
    22 Mimura T, Amano S, Yokoo S, et al. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis, 2008, 14: 1819~1828
    23 Liu H, Zhang J, Liu CY, et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One, 2010, 5(5): e10707
    24 Gu S, Xing C, Han J, et al. Differentiation of rabbit bone marrowmesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis, 2009, 15: 99~107
    
    1 Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol, 1997, 9(1): 10~16
    2 Cools N, Ponsaerts P, Van Tendeloo VF, et al. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol, 2007, 82(6): 1365~1374
    3 Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223(1): 77~92
    4 Niederkorn JY. The immune privilege of corneal allografts. Transplantation, 1999, 67(12): 1503~1508
    5 Hamrah P, Zhang Q, Liu Y, et al. Novel characterization of MHC class Ⅱ-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci, 2002, 43(3): 639~646
    6 Hamrah P, Liu Y, Zhang Q, et al. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci, 2003, 44(2): 581~589
    7 Nakamura T, Ishikawa F, Sonoda KH, et al. Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci, 2005, 46(2): 497~503
    8 Takayama T, Kondo T, Kobayashi M, et al. Characteristic morphology and distribution of bone marrow derived cells in the cornea. Anat Rec (Hoboken), 2009, 292(5): 756~763
    9 Shen L, Barabino S, Taylor AW, et al. Effect of the ocular microenvironment in regulating corneal dendritic cell maturation. Arch Ophthalmol, 2007, 125(7): 908~915
    10 Hamrah P, Liu Y, Zhang Q, et al. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol, 2003, 121(8): 1132~1140
    11 Hamrah P, Huq SO, Liu Y, et al. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. Leukoc Biol, 2003, 74(2): 172~178
    12 Hamrah P, Pavan-Langston D, Dana R. Herpes simplex keratitis and dendritic cells at the crossroads: lessons from the past and a view into the future. Int Ophthalmol Clin, 2009, 49(1): 53~62
    13 Hazlett LD, McClellan SA, Rudner XL, et al. The role of Langerhans cells in Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci, 2002, 43(1): 189~197
    14 Wang Y, Zhao F, Zhu W, et al. In vivo confocal microscopic evaluation of morphologic changes and dendritic cell distribution in pterygium. Am J Ophthalmol, 2010, 150(5): 650~655
    15 Zheng X, de Paiva CS, Li DQ, et al. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway. Invest Ophthalmol Vis Sci, 2010, 51(6): 3083~3091
    16 Liu Y, Hamrah P, Zhang Q, et al. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) classⅡ-positive dendritic cells derived from MHC class Ⅱ-negative grafts. J Exp Med, 2002, 195(2): 259~268
    17 Huq S, Liu Y, Benichou G, et al. Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J Immunol, 2004, 173(7): 4464~4469
    18 Sehrawat S, Suvas S, Sarangi PP, et al. In vitro-generated antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions. J Virol, 2008, 82(14): 6838~6851
    19 Chen H, Hendricks RL. B7 costimulatory requirements of T cells at an inflammatory site. J Immunol. 1998, 160(10): 5045~5052
    20 Irschick UM, Mayer WJ, Kranebitter N, et al. Active in vitro reduction of antigen presenting cells in human corneal grafts using different chemokines. Curr Eye Res, 2010, 35(2): 176~183
    21 Thiel MA, Steiger JU, O'Connell PJ, et al. Local or short-term systemic costimulatory molecule blockade prolongs rat corneal allograft survival. Clin Experiment Ophthalmol, 2005, 33(2): 176~180
    1 Cools N, Ponsaerts P, Van Tendeloo VF, et al. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol, 2007, 82(6): 1365~1374
    2 Yamagami S, Usui T, Amano S, et al. Bone marrow-derived cells in mouse and human cornea. Cornea, 2005, 24(8Suppl): 71~74
    3 Forrester JV, Xu H, KuffováL, et al. Dendritic cell physiology and function in the eye. Immunol Rev, 2010, 234(1): 282~304
    4 Taylor A. A review of the influence of aqueous humor on immunity. Ocul Immunol Inflamm, 2003, 11(4): 231~241
    5 Gunn MD. Chemokine mediated control of dendritic cell migration and function. Semin Immunol, 2003, 15(5): 271~276
    6 Shen L, Barabino S, Taylor AW, et al. Effect of the ocular microenvironment in regulating corneal dendritic cell maturation. Arch Ophthalmol, 2007, 125(7): 908~915
    7 Zhang H, Yang P, Zhou H, et al. Involvement of Foxp3-expressing CD4+ CD25+ regulatory T cells in the development of tolerance induced by transforming growth factor-beta2-treated antigen-presenting cells. Immunology, 2008, 124(3): 304~314
    8 Mayer AK, Bartz H, Fey F, et al. Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment. Eur J Immunol, 2008, 38(6): 1689~1699
    9 Iliev ID, Spadoni I, Mileti E, et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut, 2009, 58(11): 1481~1489
    10 Schmitz T, Dallot E, Leroy MJ, et al. EP(4) receptors mediate prostaglandin E(2)-stimulated glycosaminoglycan synthesis in human cervical fibroblasts in culture. Mol Hum Reprod, 2001, 7(4): 397~402
    11 Harizi H, Juzan M, Pitard V, et al. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulatesdendritic cell functions. J Immunol, 2002, 168(5): 2255~2263
    12 Harizi H, Grosset C, Gualde N. Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol, 2003, 73(6): 756~763
    13 Yen JH, Khayrullina T, Ganea D. PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood, 2008, 111(1): 260~270
    14 Carregaro V, Valenzuela JG, Cunha TM, et al. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway. J Leukoc Biol, 2008, 84(1): 104~114
