Mg-7Li合金微弧氧化涂层及其腐蚀和摩擦性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金具有良好的综合性能,是部件轻量化理想材料。耐腐蚀、耐磨性能差是制约镁锂合金应用的主要因素。对镁锂合金表面处理是改善其性能的最佳方法。采用微弧氧化处理提高镁锂合金的性能,对增强国家的航天航空水平,军事实力及在电子、汽车等工业领域的竞争力有重大意义。本文采用优化的微弧氧化(MAO)工艺,对镁锂合金进行表面处理,选择不同添加剂来提高涂层生长速率,改善涂层组织结构,获得了以植酸为添加剂制备的耐蚀、耐磨性能优异的涂层。利用TEM、AFM、SEM、EDS、XRD、XPS等手段分析微弧氧化涂层的微观组织和相成分,利用数码影像技术分析放电微弧形态,探讨微弧氧化涂层形成过程。采用动态极化曲线和电化学阻抗谱(EIS)研究合金及微弧氧化涂层的耐蚀性能、涂层的阻抗变化及腐蚀机理;采用球-盘式磨损试验机测试涂层的摩擦磨损性能。
     通过研究Mg-7Li合金微弧氧化电解液中硅酸钠浓度以及电参数对涂层结构的影响来优化微弧氧化工艺参数,结果表明:当硅酸钠浓度由10g/L提高至30g/L,微弧氧化涂层厚度由8μm增加到23μm。随着电压、占空比和时间的增加,涂层的生长速度加快,涂层厚度增大,微孔数量减少,表面变得粗糙;频率的升高则降低涂层厚度,使表面平整。硅酸钠电解液制备的微弧氧化涂层主要由MgO、Li_2O_2和Mg_2SiO_4组成。硅酸钠体系最佳微弧氧化工艺参数为:恒压方式,硅酸钠浓度15~20g/L、电压400~450V、时间30min、频率200~400Hz、占空比10~15%。
     为提高涂层厚度、调整涂层的组织结构,优化涂层耐蚀和耐磨性能,通过加入柠檬酸钠、硼酸钠、钨酸钠、氟化钠及植酸(C_6H_(18)O_(24)P_6)等添加剂研究微弧氧化涂层组织结构变化,结果表明:添加剂的加入均能提高涂层的厚度,降低涂层表面微孔数量,其中植酸添加剂的加入使涂层最大厚度达27μm。植酸的螯合作用吸附Mg~(2+)、Li+等离子形成链状结构,提高涂层生长速率。
     微弧放电状态影响涂层生长过程,对普通数码影像分析结果表明:随着硅酸钠浓度、电源电压、加电时间的增加以及添加剂的加入,放电微弧数量减少,微弧发生合并,微弧直径变粗。高速影像分析表明:硅酸钠电解质溶液中,一个脉冲周期内,同一位置的放电击穿持续到脉冲结束;不同的脉冲周期中,放电击穿反复在同一位置进行,其断续时间达160ms;电压的升高加快了放电击穿位置的迁移;硼酸钠和1.5mL/L植酸添加剂的加入,促进放电击穿位置的快速迁移,而氟化钠和3mL/L植酸的加入使放电击穿反复在同一位置且断续时间增加。植酸的加入,使放电反复击穿断续时间达220ms。
     通过对镁锂合金微弧氧化涂层组织结构、相组成及元素结合能分析,结合放电微弧形态,得出微弧氧化涂层生长过程为:镁锂合金表面形成双电层;产生微弧等离子放电;发生高温高压化合反应;内部隐弧持续放电;溶液对熔融物冷淬形成涂层。
     极化曲线及阻抗谱是评价镁锂合金耐蚀性能优劣的依据。对Mg-7Li合金及其微弧氧化涂层在3.5wt.%NaCl溶液中的极化曲线和阻抗进行研究,结果表明: Mg-7Li合金的腐蚀电极电位和腐蚀电流密度分别为-1.5857V和2.235×10~(-4)A/cm~2。Mg-7Li合金在3.5%NaCl溶液中最大阻抗值为250ohm·cm~2。不同硅酸钠浓度和不同添加剂制备的微弧氧化涂层的腐蚀电极电位相对于基体均有所提高,腐蚀电流密度相对于基体均降低。其中,添加3mL/L C_6H_(18)O_(24)P_6的涂层腐蚀电极电位为-1.4761V,比基体合金正移了109.6mV,腐蚀电流密度为7.204×10~(-7)A·cm~(-2),比基体合金降低3个数量级。硅酸钠系微弧氧化涂层在3.5%NaCl溶液中稳定0.5h后的阻抗值比基体阻抗值提高10倍以上;植酸-硅酸钠系微弧氧化涂层的阻抗值达到10050ohm·cm~2。对合金基体和植酸-硅酸钠系微弧氧化涂层在3.5%NaCl溶液浸泡2~120h阻抗测试表明,随着浸泡时间延长,合金基体阻抗值越来越小,浸泡120h后阻抗值为70ohm·cm~2,基体被腐蚀为粉末。微弧氧化涂层浸泡初期还能保持15倍于基体的阻抗,120h后仍维持300ohm·cm~2。对极化曲线、阻抗谱及等效电路模型拟合的研究表明:有微弧氧化涂层合金的腐蚀机理为腐蚀溶液微孔渗透促溶。涂层腐蚀过程为溶液渗入涂层微孔—Cl-优先吸附于涂层—形成可溶性氯盐—涂层脱落—全面腐蚀。
     研究干摩擦磨损试验条件下Mg-7Li合金和表面微弧氧化涂层摩擦磨损性能,结果表明:Mg-7Li合金的摩擦系数保持在0.08~0.20。合金经微弧氧化处理后,涂层的摩擦系数相对于合金基体均降低,耐摩擦磨损性能显著提高。随着电解液中硅酸钠量增加,摩擦系数增大,并出现宽幅跳动。有添加剂的微弧氧化涂层摩擦系数小于0.15,比20g/L硅酸钠系微弧氧化涂层摩擦系数低。Mg-7Li合金微弧氧化涂层的摩擦磨损机理为:多孔涂层表面冲击振动—涂层微凸体磨损或断裂—涂层、脱落体与对磨物间磨粒磨损的反复作用。
Mg-Li alloys, with good comprehensive properties, are suitable light weightfabrication materials. However, the poor corrosion resistance and wear performancebecome the main factor that has restricted their further applications. Surfacemodification for Mg-Li alloys is the best way to improve their performances.Using microarc oxidation treatment to improve the performance of Mg-Li alloy hasa great significance to enhance the national competitiveness in the field of aerospace,military power,electronic and automotive. In this study, the surface treatment wascarried out on Mg-7Li alloy by optimized microarc oxidation (MAO) process.Different additives were selected to enhance the growth rate and improve themicrostructure of the coatings. Finally, the ceramic coating prepared with phyticacid additive exhibits excellent corrosion and wear resistance. To discuss theformation