Mg-Zn-Nd-Cd-Zr合金的力学性能和阻尼性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度小,比强度高,优良的减振性、电磁屏蔽性以及易回收利用等优点,在航空航天、汽车、电子等领域具有很大的应用潜力,被誉为21世纪最具发展前途的金属结构材料。纯镁的阻尼性能好,但强度低。通过合金化、塑性变形、热处理等强化方法可提高镁合金的强度,但对阻尼性能有不同程度的影响。目前对镁合金的阻尼机制存在多种不同的观点,对高强度镁合金的阻尼性能及阻尼机制的研究更未深入。本文采用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、机械动态分析仪(DMA)等检测手段,系统地研究了Mg-Zn-Nd-Cd-Zr合金的组织、力学性能和阻尼性能,并对Mg-Zn-Nd-Cd-Zr合金的强化机制和阻尼行为进行了较全面的分析。
     系统地研究了ZK60-2Nd1Cd合金的应力-应变特征,建立了流变应力本构方程为f=1.579×1011[sinh(0.0123σ)]5.098exp[-160.1×103/(RT)]。合金在应变速率为0.001s-1~1s-1,变形温度为300℃-420℃范围内的真应力-真应变曲线具有动态再结晶的特征,其高温变形过程是一种受热激活过程控制的塑性变形过程。
     系统地研究了Cd、Nd、Zn的变化对ZK60合金的组织和力学性能的影响,分析了Mg-Zn-Nd-Cd-Zr合金的强化机制。合金通过固溶强化、细晶强化、第二相强化等强化机制,提高了强度,改善了塑性。铸造合金晶界上连续网状分布的T相使合金ZK60-2Nd1Cd的晶粒细化,屈服强度提高,但抗拉强度降低。挤压后合金的抗拉强度和屈服强度分别为310MPa和290MPa,伸长率为16%;随着Nd含量增加,第二相T相和W相增多,晶粒更加细化,挤压态合金ZK60-2.5Nd1Cd的的抗拉强度和屈服强度增加到355MPa和300MPa,伸长率为10%;随着Zn含量降低,合金中的T相消失,W相增加,合金的强度降低。T5时效处理,合金的极限抗拉强度和屈服强度相比挤压态合金得到提高,经过140℃×34h时效后,合金ZK60-2.5Nd1Cd抗拉强度和屈服强度分别为385MPa和320MPa,伸长率为10%。
     系统地研究了合金元素Zn、Nd、Cd对合金Mg-Zn-Nd-Cd-Zr合金的室温阻尼性能的影响,分析了Mg-Zn-Nd-Cd-Zr合金的阻尼机制。室温下,合金元素Cd使铸造合金Mg-Zn-Zr基体中的固溶原子浓度增加,减小了弱钉扎点间距,降低合金的应变无关阻尼;Nd元素的加入,使Mg-Zn-Cd-Zr合金产生了T相和W相,使基体中的Zn原子浓度降低,合金的应变无关阻尼有所增加。在一定的应变振幅条件下,Mg-Zn-Nd-Cd-Zr合金的应变相关阻尼比Mg-Zn-Zr合金的高,随着Zn含量的降低,合金的应变相关阻尼相应增加。较高振幅下,固溶处理和挤压态合金Mg-Zn-Nd-Cd-Zr的应变相关阻尼均比铸造合金的阻尼小。
     系统地研究了Mg-Zn-Nd-Cd-Zr合金的高温阻尼性能。合金Mg-Zn-Zr的阻尼-温度曲线上有与溶质原子有关的P1峰和与晶界驰豫有关的P2峰;合金Mg-Zn-Nd-Cd-Zr的P1峰变得很小,且随着Zn含量的增加而向高温区移动;固溶处理后,Zn含量低的合金的P1峰被抑制;Nd含量高的三种合金在铸造、固溶及挤压后都没有出现P2峰,且挤压后合金的P1阻尼峰也完全被抑制。当温度超过某一临界温度时,合金的高温阻尼随温度增加而迅速增长,含Zn量高的合金阻尼增加得更快。
     提出了强钉扎、次强钉扎和弱钉扎的位错钉扎脱钉模型,该模型中的次强钉扎点可以是难脱钉的位错、固溶原子团或者第二相化合物质点。试验合金Mg-Zn-Nd-Cd-Zr的阻尼机制符合位错型阻尼机制,在较高应变振幅下出现的阻尼平台可以用强钉扎、次强钉扎和弱钉扎的位错钉扎脱钉模型来解释。
     建立了Mg-Zn-Nd-Cd-Zr合金的综合性能指数α与抗拉强度(屈服强度)和阻尼的关系模型;建立了铸态合金的综合性能指数α与合金的晶粒大小d的数学模型,表达式为:α=4639.63-95.42d+0.58d2。
Magnesium alloys have a great application potential in the aerospace, automotive, electronics, and other industrial fields with the characteristics of low density, high specific strength, excellent anti-vibration capacities, good electromagnetism shield properties, and easy recovery utilization etc, which is known as the most promising metal structure material in the21st century. Pure magnesium possesses extraordinary high damping capacity, but the low tensile strength. Some experimental results have shown that addition of elements, heat treatment and plastic deformation could efficiently improve the strength, and effect on the damping capacity of magnesium alloys. There exist some different views on the damping mechanism of magnesium alloys, especially to the high strength magnesium alloys such as Mg-Zn-Nd-Cd-Zr alloys. The microstructures, the phase constitution of the Mg-Zn-Nd-Cd-Zr magnesium alloy were analyzed by optical microscopy(OM), X-ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM). The mechanical properties were tested by tensile test and hardness test. The strain dependent and temperature dependent low frequency damping capacities of these alloys were studied by DMA. The strengthening mechanism and damping behavior of these Mg alloys were revealed comprehensively and systematically.