    15 Bhatia S, Edidin M, Almo SC, et al. B7-1 and B7-2: similar costimulatory ligands with different biochemical, oligomeric and signaling properties. Immunol Lett, 2006, 104(1-2): 70~75
    16 Sheibanie AF, Tadmori I, Jing H, et al. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J, 2004, 18(11): 1318~1320
    17 Khayrullina T, Yen JH, Jing H, et al. In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol, 2008, 181(1):
    721~735
    18 Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem, 2007, 282(16): 11613~11617
    19 Yao C, Sakata D, Esaki Y, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med, 2009, 15(6): 633~640
    20 Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev, 2000, 174: 21~34
    21 Contractor N, Louten J, Kim L, et al. Cutting edge: Peyer's patch plasmacytoid dendritic cells (pDCs) produce low levels of type I interferons: possible role for IL-10, TGFbeta, and prostaglandin E2 in conditioning a unique mucosal pDC phenotype. J Immunol, 2007, 179(5):2690~2694
    22 Barry FP, Murphy JM, English K, et al. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev, 2005, 14(3): 252~265
    23 Grauer O, P?schl P, Lohmeier A, et al. Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome T-cell inhibition by glioma-associated TGF-beta2. J Neurooncol, 2007, 82(2): 151~161
    24 Upham JW, Stick SM. Interactions between airway epithelial cells and dendritic cells: implications for the regulation of airway inflammation. Curr Drug Targets, 2006, 7(5): 541~545
    1 Freegard TJ. The physical basis of transparency of the normal cornea. Eye (Lond), 1997, 11 (Pt4): 465~471
    2 West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol, 2006, 38(10): 1625~1631
    3 Graw J. Genetic aspects of embryonic eye development in vertebrates. Dev Genet, 1996, 18(3): 181~197
    4 Dunlevy JR, Beales MP, Berryhill BL, et al. Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development. Exp Eye Res, 2000, 70(3): 349~362
    5 Gealy EC, Kerr BC, Young RD, et al. Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis. Histochem Cell Biol, 2007, 128(6): 551~555
    6 Cintron C, Covington H, Kublin CL. Morphogenesis of rabbit corneal stroma. Invest Ophthalmol Vis Sci, 1983, 24(5): 543~556
    7 Kao WW, Liu CY. Corneal morphogenesis during development and wound healing. Jpn J Ophthalmol, 2010, 54(3): 206~210
    8 Zieske JD. Corneal development associated with eyelid opening. Int J Dev Biol, 2004, 48(8-9): 903~911
    9 Petridou S, Masur SK. Immunodetection of connexins and cadherins in corneal fibroblasts and myofibroblasts. Invest Ophthalmol Vis Sci, 1996, 37(9): 1740~1748
    10 Hasty DL, Hay ED. Freeze-fracture studies of the developing cell surface. I. The plasmalemma of the corneal fibroblast. J Cell Biol, 1977, 72(3): 667~686
    11 Nishida T, Yasumoto K, Otori T, et al. The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Vis Sci, 1988, 29(12): 1887~1890
    12 Hahnel C, Somodi S, Slowik C, et al. Fluorescence microscopy andthree-dimensional imaging of the porcine corneal keratocyte network. Graefes Arch Clin Exp Ophthalmol, 1997, 235(12): 773~779
    13 Poole CA, Brookes NH, Clover GM. Confocal imaging of the human keratocyte network using the vital dye 5-chloromethylfluorescein diacetate. Clin Experiment Ophthalmol, 2003, 31(2): 147~154
    14 Kang GM, Ko MK. Morphological characteristics and intercellular connections of corneal keratocytes. Korean J Ophthalmol, 2005, 19(3): 213~218
    15 Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res, 2010, 91(3): 326~335
    16 Robert L, Legeais JM, Robert AM, et al. Corneal collagens. Pathol Biol (Paris), 2001, 49(4): 353~363
    17 Kane BP, Jester JV, Huang J, et al. IGF-Ⅱand collagen expression by keratocytes during postnatal development. Exp Eye Res, 2009, 89(2): 218~223
    18 Chwa M, Kenney MC, Khin H, et al. Altered type VI collagen synthesis by keratoconus keratocytes in vitro. Biochem Biophys Res Commun, 1996, 224(3): 760~764
    19 Guerriero E, Chen J, Sado Y, et al. Loss of alpha3(IV) collagen expression associated with corneal keratocyte activation. Invest Ophthalmol Vis Sci, 2007, 48(2): 627~635
    20 Quantock AJ, Young RD. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev Dyn, 2008, 237(10): 2607~2621
    21 Chakravarti S, Petroll WM, Hassell JR, et al. Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma. Invest Ophthalmol Vis Sci, 2000, 41(11): 3365~3373
    22 Quantock AJ, Meek KM, Chakravarti S. An x-ray diffraction investigation of corneal structure in lumican-deficient mice. Invest Ophthalmol Vis Sci, 2001, 42(8): 1750~1756
    23 Meij JT, Carlson EC, Wang L, et al. Targeted expression of a lumicantransgene rescues corneal deficiencies in lumican-null mice. Mol Vis, 2007, 13: 2012~2018
    24 Pellegata NS, Dieguez-Lucena JL, Joensuu T, et al. Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet, 2000, 25(1): 91~95
    25 Khan A, Al-Saif A, Kambouris M. A novel KERA mutation associated with autosomal recessive cornea plana. Ophthalmic Genet, 2004, 25(2): 147~152
    26 Liskova P, Hysi PG, Williams D, et al. Study of p.N247S KERA mutation in a British family with cornea plana. Mol Vis, 2007, 13: 1339~1347
    27 Tasheva ES, Koester A, Paulsen AQ, et al. Mimecan/osteoglycin- deficient mice have collagen fibril abnormalities. Mol Vis, 2002, 8: 407~415
    28 Beecher N, Carlson C, Allen BR, et al. An x-ray diffraction study of corneal structure in mimecan-deficient mice. Invest Ophthalmol Vis Sci, 2005, 46(11): 4046~4049
    29 Zhang G, Chen S, Goldoni S, et al. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J Biol Chem, 2009, 284(13): 8888~8897