mechanism of MAO coating, the morphology and phase compositionwere investigated by means of TEM, AFM, SEM, EDS, XRD and XPS. Themorphology of discharged microarc was analyzed by digital imaging technology.The corrosion resistance, impedance change and the corrosion mechanism of thebare alloy and the MAO coating were discussed by potentiodynamic polarizationcurves and Electrochemical Impedance Spectroscopy (EIS). The friction and wearproperties of the coatings were measured using a ball-on-disk wear tester.
     In order to determine technological parameters of the MAO coating on Mg-7Lialloy, the influences of the Na2SiO3·9H2O concentration in the electrolyte andelectrical parameters on the structure of the coating were investigated. Resultsshowed that when the Na2SiO3·9H2O concentration varied from10g/L to30g/L, thethickness of the MAO coatings on Mg-7Li alloy increased from8to23μm. With arise in voltage and duty cycle as well as time, the growth rate and the thickness ofthe coatings increased, while the number of the micropores decreased and thecoating surface became coarse. On the contrary, the rise of frequency diminished thecoating thickness and made the surface smooth. The coatings prepared inNa2SiO3·9H2O electrolyte were mainly composed of nanoscale MgO, Li_2O_2andMg_2SiO_4. The optimized parameters are constant voltage of400-450V, oxidationtime of30min, frequency of200-400Hz, duty cycle of10-15%and Na2SiO3·9H2Oconcentration of15-20g/L.
     To adjust the structure and increase the thickness of the coating, the additivessuch as sodium citrate, sodium borate, sodium tungstate, sodium fluoride and phyticacid (C_6H_(18)O_(24)P_6) were added to the electrolyte, and effects of these additives on thecoating structure were discussed. Results showed that the use of additives improved the thickness of the coatings and reduced the quantity of surface micropores. Amongthem, the C_6H_(18)O_(24)P_6additive contributed maximum thickness of27μm to thecoatings. Chelation of phytic acid adsorbed Mg~(2+)and Li+to form chain structure,which had improved growth rate of the coating.
     Morphology of microarc discharge affects growth process of the coatings.Results of ordinary digital imaging analysis showed that with increase inconcentration of sodium silicate, supply voltage, charging time and addition ofadditives, the discharged arc reduced, united and the diameter of micoarc increased.Analysis of high-speed video showed that discharge breakdown continued to the endof the pulse during a pulse-period in Na2SiO3solution, while discharge breakdownhappened at the same position repeatedly with intermittent time up to160ms indifferent pulse-period. The increase of voltage accelerated the migration ofdischarge location. Addition of sodium borate and1.5mL/L phytic acid resulted infast migration of discharge location, and sodium fluoride as well as phytic acidmade discharge occur at the same position repeatedly and extended intermittent time.Therefore, addition of phytic acid caused the repeated intermittent time of dischargebreakdown up to220ms.