    30 Sch(?)nherr E, Sunderk(?)tter C, Schaefer L, et al. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J Vasc Res, 2004, 41(6): 499~508
    31 R(?)dahl E, Van Ginderdeuren R, Knappskog PM, et al. A second decorin frame shift mutation in a family with congenital stromal corneal dystrophy. Am J Ophthalmol, 2006, 142(3): 520~521
    32 Bredrup C, Stang E, Bruland O, et al. Decorin accumulation contributes to the stromal opacities found in congenital stromal corneal dystrophy. Invest Ophthalmol Vis Sci, 2010, 51(11): 5578~5582
    33 Jester JV. Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol, 2008, 19(2): 82~93
    34 Perrella G, Brusini P, Spelat R, et al. Expression of haematopoietic stemcell markers, CD133 and CD34 on human corneal keratocytes. Br J Ophthalmol, 2007, 91(1): 94~99
    35 Builles N, Bechetoille N, Justin V, et al. Variations in the characteristics of keratocytes in culture in relation to their location in human cornea. Biomed Mater Eng, 2008, 18(1Suppl): 87~98
    36 Stramer BM, Fini ME. Uncoupling keratocyte loss of corneal crystallin from markers of fibrotic repair. Invest Ophthalmol Vis Sci, 2004, 45(11): 4010~4015
    37 Espana EM, Kawakita T, Liu CY, et al. CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Invest Ophthalmol Vis Sci, 2004, 45(9): 2985~2991
    38 Beales MP, Funderburgh JL, Jester JV, et al. Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: maintenance of the keratocyte phenotype in culture. Invest Ophthalmol Vis Sci, 1999, 40(8): 1658~1663
    39 Berryhill BL, Kader R, Kane B, et al. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Invest Ophthalmol Vis Sci, 2002, 43(11): 3416~3421
    40 Espana EM, He H, Kawakita T, et al. Human keratocytes cultured on amniotic membrane stroma preserve morphology and express keratocan. Invest Ophthalmol Vis Sci, 2003, 44(12): 5136~5141
    41 Musselmann K, Kane BP, Hassell JR. Isolation of a putative keratocyte activating factor from the corneal stroma. Exp Eye Res, 2003, 77(3): 273~279
    42 Yoshida S, Shimmura S, Shimazaki J, et al. Serum-free spheroid culture of mouse corneal keratocytes. Invest Ophthalmol Vis Sci, 2005, 46(5): 1653~1658
    43 Musselmann K, Kane B, Alexandrou B, et al. Stimulation of collagen synthesis by insulin and proteoglycan accumulation by ascorbate in bovine keratocytes in vitro. Invest Ophthalmol Vis Sci, 2006, 47(12):5260~5266
    44 Funderburgh ML, Mann MM, Funderburgh JL. Keratocyte phenotype is enhanced in the absence of attachment to the substratum. Mol Vis, 2008, 14: 308~317
    45 Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A, 2009, 15(8): 2001~2013
    46 Ambrósio R Jr, Kara-JoséN, Wilson SE. Early keratocyte apoptosis after epithelial scrape injury in the human cornea. Exp Eye Res, 2009, 89(4): 597~599
    47 Erie JC, Patel SV, McLaren JW, et al. Corneal keratocyte deficits after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol, 2006, 141(5): 799~809
    48 Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res, 2006, 83(4): 709~720
    49 Mohan RR, Mohan RR, Kim WJ, et al. Defective keratocyte apoptosis in response to epithelial injury in stat 1 null mice. Exp Eye Res, 2000, 70(4): 485~491
    50 Wilson SE, Chaurasia SS, Medeiros FW. Apoptosis in the initiation, modulation and termination of the corneal wound healing response. Exp Eye Res, 2007, 85(3): 305~311
    51 Fini ME, Stramer BM. How the cornea heals: cornea-specific repair mechanisms affecting surgical outcomes. Cornea, 2005, 24(8Suppl): 2~11
    52 Mohan RR, Mohan RR, Kim WJ, et al. Modulation of TNF-alpha- induced apoptosis in corneal fibroblasts by transcription factor NF-kappaB. Invest Ophthalmol Vis Sci, 2000, 41(6): 1327~1336
    53 Wilson SE, He YG, Weng J, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res, 1996, 62(4): 325~327
    54 Wilson SE, Netto M, Ambrósio R Jr. Corneal cells: chatty in development, homeostasis, wound healing, and disease. Am J Ophthalmol, 2003, 136(3): 530~536
    55 Mahajan VB, Wei C, McDonnell PJ 3rd. Microarray analysis of corneal fibroblast gene expression after interleukin-1 treatment. Invest Ophthalmol Vis Sci, 2002, 43(7): 2143~2151
    56 Zhao J, Nagasaki T, Maurice DM. Role of tears in keratocyte loss after epithelial removal in mouse cornea. Invest Ophthalmol Vis Sci, 2001, 42(8): 1743~1749
    57 Ambrósio R Jr, Kara-JoséN, Wilson SE. Early keratocyte apoptosis after epithelial scrape injury in the human cornea. Exp Eye Res, 2009, 89(4): 597~599
    58 Szentmáry N, Szende B, Süveges I. Epithelial cell, keratocyte, and endothelial cell apoptosis in Fuchs' dystrophy and in pseudophakic bullous keratopathy. Eur J Ophthalmol, 2005, 15(1): 17~22
    59 Szentmáry N, Takács L, Berta A, et al. Cell proliferation and apoptosis in stromal corneal dystrophies. Histol Histopathol, 2007, 22(8): 837~845
    60 Beauregard C, Huq SO, Barabino S, et al. Keratocyte apoptosis and failure of corneal allografts. Transplantation, 2006, 81(11): 1577~1582
    61 Lasseck J, Auw-Haedrich C, Boehringer D, et al. Keratocyte apoptosis increases in human corneal allografts during immune-mediated graft rejection. Br J Ophthalmol, 2008, 92(10): 1429~1430
    62 Fini ME. Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res, 1999, 18(4): 529~551
    63 Carlson EC, Wang IJ, Liu CY, et al. Altered KSPG expression by keratocytes following corneal injury. Mol Vis, 2003, 9: 615~623
    64 Liu Y, Yanai R, Lu Y, et al. Promotion by fibronectin of collagen gel contraction mediated by human corneal fibroblasts. Exp Eye Res, 2006, 83(5): 1196~1204
    65 Taliana L, Evans MD, Dimitrijevich SD, et al. Vitronectin or fibronectin is required for corneal fibroblast-seeded collagen gel contraction. InvestOphthalmol Vis Sci, 2000, 41(1): 103~109
    66 Daniels JT, Geerling G, Alexander RA, et al. Temporal and spatial expression of matrix metalloproteinases during wound healing of human corneal tissue. Exp Eye Res, 2003, 77(6): 653~664
    67 Iwanami H, Ishizaki M, Fukuda Y, et al. Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr Eye Res, 2009, 34(3): 207~214
    68 Ko JA, Yanai R, Morishige N, et al. Upregulation of connexin43 expression in corneal fibroblasts by corneal epithelial cells. Invest Ophthalmol Vis Sci, 2009, 50(5): 2054~2060
    69 Miyazaki K, Okada Y, Yamanaka O, et al. Corneal wound healing in an osteopontin-deficient mouse. Invest Ophthalmol Vis Sci, 2008, 49(4): 1367~1375
    70 Andresen JL, Ledet T, Hager H, et al. The influence of corneal stromal matrix proteins on the migration of human corneal fibroblasts. Exp Eye Res, 2000, 71(1): 33~43
    71 Schmidinger G, Hanselmayer G, Pieh S, et al. Effect of tenascin and fibronectin on the migration of human corneal fibroblasts. J Cataract Refract Surg, 2003, 29(2): 354~360
    72 Ducros E, Berthaut A, Mirshahi P, et al. Expression of extracellular matrix proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. Curr Eye Res, 2007, 32(6): 481~490
    73 Stramer BM, Cook JR, Fini ME, et al. Induction of the ubiquitin-proteasome pathway during the keratocyte transition to the repair fibroblast phenotype. Invest Ophthalmol Vis Sci, 2001, 42(8): 1698~1706
    74 Lu Y, Fukuda K, Seki K, et al. Inhibition by triptolide of IL-1-induced collagen degradation by corneal fibroblasts. Invest Ophthalmol Vis Sci, 2003, 44(12): 5082~5088
    75 West-Mays JA, Strissel KJ, Sadow PM, et al. Competence for collagenase gene expression by tissue fibroblasts requires activation of aninterleukin 1 alpha autocrine loop. Proc Natl Acad Sci U S A, 1995, 92(15): 6768~6772
    76 Barbosa FL, Chaurasia SS, Kaur H, et al. Stromal interleukin-1 expression in the cornea after haze-associated injury. Exp Eye Res, 2010, 91(3): 456~461
    77 Cook JR, Mody MK, Fini ME. Failure to activate transcription factor NF-kappaB in corneal stromal cells (keratocytes). Invest Ophthalmol Vis Sci, 1999, 40(13): 3122~3131
    78赵锦,吴静安.核因子κB在人角膜基质细胞中的表达.中华眼科杂志, 1999, 35(1): 13~15
    79 Lu Y, Fukuda K, Li Q, et al. Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts. Exp Eye Res, 2006, 83(3): 560~568
    80 Kimura K, Orita T, Kondo Y, et al. Upregulation of matrix metalloproteinase expression by poly(I:C) in corneal fibroblasts: role of NF-κB and interleukin-1β. Invest Ophthalmol Vis Sci, 2010, 51(10): 5012~5018
    81 Myrna KE, Pot SA, Murphy CJ. Meet the corneal myofibroblast: the role of myofibroblast transformation in corneal wound healing and pathology. Vet Ophthalmol, 2009, 12(Suppl1): 25~27
    82 Jester JV, Petroll WM, Barry PA, et al. Expression of alpha-smooth muscle (alpha-SM) actin during corneal stromal wound healing. Invest Ophthalmol Vis Sci, 1995, 36(5): 809~819
    83 Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol, 2007, 127(3): 526~537
    84 Ebihara N, Yamagami S, Chen L, et al. Expression and function of toll-like receptor-3 and -9 in human corneal myofibroblasts. Invest Ophthalmol Vis Sci, 2007, 48(7): 3069~3076
    85 Pasare C, Medzhitov R. Toll-like receptors and acquired immunity. Semin Immunol, 2004, 16(1): 23~26
    86 Doyle SE, O'Connell RM, Miranda GA, et al. Toll-like receptors induce aphagocytic gene program through p38. J Exp Med, 2004, 199(1): 81~90
    87 Nakamura K, Kurosaka D, Yoshino M, et al. Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts. Invest Ophthalmol Vis Sci, 2002, 43(8): 2603~2608
    88 Funderburgh JL, Funderburgh ML, Mann MM, et al. Proteoglycan expression during transforming growth factor beta-induced keratocyte- myofibroblast transdifferentiation. J Biol Chem, 2001, 276(47): 44173~44178
    89 Tandon A, Tovey JC, Sharma A, et al. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med, 2010, 10(6): 565~578
    90 Carrington LM, Albon J, Anderson I, et al. Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors. Invest Ophthalmol Vis Sci, 2006, 47(5): 1886~1894
    91 Bühren J, Nagy L, Swanton JN, et al. Optical effects of anti-TGFbeta treatment after photorefractive keratectomy in a cat model. Invest Ophthalmol Vis Sci, 2009, 50(2): 634~643
    92 Chang Y, Wu XY. JNK1/2 siRNA inhibits transforming-growth factor-beta1-induced connective tissue growth factor expression and fibrotic function in THSFs. Mol Cell Biochem, 2010, 335(1-2): 83~89
    93 Xing D, Bonanno JA. Hypoxia reduces TGFbeta1-induced corneal keratocyte myofibroblast transformation. Mol Vis, 2009, 15: 1827~1834
    94 Chen J, Guerriero E, Sado Y, et al. Rho-mediated regulation of TGF-beta1- and FGF-2-induced activation of corneal stromal keratocytes. Invest Ophthalmol Vis Sci, 2009, 50(8): 3662~3670
    95 Liu Y, Kimura K, Yanai R, et al. Cytokine, chemokine, and adhesion molecule expression mediated by MAPKs in human corneal fibroblasts exposed to poly(I:C). Invest Ophthalmol Vis Sci, 2008, 49(8): 3336~3344
    96 Angunawela RI, Marshall J. Inhibition of transforming growth factor-beta1 and its effects on human corneal fibroblasts by mannose-6-phosphate Potential for preventing haze after refractive surgery. J Cataract Refract Surg, 2010, 36(1): 121~126
    97 Zhou Q, Wang Y, Yang L, et al. Histone deacetylase inhibitors blocked activation and caused senescence of corneal stromal cells. Mol Vis, 2008, 14: 2556~2565