     According to analysis of the microstructure, composition and element bindingenergy of the coatings in combination with morphology of discharged microarc, it isfound that the growth process of the coating involved the formation of doubleelectric layer, discharge of plasma, occurrence of compound reaction at hightemperature and pressure, continuous discharge of internal hidden arc and the coldquenching of the solution to the melts. Adding the additives to Na2SiO3·9H2Osolution could promote the growth rate of the coating during the breakdown process.The chelation of phytic acid made it absorb more Mg and Li ions to form chainstructure, improving the growth rate of the coating and causing the increase ofMg_2SiO_4content in the coating.
     Polarization curve and impedance spectroscopy are used to evaluate thecorrosion resistant of Mg-Li alloy. The researches on the polarization curve andimpedance of the Mg-7Li alloy and the coatings in3.5wt.%NaCl solution indicatedthat the corrosion potential(Ecorr) and corrosion current density(Icorr) of Mg-7Li alloywere-1.5857V and2.235×10~(-4)A/cm~2, respectively. The maximum impedance ofMg-7Li alloy was250ohm·cm~2. The Ecorrof the coating with both differentNa2SiO3·9H2O concentration and additive was higher than that of the substrate, andthe Icorrof the coating was lower than that of the substrate. Among them, the Ecorrofthe coating with3ml/L C_6H_(18)O_(24)P_6was-1.4761V which had shifted109.6mVtowards positive direction relative to the substrate, and its Icorrwas7.204×10-7A·cm-2which had reduced by3orders of magnitude compared to that of substrate. The impedance of the MAO coating prepared in Na2SiO3·9H2Oelectrolyte was10times higher than that of substrate, and the impedance of thecoating prepared in Na2SiO3·9H2O-C_6H_(18)O_(24)P_6electrolyte was10050ohm·cm~2inNaCl solution after0.5h. The EIS test of the substrate and the coating immersed for2-120h indicated that the impedance of the substrate gradually decreased withincreasing time, and reached70ohm·cm~2for120h when the substrate becamepowders due to corrosion damage. However, the impedance of MAO coating was15times that of substrate in the initial stage of immersion, and still maintained300ohm·cm~2after120h immersion. Based on above data, the corrosion mechanism ofMAO coatings involved that the corrosion solution promoted the coating dissolutionby penetration into any porosity. The corrosion process included the penetration ofthe solution into the micropores, priority absorption of the Cl-ions on coating,formation of soluble chloride salt, coating peeling and overall corrosion.
     Under the dry friction test condition, the friction coefficient of Mg-7Li alloyranged from0.08to0.20. Its friction and wear process included the repeated actionsof plough wear, oxidation wear, adhesive wear as well as abrasive wear. After MAOtreatment, the friction coefficient of all the coating was lower than that of thesubstrate, improving the wear performance significantly. With the increase of theNa2SiO3·9H2O concentration in the electrolyte, the friction coefficient increased andwide-range fluctuations appeared. The friction coefficient of the additive-dopedcoatings less than0.15was lower than that of the coatings with20g/LNa2SiO3·9H2O.The friction and wear mechanism of the MAO coating on Mg-7Lialloy was resulted from the repeated actions of impact vibration on porous layersurface, wear or fracture of coating’s micro-protrusion as well as abrasive wearamong coating, peeling and SiO2ball.
引文
[1] Samman T A. Comparative Study of the Deformation Behavior of HexagonalMagnesium-Lithium Alloys and a Conventional Mmagnesium AZ31Alloy[J].Acta Materialia,2009,57(7):2229-2242.
    [2] Wang J Y. Mechanical Properties of Room Temperature Rolled MgLiAlZnAlloy[J]. Journal of Alloys and Compounds,2009,485(1-2):241-244.
    [3] Wang L,Zhou T,Liang J. Corrosion and Self-healing Behaviour of AZ91DMagnesium Alloy in Ethylene Glycol/Water Solutions[J]. Materials andCorrosion,2012,63(8):713-719.
    [4] Song J M,Wen T X,Wang J Y. Vibration Fracture Properties of a LightWeight Mg-Li-Zn Alloy[J]. Scripta Materialia,2007,56(6):529-532.
    [5] Abady G M,Hilal N H,El-Rabiee M,et al. Effect of Al Content on theCorrosion Behavior of Mg-Al Alloys in Aqueous Solutions of DifferentpH[J]. Electrochimica Acta,2010,55(22):6651-6558.
    [6] Song Y W,Shan D Y,Chen R S,et al. Corrosion Characterization of Mg-8LiAlloy in NaCl Solution[J]. Corrosion Science,2009,(51):1087-1094.
    [7]徐河,刘静安,谢水生.镁合金制备与加工技术[M].北京:冶金工业出版社,2007:1-20.
    [8]耿浩然,滕新营,王艳,等.铸造铝镁合金[M].北京:化学工业出版社,2007:150.
    [9] Freeth W E,Raynor G V. The System Agnesium-Lithium and Magnesium-Llithium-Silver[J]. Institute of Metals,1953-1954,82:575-1580.
    [10] Gasior W,Moser Z,Zakulski W,et al. Thermodynamic Sstudies and thePhase Diagram of the Li-Mg System[J]. Metallurgical and MaterialsTransactions A,1996,27(9):2419-2428.
    [11] Masing G,Tammann G. Uber Das Verhalten Von Lithium Natrium, Kalium,Zinn, Cadmium and Magnesium[J].Zeitschrift Fur Anorganische Chemie,1910,67:183-199.
    [12] Jackson J H,Frost R D,Loonam A C,et al. Magnesium-lithium BaseAlloys Preparation,Fabrieation,and General Characteristies[J]. MaterialsTransactions,1949,2:149-168
    [13] Hauser F E,Landon P R,Dorn J E. Deformation and Fracture of Alpha SolidSolutions of Lithium in Magnesium[J]. Transactions of the ASM,1958,50:856-881.
    [14]董含武,吴耀明,王立民. Mg-Li-RE系合金研究进展[J].兵器材料科学与工程,2009,32(1):88-93.
    [15] Zhang M L,Cao P,Han W,et al. Study on the Preparation of Mg-Li-AgAlloys by Electrochemical Deposition from LiCl-KCl-MgCl2-AgCl Melts[J].Russian Journal of Electrochemistry,2012,48(11):1065-1069.
    [16]彭德林,安阁英,邢大伟.二元Mg-Li合金凝固组织与性能研究[J].铸造,1999,5:l-3.
    [17] Haferkamp H. New Magnesium-Lithiuxn Alloys of Higherduetility[J].Aluminium,2000,76:1046-1053.
    [18] Tanno O,Ohuchi K,Matuzawa K,et al. Effect of Rare-earth on Structuresand Mechanical Properties of Mg-8%Li Alloys[J]. Journal of JapaneseInstitute of Light Metals,1992,42(1):3-9.
    [19] Jackson R J,Frost P D. Properties and Current Applications of Magnesium-Llithium Alloys[R]. Washington, D C:NASASP-5068,1967.
    [20] Gonzólez-Doncel G,Wolfenstine J,Metenier P,et al. The Use of FoilMetallurgy Processing to Achieve Ultrafine Grained Mg-9Li Laminates andMg-9Li-5B4C Particulate Composites[J]. Journal of Materials Science,1990,25:4535-4540.
    [21] Metenier P,Gonzolez-Doncel G,Ruano O A,et al. Superplastic Behavior ofa Fine-Grained Two-Phase Mg-9wt.%Li Alloy[J]. Materials Science andEngeering A,1990,125:195-202.
    [22] Galanov A,Tatakin A N,Elkin F M. Russian Magnesium Alloys[J]. LightMetal Age,2002,9/10:44-47.
    [23]栗丽,李焕喜,周铁涛,等.镁锂系合金的研究进展[J].金属材料研究,2005,31(4):23-26.
    [24]山本厚之,芦田哲哉,古宇田由夫,他. Mg-(4~13)%Li-(4~5)%Zn三元合金の時效析出[J].軽金属,2001,51(1):604-607.
    [25]松澤和夫,越原俊夫,落合鍾一,他. Mg-Li系合金の時效硬化舉動および諸性質に及ばす添加元素の影響[J].軽金属.1990,40(9):659-665.
    [26]二宫隆二,三宅行一.超軽量·超塑性Mg-Li合金の研究[J].軽金属,2001,51(10):509-513.
    [27]国翔.最轻的结构用金属材料[J].有色金属与稀土应用,2001,2:17-22.
    [28] Ramesh C,板井徹也,鎌土重晴,他. Mg-Li-Al-Ca系合金の半溶融成形加工[J].軽金属,1998,48(1):13-18.
    [29] Mitsuaki F,Hiroki K,Hiroshi A,et al. Influence of Preliminary ExtrusionConditions on the Superplastic Properties of a Magnesium Alloy Processedby ECAP[J]. Acta Materialia,2007,55:1083-1091.
    [30] Kcal M V, B C Muddle, Nie J F. Crystallography of the Bcc/hcpTransformation in a Mg-8Li Alloy[J]. Materials Science and Engineering A,2007,460-461:227-232.
    [31] Trojanova Z,Drozd Z,Kudela S,et al. Strengthening in Mg-Li MatrixComposites [J]. Science and Technology,2007,67(9):1965-1973.
    [32] Chang T C,Wang J Y, Chu C L,et al. Mechanical Properties andMicrostructures of Various Mg-Li Alloys[J]. Materials Letters,2006,60:3272-3276.
    [33] Trojanova Z,Drozd Z,Lukac P,et al. Deformation Behaviour of Mg-LiAlloys at Elevated Temperatures[J]. Materials Science and Engineering A,2005,410-411:148-151.
    [34] Kawasaki M, Kubota K, Higashi K, et al. Flow and Cavitation in aQuasi-Superplastic Two Phase Magnesium-Lithium Alloy[J]. MaterialsScience and Engineering A,2006,429:334-340.