    98 Sharma A, Mehan MM, Sinha S, et al. Trichostatin a inhibits corneal haze in vitro and in vivo. Invest Ophthalmol Vis Sci, 2009, 50(6): 2695~2701
    99 Xing D, Bonanno JA. Effect of cAMP on TGFbeta1-induced corneal keratocyte-myofibroblast transformation. Invest Ophthalmol Vis Sci, 2009, 50(2): 626~633
    100 Vij N, Sharma A, Thakkar M, et al. PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Mol Vis, 2008, 14: 1020~1027
    101 Kim WJ, Mohan RR, Wilson SE. Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet- derived growth factor system in the cornea. Invest Ophthalmol Vis Sci, 1999, 40(7): 1364~1372
    102 Jester JV, Huang J, Petroll WM, et al. TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp Eye Res, 2002, 75(6): 645~657
    103 Kaur H, Chaurasia SS, Agrawal V, et al. Expression of PDGF receptor-alpha in corneal myofibroblasts in situ. Exp Eye Res, 2009, 89(3): 432~434
    104 Kaur H, Chaurasia SS, de Medeiros FW, et al. Corneal stroma PDGF blockade and myofibroblast development. Exp Eye Res, 2009, 88(5): 960~965
    105 He J, Bazan HE. Epidermal growth factor synergism with TGF-beta1 via PI-3 kinase activity in corneal keratocyte differentiation. Invest Ophthalmol Vis Sci, 2008, 49(7): 2936~2945
    106 Ko JA, Yanai R, Nishida T. IGF-1 released by corneal epithelial cells induces up-regulation of N-cadherin in corneal fibroblasts. J Cell Physiol,2009, 221(1): 254~261
    107 Musselmann K, Kane BP, Alexandrou B, et al. IGF-Ⅱis present in bovine corneal stroma and activates keratocytes to proliferate in vitro. Exp Eye Res, 2008, 86(3): 506~511
    108 Carrington LM, Boulton M. Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. J Cataract Refract Surg, 2005, 31(2): 412~423
    109 Garrett Q, Khaw PT, Blalock TD, et al. Involvement of CTGF in TGF-beta1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest Ophthalmol Vis Sci, 2004, 45(4): 1109~1116
    110 Long CJ, Roth MR, Tasheva ES, et al. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J Biol Chem, 2000, 275(18): 13918~13923
    111 Maltseva O, Folger P, Zekaria D, et al. Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci, 2001, 42(11): 2490~2495
    112 Funderburgh ML, Du Y, Mann MM, et al. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J, 2005, 19(10): 1371~1373
    113 Du Y, Funderburgh ML, Mann MM, et al. Multipotent stem cells in human corneal stroma. Stem Cells, 2005, 23(9): 1266~1275
    114 Lwigale PY, Cressy PA, Bronner-Fraser M. Corneal keratocytes retain neural crest progenitor cell properties. Dev Biol, 2005, 288(1): 284~293
    115 Yoshida S, Shimmura S, Nagoshi N, et al. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells, 2006, 24(12): 2714~2722
    116 Amano S, Yamagami S, Mimura T, et al. Corneal stromal and endothelial cell precursors. Cornea, 2006, 25(10Suppl1): 73~77
    117 Yamagami S, Yokoo S, Mimura T, et al. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology, 2007,114(3): 433~439
    118 Mimura T, Amano S, Yokoo S, et al. Isolation and distribution of rabbit keratocyte precursors. Mol Vis, 2008, 14: 197~203
    119 Brandl C, Florian C, Driemel O, et al. Identification of neural crest- derived stem cell-like cells from the corneal limbus of juvenile mice. Exp Eye Res, 2009, 89(2): 209~217
    120 Choong PF, Mok PL, Cheong SK, et al. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy, 2007, 9(3): 252~258
    121 Polisetty N, Fatima A, Madhira SL, et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis, 2008, 14: 431~442
    122 Lu JM, Zhou ZY, Zhang XR, et al. A preliminary study of mesenchymal stem cell-like cells derived from murine corneal stroma. Graefes Arch Clin Exp Ophthalmol, 2010, 248(9): 1279~1285
    123 Thill M, Schlagner K, Alten?hr S, et al. A novel population of repair cells identified in the stroma of the human cornea. Stem Cells Dev, 2007, 16(5): 733~745
    124 Morikawa S, Mabuchi Y, Niibe K, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun, 2009, 379(4): 1114~1119
    125 Du Y, Sundarraj N, Funderburgh ML, et al. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma. Invest Ophthalmol Vis Sci, 2007, 48(11): 5038~5045
    126 Du Y, Carlson EC, Funderburgh ML, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells, 2009, 27(7): 1635~1642
    127 Mimura T, Amano S, Yokoo S, et al. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis, 2008, 14: 1819~1828
    1 Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol, 1997, 9(1): 10~16
    2 Flores-Romo L. In vivo maturation and migration of dendritic cells. Immunology, 2001, 102(3): 255~262
    3 Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106(3): 259~262
    4 Cools N, Ponsaerts P, Van Tendeloo VF, et al. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol, 2007, 82(6): 1365~1374
    5 Misery L, Dezutter-Dambuyant C. Precursors of Langerhans cells. J Eur Acad Dermatol Venereol, 1995, 5(2): 124~131
    6 Hamrah P, Dana MR. Corneal antigen-presenting cells. Chem Immunol Allergy, 2007, 92: 58~70
    7 Silberberg I. Apposition of mononuclear cells to langerhans cells in contact allergic reactions. An ultrastructural study. Acta Derm Venereol, 1973, 53(1): 1~12
    8 Rowden G. Expression of Ia antigens on Langerhans cells in mice, guinea pigs, and man. J Invest Dermatol, 1980, 75(1): 22~31
    9 Niederkorn JY, Ross JR, He Y. Effect of donor Langerhans cells on corneal graft rejection. J Invest Dermatol, 1992, 99(5): 104~106
    10 Seto SK, Gillette TE, Chandler JW. HLA-DR+/T6- Langerhans cells of the human cornea. Invest Ophthalmol Vis Sci, 1987, 28(10): 1719~1722