    [35]沙桂英,徐永波,韩恩厚,等.高速冲击载荷下Mg-Li合金的动态裂纹扩展行为[J].航空材料学报,2005,25(5):50-53.
    [36]曹富荣,崔建忠.超轻Mg-5Li合金超塑性力学性能的研究[J].稀有金属材料与工程,1997,26(2):27-30.
    [37] Ji H B,Yao G C,Li H B. Microstructure,Cold rolling,Heat treatment andMechanical Properties of Mg-Li Alloys[J]. Journal of University of Scienceand Technology,2008,15(4):440-443.
    [38]马春江,张荻,覃继宁,等. SiCw/MgLiAl复合材料的界面结构[J].中国有色金属学报,2000,10(1):22-26.
    [39] Wang T,Zhang M L,Wu R Z. Microstructure and Properties of Mg-8Li-lAl-1Ce alloy[J]. Materials Letters,2008,62(12-13):1846-1848.
    [40] Liu B,Zhang M L,Wu R Z. Effects of Nd on Microstructure MechanicalProperties of As-cast LA141Alloys[J]. Materials Science,2008,487(1-2):347-351.
    [41] Zhang M L,Wu R Z,Wang T. Microstructure and Mechanical Properties ofMg-8Li-(0-3)Ce Alloy[J]. Journal of Materials Science,2009,44:1237-1240.
    [42] Xiang Q,Wu R Z,Zhang M L. Influence of Sn on Microstructure andMechanical Properties of Mg-5Li-3Al-2Zn Alloys[J]. Journal of Alloys andCompounds,2009,477(1/2):832-835.
    [43] Ma L J,Hao H,Dong H W,et al. Effects of Electromagnetic Field on theStructure and Heat Treatment Behavior of Mg-Li-Al alloys[J]. Transactionsof Nonferrous Metals Society China,2008,18(s1):96-100.
    [44] Song G L, Atrens A. Corrosion Mechanisms of Magnesium Alloys[J].Advanced Engineering Materials,1999,1(1):11-33.
    [45]高丽丽.镁锂合金表面涂层及腐蚀性能研究[D].哈尔滨:哈尔滨工程大学博士论文,2008:49-51.
    [46]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:74-75.
    [47] Song G L,Atrens A,Darguseh M. Influence of Microstructure on theCorrosion of Diecast AZ80D[J]. Corrosion Science,1999,41:249-273.
    [48] Haferkamp H,Boehm R,Holzkamp U,et al. Alloy Development Processingand Applications in Magnesium Lithium Alloys[J]. Materials Transactions,2001,42(7):1160-1171.
    [49] Kim S H. Effects of Rare Earth (Y, Nd) on the Corrosion Behaviors ofMg-Li-AI Light Alloys[J]. Corrosion Science Society Korea,1999,28(2):175-185.
    [50]高丽丽,张春红,张密林,等. Mg-11Li-3Al-0.5RE合金在碱性NaCl溶液中腐蚀特性研究[J].材料研究学报,2008,22:135-140.
    [51]高丽丽,张春红,张密林,等. Mg-11Li-3Al-0.5RE合金在酸性NaCl溶液中腐蚀特性研究[J].表面技术,2008,37(2):4-7.
    [52]黄晓梅,张密林. Mg-15Li合金在碱性NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术,2008,20(4):257-259.
    [53]黄晓梅,张密林,张春红.镁锂合金碱性条件下腐蚀的EIS分析[J].材料科学与与工艺,2008,16(3):384-388.
    [54]黄晓梅,凌文亮,刘飒,等.镁锂合金在人体模拟汗液中的腐蚀行为[J].表面技术,2009,38(6):45-47.
    [55] Anicai L, MasiI R, Santanmaria M, et al. A PhotoelectrochemicalInvestigation of Conversion Coatings on Mg Substrates[J]. CorrosionScience,2005,47(12):2883-2900.
    [56] Wery S M,Petris-Wery M D,Feki M,et al. Application of a Factorial Designto Study a Chromate-Conversion Process[J]. Journal of Coatings TechnologyResearch,2010,7(1):39-47.
    [57] Sharma A K. Chromate Conversion Coatings for Magnesium-LithiumAlloy[J]. Metal Finishing,1989,67(2):73-74.
    [58] Pan F S,Yang X,Zhang D F. Chemical Nature of Phytic Acid ConversionCoating on AZ61Magnesium Alloy[J]. Applied Surface Science,2009,255(20):8363-8371.
    [59] Liu J R,Guo Y N,Huang W D. Study on the Corrosion Resistance of PhyticAcid Conversion Coating for Magnesium Alloys[J]. Surface and CoatingsTechnology,2006,201(3):1536-1541.
    [60] Cui X F,Li Q F,Li Y,et al. Microstructure and Corrosion Resistance ofPhytic Acid Conversion Coatings for Magnesium alloy[J].Applied SurfaceScience,2008,255(5):2098-2103.