    11 Castell-Rodríguez AE, Hernández-Pe?aloza A, Sampedro-Carrillo EA, et al. ATPase and MHC classⅡmolecules co-expression in Rana pipiens dendritic cells. Dev Comp Immunol, 1999, 23(6): 473~485
    12 Hamrah P, Zhang Q, Liu Y, et al. Novel characterization of MHC class Ⅱ-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci, 2002, 43(3): 639~646
    13 Hamrah P, Huq SO, Liu Y, et al. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. Leukoc Biol, 2003, 74(2): 172~178
    14 Yamagami S, Yokoo S, Usui T, et al. Distinct populations of dendritic cells in the normal human donor corneal epithelium. Invest Ophthalmol Vis Sci, 2005, 46(12): 4489~4494
    15 Mayer WJ, Irschick UM, Moser P, et al. Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. Invest Ophthalmol Vis Sci, 2007, 48(10): 4459~4467
    16 Zhivov A, Stave J, Vollmar B, et al. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol, 2005, 243(10): 1056~1061
    17 Mastropasqua L, Nubile M, Lanzini M, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol, 2006, 142(5): 736~744
    18 Zhivov A, Stave J, Vollmar B, et al. In vivo confocal microscopic evaluation of langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers. Cornea, 2007, 26(1): 47~54
    19 Ledbetter EC, Scarlett JM. In vivo confocal microscopy of the normal equine cornea and limbus. Vet Ophthalmol, 2009, 12(Suppl1): 57~64
    20 Chandler JW, Cummings M, Gillette TE. Presence of Langerhans cells in the central corneas of normal human infants. Invest Ophthalmol Vis Sci, 1985, 26(1): 113~116
    21 Diaz-Araya CM, Madigan MC, Provis JM, et al. Immunohistochemical and topographic studies of dendritic cells and macrophages in human fetal cornea. Invest Ophthalmol Vis Sci, 1995, 36(3): 644~656
    22 Hill JC, Sarvan J, Maske R, et al. Evidence that UV-B irradiation decreases corneal Langerhans cells and improves corneal graft survival inthe rabbit. Transplantation, 1994, 57(8): 1281~1284
    23 He YG, Niederkorn JY. Depletion of donor-derived Langerhans cells promotes corneal allograft survival. Cornea, 1996, 15(1): 82~89
    24 García-Olivares E, Carreras B, Gallardo JM. Presence of Langerhans cells in the cornea of Klebsiella keratoconjunctivitis mice. Invest Ophthalmol Vis Sci, 1988, 29(1): 108~111
    25 Miller JK, Laycock KA, Nash MM, et al. Corneal Langerhans cell dynamics after herpes simplex virus reactivation. Invest Ophthalmol Vis Sci, 1993, 34(7): 2282~2290
    26 Niederkorn JY, Peeler JS, Mellon J. Phagocytosis of particulate antigens by corneal epithelial cells stimulates interleukin-1 secretion and migration of Langerhans cells into the central cornea. Reg Immunol, 1989, 2(2): 83~90
    27 Ward BR, Jester JV, Nishibu A, et al. Local thermal injury elicits immediate dynamic behavioural responses by corneal Langerhans cells. Immunology, 2007, 120(4): 556~572
    28 Resch MD, Imre L, Tapaszto B, et al. Confocal microscopic evidence of increased Langerhans cell activity after corneal metal foreign body removal. Eur J Ophthalmol, 2008, 18(5): 703~707
    29 Su PY, Hu FR, Chen YM, et al. Dendritiform cells found in central cornea by in-vivo confocal microscopy in a patient with mixed bacterial keratitis. Ocul Immunol Inflamm, 2006, 14(4): 241~244
    30 Kawamoto K, Chikama T, Takahashi N, et al. In vivo observation of Langerhans cells by laser confocal microscopy in Thygeson's superficial punctate keratitis. Mol Vis, 2009, 15: 1456~1462
    31 Brissette-Storkus CS, Reynolds SM, Lepisto AJ, et al. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci, 2002, 43(7): 2264~2271
    32 Hamrah P, Liu Y, Zhang Q, et al. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci, 2003, 44(2): 581~589
    33 Hamrah P, Liu Y, Zhang Q, et al. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol, 2003, 121(8): 1132~1140
    34 Nakamura T, Ishikawa F, Sonoda KH, et al. Characterization and distribution of bone marrow-derived cells in mouse cornea. Invest Ophthalmol Vis Sci, 2005, 46(2): 497~503
    35 Takayama T, Kondo T, Kobayashi M, et al. Characteristic morphology and distribution of bone marrow derived cells in the cornea. Anat Rec (Hoboken), 2009, 292(5): 756~763
    36 SosnováM, Bradl M, Forrester JV. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells, 2005, 23(4): 507~515
    37 McMenamin PG, Kezic J, Camelo S. Characterisation of rat corneal cells that take up soluble antigen: an in vivo and in vitro study. Exp Eye Res, 2006, 83(5): 1268~1280
    38 Ardjomand N, Berghold A, Reich ME. Loss of corneal Langerhans cells during storage in organ culture medium, Optisol and McCarey-Kaufman medium. Eye (Lond), 1998, 12(Pt1): 134~138
    39 Yamagami S, Usui T, Amano S, et al. Bone marrow-derived cells in mouse and human cornea. Cornea, 2005, 24(8Suppl): 71~74
    40 Yamagami S, Ebihara N, Usui T, et al. Bone marrow-derived cells in normal human corneal stroma. Arch Ophthalmol, 2006, 124(1): 62~69
    41 Metcalf JF, Hamilton DS, Reichert RW. Herpetic keratitis in athymic (nude) mice. Infect Immun, 1979, 26(3): 1164~1171
    42 Newell CK, Martin S, Sendele D, et al. Herpes simplex virus-induced stromal keratitis: role of T-lymphocyte subsets in immunopathology. J Virol, 1989, 63(2): 769~775
    43 Hendricks RL, Tumpey TM. Concurrent regeneration of T lymphocytes and susceptibility to HSV-1 corneal stromal disease. Curr Eye Res, 1991, 10(Suppl): 47~53
    44 Thomas J, Gangappa S, Kanangat S, et al. On the essential involvementof neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol, 1997, 158(3): 1383~1391
    45 Asbell PA, Kamenar T. The response of Langerhans cells in the cornea to herpetic keratitis. Curr Eye Res, 1987, 6(1): 179~182
    46 Pepose JS. The relationship of corneal Langerhans cells to herpes simplex antigens during dendritic keratitis. Curr Eye Res, 1989, 8(8): 851~858
    47 Jager MJ, Atherton S, Bradley D, et al. Herpetic stromal keratitis in mice: less reversibility in the presence of Langerhans cells in the central cornea. Curr Eye Res, 1991, 10(Suppl): 69~73
    48 Jager MJ, Bradley D, Atherton S, et al. Presence of Langerhans cells in the central cornea linked to the development of ocular herpes in mice. Exp Eye Res, 1992, 54(6): 835~841
    49 Hendricks RL, Janowicz M, Tumpey TM. Critical role of corneal Langerhans cells in the CD4- but not CD8-mediated immunopathology in herpes simplex virus-1-infected mouse corneas. J Immunol, 1992, 148(8): 2522~2529
    50 Chen H, Hendricks RL. B7 costimulatory requirements of T cells at an inflammatory site. J Immunol, 1998, 160(10): 5045~5052
    51 Rosenberg ME, Tervo TM, Müller LJ, et al. In vivo confocal microscopy after herpes keratitis. Cornea, 2002, 21(3): 265~269
    52 Shirane J, Nakayama T, Nagakubo D, et al. Corneal epithelial cells and stromal keratocytes efficently produce CC chemokine-ligand 20 (CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res, 2004, 28(5): 297~306
    53 Sehrawat S, Suvas S, Sarangi PP, et al. In vitro-generated antigen- specific CD4+ CD25+ Foxp3+ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions. J Virol, 2008, 82(14): 6838~6851
    54 Cook SD, Paveloff MJ, Doucet JJ, et al. Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcriptmutants. Invest Ophthalmol Vis Sci, 1991, 32(5): 1558~1561
    55 Mott KR, Underhill D, Wechsler SL, et al. Lymphoid-related CD11c+ CD8alpha+ dendritic cells are involved in enhancing herpes simplex virus type 1 latency. J Virol, 2008, 82(20): 9870~9879
    56 Mott KR, Ghiasi H. Role of dendritic cells in enhancement of herpes simplex virus type 1 latency and reactivation in vaccinated mice. Clin Vaccine Immunol, 2008, 15(12): 1859~1867
    57 Neumann J, Eis-Hübinger AM, Koch N. Herpes simplex virus type 1 targets the MHC classⅡprocessing pathway for immune evasion. J Immunol, 2003, 171(6): 3075~3083
    58 Pollara G, Speidel K, Samady L, et al. Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis, 2003, 187(2): 165~178
    59 Bosnjak L, Miranda-Saksena M, Koelle DM, et al. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol, 2005, 174(4): 2220~2227
    60 Prechtel AT, Turza NM, Kobelt DJ, et al. Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol, 2005, 86(Pt6): 1645~1657
    61 O'Callaghan RJ. Role of exoproteins in bacterial keratitis: the Fourth Annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group Meeting, November 7, 1998. Cornea, 1999, 18(5): 532~537
    62 Kwon B, Hazlett LD. Association of CD4+ T cell-dependent keratitis with genetic susceptibility to Pseudomonas aeruginosa ocular infection. J Immunol, 1997, 159(12): 6283~6290
    63 Hazlett LD, McClellan S, Barrett R, et al. B7/CD28 costimulation is critical in susceptibility to Pseudomonas aeruginosa corneal infection: a comparative study using monoclonal antibody blockade and CD28- deficient mice. J Immunol, 2001, 166(2): 1292~1299
    64 Hazlett LD, McClellan SA, Rudner XL, et al. The role of Langerhans cells in Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci, 2002, 43(1): 189~197
    65 Mukae H, Urabe K, Yanagihara K, et al. Low expression of T-cell co-stimulatory molecules in bone marrow-derived dendritic cells in a mouse model of chronic respiratory infection with Pseudomonas aeruginosa. Tohoku J Exp Med, 2010, 220(1): 59~65
    66 Skindersoe ME, Zeuthen LH, Brix S, et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol, 2009, 55(3): 335~345
    67 Worgall S, Martushova K, Busch A, et al. Apoptosis induced by Pseudomonas aeruginosa in antigen presenting cells is diminished by genetic modification with CD40 ligand. Pediatr Res, 2002, 52(5): 636~644
    68 Hazlett LD. Pathogenic mechanisms of P. aeruginosa keratitis: a review of the role of T cells, Langerhans cells, PMN, and cytokines. DNA Cell Biol, 2002, 21(5-6): 383~390
    69 Jones DB, Visvesvara GS, Robinson NM. Acanthamoeba polyphaga keratitis and Acenthamoeba uveitis associated with fatal meningo- encephalitis. Trans Ophthalmol Soc U K, 1975, 95(2): 221~232
    70 van Klink F, Alizadeh H, He Y, et al. The role of contact lenses, trauma, and Langerhans cells in a Chinese hamster model of Acanthamoeba keratitis. Invest Ophthalmol Vis Sci, 1993, 34(6): 1937~1944
    71 Van Klink F, Leher H, Jager MJ, et al. Systemic immune response to Acanthamoeba keratitis in the Chinese hamster. Ocul Immunol Inflamm, 1997, 5(4): 235~244
    72 Clarke DW, Niederkorn JY. The immunobiology of Acanthamoeba keratitis. Microbes Infect, 2006, 8(5): 1400~1405
    73 Ioachim-Velogianni E, Tsironi E, Agnantis N, et al. HLA-DR antigen expression in pterygium epithelial cells and lymphocyte subpopulations:an immunohistochemistry study. Ger J Ophthalmol, 1995, 4(2): 123~129
    74 Tsironi S, Ioachim E, Machera M, et al. Presence and possible significance of immunohistochemically demonstrable metallothionein expression in pterygium versus pinguecula and normal conjunctiva. Eye (Lond), 2001, 15(Pt1): 89~96
    75 LabbéA, Gheck L, Iordanidou V, et al. An in vivo confocal microscopy and impression cytology evaluation of pterygium activity. Cornea, 2010, 29(4): 392~399
    76 Wang Y, Zhao F, Zhu W, et al. In vivo confocal microscopic evaluation of morphologic changes and dendritic cell distribution in pterygium. Am J Ophthalmol, 2010, 150(5): 650~655