    [61]崔秀芳,李庆芬.镁合金表面植酸转化膜研究Ⅱ-pH值对镁合金植酸转化膜的影响[J].腐蚀科学与防护技术,2007,19(4):275-277.
    [62] Gao L L,Zhang C H,Zhang M L,et al. Phytic Acid Conversion Coating onMg-Li alloy[J]. Journal of Alloys and Compounds,2009,485(1-2):789-793.
    [63] Huang X M,Zhang M L. Study on Ahytic Acid Conversion Coating onMg-Li alloy[J]. Journal of Wuhan University of Technology-MaterialsScience Edition,2009,24(sl):83-86.
    [64] Huang X M,Zhang M L. Comparison of Properties between Phytic Acid andRE-Phytic Conversion Coatings of Mg-Li Alloy[J]. Journal of WuhanUniversity of Technology-Materials Science Edition,2009,24(sl):132-134.
    [65] Li Q,Xu S Q,Hu J Y,et al. The Effects to the Structure and ElectrochemicalBehavior of Zinc Phosphate Conversion Coatings with Ethanolamine onMagnesium Alloy AZ91D[J]. Electrochimica Acta,2010,55(3):887-894.
    [66] Zhou W Q,Shan D Y,Han E H,et al. Structure and Formation Mechanismof Phosphate Conversion Coating on Diecast AZ91D Magnesium Alloy[J].Corrosion Science,2008,50(2):329-337.
    [67] Zhao M,Wu S S,Luo J R,et al. A Chromium-Free Conversion Coating ofMagnesium Alloy by a Phosphate–Permanganate Solution[J]. Surface andCoatings Technology,2006,200(18-19):5407-5412.
    [68]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术[J].轻合金加工技术,2003,31(8):35-41.
    [69] Isaicheva L A,Trepak N M,Ilina L K, et al. The Kinetics of Phosphate FilmFormation on the Type MA21Magnesium-Lithium Alloys[J]. Protection ofMetals,2006,42(4):389-393.
    [70]杨黎晖,姜巍巍,李峻青,等.镁锂合金化学转化膜层的研究[J].电镀与涂饰,2008,27(6):29-31.
    [71] Song Y W,Shan D Y,Chen R S,et al. Formation Mechanism of PhosphateConversion Film on Mg-8.8Li alloy [J]. Corrosion Science,2009,51(1):62-69.
    [72] Song Y W,Shan D Y,Chen R S,et al. A Novel Phosphate Conversion Filmon Mg-8.8Li alloy[J]. Surface and Coatings Technology,2009,203(9):1107-1113.
    [73] Zhang H,Yao G C,Wang S L,et al. A Chrome-Free Conversion Coating forMagnesium-Lithium Alloy by Aphosphate Permanganate Solution[J]. Surfaceand Coating Technology,2008,202(9):1825-1830.
    [74]张华,王淑兰,姚广春,等. Mg-10Li-1Zn合金锡酸盐转化膜的制备及其耐蚀性能研究[J].轻合金加工技术,2007,35(12):31-35.
    [75] Yang L H,Zhang M L,Li J Q,et al. Stannate Conversion Coatings onMg-8Li alloy[J]. Journal of Alloys and Compounds,2009,71(1-2):197-200.
    [76] Yang L H,Li J Q,Yu X,et al. Lanthanum-Based Conversion Coating onMg-8Li alloy[J]. Applied Surface Science,2008,255(1/5):2338-2341.
    [77] Gao L L,Zhang C H,Zhang M L. Cerium Chemical Conversion Coating ona Novel Mg-Li Alloy[J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(1):112-117.
    [78] Yang X W,Wang G X,Dong G J,et al. Rare Earth Conversion Coating onMg-8.5Li Alloys[J]. Journal of Alloys and Compounds,2009,487(1-2):64-68.
    [79] Witte F,Fischer J,Nellesen J,et al. In Vivo Corrosion and CorrosionProtection of Magnesium Alloy LAE442[J]. Acta Biomaterialia,2009,6(5):1792-1799.
    [80]韩玉昌,周铁涛,刘培英. Mg-13Li-5Zn合金化学镀镍研究[J].材料保护,2006,39(10):38-40.
    [81] Yang L H,Li J Q,Zheng Y Z,et al. Electroless Ni-P Plating with MolybdatePretreatment on Mg-8Li Alloy[J]. Journal of Alloys and Compounds,2009,467(1-2):562-566.
    [82] Zhang H,Wang S L,Yao G C,et al. Electroless Ni-P Plating on Mg-10Li-1Zn Alloy[J]. Journal of Alloys and Compounds,2009,474(1-2):306-310.
    [83]张春红,江溪,黄晓梅,等.镁锂合金双配位剂浸锌溶液的研究[J].电镀与涂饰,2009,28(8):33-36
    [84] Sharma A K,Rani R U,Mlek A,et al. Black Anodizing of a Magnesium-Lithium Alloy[J]. Metal Finishing,1996,94(4):16-27.