    77 Vogelsang P, Jonsson MV, Dalvin ST, et al. Role of dendritic cells in Sj?gren's syndrome. Scand J Immunol, 2006, 64(3): 219~226
    78 Vera LS, Gueudry J, Delcampe A, et al. In vivo confocal microscopic evaluation of corneal changes in chronic Stevens-Johnson syndrome and toxic epidermal necrolysis. Cornea, 2009, 28(4): 401~407
    79 Lin H, Li W, Dong N, et al. Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye. Invest Ophthalmol Vis Sci, 2010, 51(1): 122~128
    80 Zhivov A, Kraak R, Bergter H, et al. Influence of benzalkonium chloride on langerhans cells in corneal epithelium and development of dry eye in healthy volunteers. Curr Eye Res, 2010, 35(8): 762~769
    81 Zheng X, de Paiva CS, Li DQ, et al. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell- mediated pathway. Invest Ophthalmol Vis Sci, 2010, 51(6): 3083~3091
    82 Ledbetter EC, Irby NL, Kim SG. In vivo confocal microscopy of equine fungal keratitis. Vet Ophthalmol, 2011, 14(1): 1~9
    83 Dana MR, Qian Y, Hamrah P. Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea, 2000, 19(5): 625~643
    84 Niederkorn JY, Ross JR, He Y. Effect of donor Langerhans cells on corneal graft rejection. Invest Dermatol, 1992, 99(5): 104~106
    85 Fu H, Larkin DF, George AJ. Immune modulation in corneal transplantation. Transplant Rev (Orlando), 2008, 22(2): 105~115
    86 Liu Y, Hamrah P, Zhang Q, et al. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) classⅡ-positive dendritic cells derived from MHC classⅡ-negative grafts. J Exp Med, 2002, 195(2): 259~268
    87 Yamagami S, Dana MR, Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea, 2002, 21(4): 405~409
    88 Yamagami S, Amano S. Role of resident corneal leukocytes and draining cervical lymph nodes in corneal allograft rejection. Cornea, 2003,
    22(7Suppl): 61~65
    89 Huq S, Liu Y, Benichou G, et al. Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J Immunol, 2004, 173(7): 4464~4469
    90 Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev, 2002, 82(3): 673~700
    91 Hamrah P, Chen L, Zhang Q, et al. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol, 2003, 163(1): 57~68
    92 Hamrah P, Chen L, Cursiefen C, et al. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res, 2004, 79(4): 553~561
    93 Chen L, Hamrah P, Cursiefen C, et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med, 2004, 10(8): 813~815
    94 Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol, 2006, 176(9): 5153~5159
    95 Ebihara N, Yamagami S, Yokoo S, et al. Involvement of C-C chemokine ligand 2-CCR2 interaction in monocyte-lineage cell recruitment of normal human corneal stroma. J Immunol, 2007, 178(5): 3288~3292
    96 Jin Y, Shen L, Chong EM, et al. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis, 2007, 13: 626~634
    97 Jin Y, Chauhan SK, Saban DR, et al. Role of CCR7 in facilitating direct allosensitization and regulatory T-cell function in high-risk corneal transplantation. Invest Ophthalmol Vis Sci, 2010, 51(2): 816~821
    98 Sano Y, Osawa H, Sotozono C, et al. Cytokine expression during orthotopic corneal allograft rejection in mice. Invest Ophthalmol Vis Sci, 1998, 39(10): 1953~1957
    99 Zhu S, Dekaris I, Duncker G, et al. Early expression of proinflammatory cytokines interleukin-1 and tumor necrosis factor-alpha after corneal transplantation. J Interferon Cytokine Res, 1999, 19(6): 661~669
    100 Bosnar D, Dekaris I, Gabri? N, et al. Influence of interleukin-1alpha and tumor necrosis factor-alpha production on corneal graft survival. Croat Med J, 2006, 47(1): 59~66
    101 Niederkorn JY. Effect of cytokine-induced migration of Langerhans cells on corneal allograft survival. Eye (Lond), 1995, 9(Pt2): 215~218
    102 Dekaris I, Zhu SN, Dana MR. TNF-alpha regulates corneal Langerhans cell migration. J Immunol, 1999, 162(7): 4235~4239
    103 Jie Y, Zhang WH, Pan ZQ, et al. Interleukin-1 receptor antagonist eye drops promoting high-risk corneal allografts survival in rats. Chin Med J (Engl), 2004, 117(5): 711~716
    104 Rayner SA, King WJ, Comer RM, et al. Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation. Clin Exp Immunol, 2000, 122(1): 109~116
    105 Dana R. Comparison of topical interleukin-1 vs tumor necrosis factor-alpha blockade with corticosteroid therapy on murine corneal inflammation, neovascularization, and transplant survival. Trans Am Ophthalmol Soc, 2007, 105: 330~343
    106 Yu X, Fournier S, Allison JP, et al. The role of B7 costimulation in CD4/CD8 T cell homeostasis. J Immunol, 2000, 164(7): 3543~3553
    107 Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol, 2001, 1(3): 220~228
    108 Gebhardt BM, Hodkin M, Varnell ED, et al. Protection of corneal allografts by CTLA4-Ig. Cornea, 1999, 18(3): 314~320
    109 Comer RM, King WJ, Ardjomand N, et al. Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest Ophthalmol Vis Sci, 2002, 43(4): 1095~1103
    110 Thiel MA, Steiger JU, O'Connell PJ, et al. Local or short-term systemic costimulatory molecule blockade prolongs rat corneal allograft survival. Clin Experiment Ophthalmol, 2005, 33(2): 176~180
    111 Gong N, Pleyer U, Yang J, et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med, 2006, 8(4): 459~467
    112 Shi W, Chen M, Xie L. Prolongation of corneal allograft survival by CTLA4-FasL in a murine model. Graefes Arch Clin Exp Ophthalmol, 2007, 245(11): 1691~1697
    113陈敏,史伟云,王富华,等.细胞毒性T淋巴细胞相关抗原4-凋亡相关蛋白配体双功能蛋白抑制小鼠角膜移植免疫排斥反应的研究.中华眼科杂志, 2008, 44(1): 56~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700