    [85] Li J F,Zheng Z Q,Li S C,et al. Preparation and Galvanic Anodizing of aMg-Li alloy[J]. Materials Science and Engineering A,2006,433(1-2):233-240.
    [86]杨潇薇,王桂香,董国君,等.镁-锂合金阳极氧化工艺的研究[J].电镀与环保,2009,29(3):36-39.
    [87]董国君,杨潇薇,王桂香,等.镁锂合金无铬阳极氧化工艺[J].材料保护,2009,42(5):39-42.
    [88]李一泓,朱立群,刘慧丛,等.硅溶胶在镁合金阳极氧化反应中的成膜作用[J].北京航空航天大学学报,2008,34(2):219-223.
    [89] Hoche H, Scheerer H, Probst D, et al. Plasma Anodisation as anEnvironmental Harmless Method for the Corrosion Protection of MagnesiumAlloys[J]. Surface and Coating Technology,2003,174-175:1002-1007.
    [90]景晓燕,袁艺,于方,等.镁锂合金表面耐蚀微弧氧化膜的研究[J].稀有金属材料与工程,2009,38(7):1154-1157.
    [91]于方.镁锂合金表面微弧氧化膜的制备与性能研究[D].哈尔滨:哈尔滨工程大学硕士论文,2008:43-64.
    [92] Xu Y J,Li K,Yao Z P,et al. Micro-Arc Oxidation Coatings on Mg-LiAlloys[J]. Rare Metals,2009,28(2):160-163.
    [93] Shi L L,Xu Y J,Li K,et al. Effect of Additives on Structure and CorrosionResistance of Ceramic Coatings on Mg-Li alloy by Micro-Arc Oxidation [J].Current Applied Physics,2010,10(3):719-723.
    [94] Song L,Kou Y,Song Y,et al. Fabrication and Characterization of Micro-ArcOxidation (MAO) Coatings on Mg-Li Alloy in Alkaline PolyphosphateElectrolytes Without and With the Addition of K2TiF6[J]. Materials andCorrosion,2011,62(12):1124-1132.
    [95] Li Z J,Jing X Y, Yuan Y,et al. Composite Coatings on a Mg-Li AlloyPrepared by Combined Plasma Electrolytic Oxidation and Sol-gelTechniques[J]. Corrosion Science,2012,63:358-366.
    [96] Yamauchi N,Ueda N,Okamoto A,et al. DLC Coating on Mg-Li Alloy[J].Surface and Coating Technology,2007,201(9):4913-4918.
    [97] Schemme K,Huppert G. Surface Modifications of Mg-Li Alloys by LaserAlloying and by Laser Particles Impregnation[J]. Metal,1993,47(6):541-542.
    [98]陈兴娟,沈科金.镁锂合金表面含聚苯胺复合涂层的防腐性能研究[J].腐蚀科学与防护技术,2009,21(4):384-387.
    [99]景晓燕,卢一,宋大雷,等. Mg-Li合金表面芳烃的还原[J].高等学校化学学报,2009,30(2):289-292.
    [100]卓世强,张春红,高丽丽,等.环氧/纳米ZnO复合涂层对镁锂合金耐腐蚀性的影响[J].电镀与涂饰,2008,27(8):48-50.
    [101] Sundararajan G,Krishna L R. Mechanisms Underlying the Formation ofThick Alumina Coatings through the MAO Coating Technology[J]. Surfaceand Coatings Technology,2003,167(2-3):269-277.
    [102]王亚明,蒋百灵,雷廷权,等.电参数对Ti6Al4V合金微弧氧化陶瓷膜结构特性的影响[J].无机材料学报,2003,18(6):1325-1330.
    [103]蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J].稀有金属材料与工程,2005,34(3):393-396.
    [104] Giinterschultze A,Bez H. Die Electronenstromung in Isolatoren BeiExtremen Feldstarken[J]. Z. Physics,1934,91:70-96.
    [105] Vijh A K. Sparking Voltage and Side Reactions during Anodization of ValveMetals in terms of Electron Tunneling[J]. Corrosion Science,1971,11:411-417.
    [106] Van T B,Brown S D,Wirtz O P. Mechanism of Anode Spark Deposition [J].American Ceramic Society Bulletin,1977,56(6):563-566.
    [107]席晓光.微弧氧化技术述评[J].表面技术,2007,36(4):66-68.
    [108] Krysmann W,Kurze P,Dittrich K H,et al. Process Characteristics andParameters of Anodic oxidation by Spark Discharge [J]. Crystal Research andTechnology,1984,19(7):973-979.
    [109] Kurze P,Krysmann W,Schreckenbach J,et al. Coloured ANOF Layers onAluminium [J]. Crystal Research and Technology,1987,22(1):53-58.
    [110]魏同波,田军.液相等离子体电沉积表面处理技术[J].材料科学与工程学报,2003,21(3):450-452.
    [111] Xue W, Wang C,Chen R,et al. Structure and Properties Characterizationof Coatings Produced on Ti-6Al-4V Alloy by Micro-arc Oxidation inAluminum [J]. Materials Letter,2002,52(6):435-441.
    [112]王亚明,蒋百灵,郭立新,等.磷酸盐系溶液中钛合金微弧氧化涂层生长与组织结构[J].中国有色金属学报,2004,14(4):548-553.
    [113]郝建民,陈宏,张荣军,等.镁合金微弧氧化陶瓷层的耐蚀性[J].中国有色金属学报,2003,13(4):988-991.
    [114]王亚明. Ti6A14V合金微弧氧化涂层的形成机制与摩擦学行为[D].哈尔滨:哈尔滨工业大学博士论文,2006:9-13.
    [115]薛文斌,邓志威,来永春,等. ZM8镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998,19(3):42-44.
    [116]蒋百灵,张淑芬,吴国建,等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性[J].中国有色金属学报,2002,12(3):454-457.
    [117]骆海贺,蔡启舟,魏伯康. AZ91D镁合金微弧氧化工艺参数的优化[J].特种铸造及有色合金,2007,27(7):554-557.
    [118]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:15-139.
    [119]张光业,张华,张厚安,等.航空用高温合金防护涂层的研制及其应用的新进展[J].材料导报,2006,20(5):59-62.
    [120] Song Y W,Shan D Y, Chen R S,etal. Investigation of Surface Oxide Film onMagnesium Lithium Alloy[J]. Journal of Alloys and Compounds,2009,484(1-2):585-590.
    [121] Mcintyre N S,Chen C. Role of Impruties on Mg Surfaces under AmbientExposure Conditions[J]. Corrosion Science,1998,40(10):1697-1709.
    [122] Baril C,Pebere N. The Corrosion of Pure Magnesium in Aerated andDeaerated Sodium Sulphate Solution[J].Corrosion Science,2001,43(3):471-484.
    [123] Fromhold A T. Theory of Metal Oxidation[M]. Amsterdam:North-Holland,1980.
    [124] Wagner C. Diffusion and High Temperature Oxidation of Metals in AtomMovements[J]. America Society Metals,1951:153-168.
    [125]尹荔松,陈敏涛,黄生祥,等.菱面片曾氧化镁的制备及晶格畸变与反常红外特性[J].物理学进展,2006,26(3-4):505-509.
    [126] Mroz W,Jedynski M,Prokopiuk A,et al. Characterization of CalciumPhosphate Coatings Doped with Mg Deposited by Pulsed Laser DepositionTechnique using ArF Excimer Laser[J]. Micron,2009,40(1):140-142.
    [127]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:211,222.
    [128] Liu Y,Skeldon P,Thompson G E,et al. Anodic Film Growth on anAl-21at.%Mg Alloy[J]. Corrosion Science,2002,44:1133-1142.
    [129] Tzoganakoua K,Skeldona P,Thompson G E,et al. Mobility of Lithium Ionsin Anodic Alumina Formed on an Al-Li Alloy[J]. Corrosion Science,2000,42(6):1083-1091.
    [130] Abulsain M,Berkani A,Bonilla F A,et al. Anodic Oxidation of Mg-Cu andMg-Zn Alloy[J]. Electrochimica Acta,2004,49(6):899-904.
    [131] Ikonopisov S,Girrnivv A,Machkova A. Post-Breakdown Anodization ofAluminium. Electrochem Acta,1977,22(1):1283-1286.
    [132] Ikonopisov S. Theory of Electrical Breakdown during Formation of BarrierAnodic Films. Electrochem Acta.1977,22(10):1077-1082.
    [133]张荣发,廖爱娣,张淑芳,等.环保型电解质对溶液电导率的影响[J].中国有色金属学报,2011,21(4):927-931.
    [134]高焕方,张胜涛,赵波,等.植酸浓度对AZ31镁合金植酸转化膜防腐性能的影响[J].材料工程,2011,9:45-49
    [135] Li Z J,Yuan Y,Jing X Y. Ceramic Coatings of LA141Alloy Formed byPlasma Electrolytic Oxidation for Corrosion Protection[J]. AmericanChemical Society Applied Materials and Interface,2011,3(9):3682-3690.
    [136] Li Z J,Yuan Y,Jing X Y. Effect of Current Density on the Structure,Composition and Corrosion Resistance of Plasma Electrolytic OxidationCoatings on Mg-Li Alloy[J]. Journal of Alloys and Compounds,2012,541:380-391.
    [137]钱建刚,李荻,王纯,等.镁合金阳极氧化膜腐蚀过程的电化学阻抗谱研究[J].稀有金属材料与工程,2006,35(8):1280-1284.
    [138]曹立礼.材料表面科学[M].北京:清华大学出版社,2007:485.
    [139]刘佐民.摩擦学理论与设计[M].武汉:武汉理工大学出版社,2009:10-31.
    [140]刘正林.摩擦学原理[M].北京:高等教育出版社,2009:31-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700