     The flow stress behavior of ZK60-2NdlCd alloy was studied using hot simulator. The constitutive equation of flow stress can be expressed as ε=1.579x1011[sinh(0.0123ρ)]5098exp[-160.1×103/(RT)]. The stress-strain curves of ZK60-2Nd1Cd alloys at the strain rate within0.001~1and temperature within300℃-420℃showed a typical dynamic recrystallization characteristic. The hot deformation Was controlled by activation energy.
     The effect of Cd, Nd, Zn on the microstructures and mechanical properties of ZK60magnesium alloy were studied, and the strengthening mechanisms of Mg-Zn-Nd-Cd-Zr alloy were analysed. Excellent strengthen and plasticity are obtained by solution strengthening, fine grain strengthening, and the second phase strengthening. The tensil yield strengthen is increased and the ultimate tensile strength is decreased of ZK60-2Nd1Cd alloy as-cast owing to the continuous net T phases along the grain boundaries. The ultimate tensile strength and tensile yield strength of ZK60-2Nd1Cd as-extrusion are315MPa and290MPa, and the elongation is16%. The ultimate tensile strength and yield strength of ZK60-2Nd1Cd as-extrusion are315MPa and290MPa, and the elongation is10%, which is owing to additional Nd. The lower the Zn content is, the more decrease of the strength. There are W phases not T phases in the alloy. The ultimate tensile strength and tensile yield strength of ZK60-2.5Nd1Cd alloy are385MPa and320MPa, and the elongation is16%through aging heat-treatment.
     The effect of Cd, Nd, Zn on the damping capacities of Mg-Zn-Nd-Cd-Zr alloy at room temperature were studied, and the damping mechanisms of Mg-Zn-Nd-Cd-Zr alloy were analysed. At the room temperature, addition atoms of Cd reduced the the mean length of dislocation segments between minor pinns, then the strain-independent damping decreased. T phases or/and W phases exist in the alloy with addition atoms of Nd, and decrease the Zn content, which improve the strain-independent damping.The strain-dependent damping are increased by the increasing of movable dislocation density caused by the decreasing Zn content on certain strain, and the strain-dependent damping of Mg-Zn-Nd-Cd-Zr alloy as-extrusion and as-solution are lower than that of alloy as-cast on the higher strain.
     The damping capacities of Mg-Zn-Nd-Cd-Zr alloy at high temperature were studied. There are damping peaks of P1and P2in Mg-Zn-Zr alloy, P1induced by the interaction between dislocations and the point defects in the crystal lattice of Mg, and P2caused by the grain boundaries sliding at high temperature. The damping peaks of P1of Mg-Zn-Nd-Cd-Zr alloy are less than that of Mg-Zn-Zr alloy, and the temperature of the P1exist in the higher temperature region with the increase of Zn content. P1peak of the alloys with lower Zn content will be inhibited by solution heat-treatment. There no P2peak in the alloys as-cast, as-sulution, as-extrusion with higher Nd content, and the P1peak will be inhibited by extrusion. Exceeding a certain critical temperature, the high damping values are increasing with the temperature. The higher the Zn content of the alloy is, the higher the temperature damping value is.
     A new model of a dislocation line pinned by major pins, intermediate strength pins and minor pins was put forward, which could explain the damping flat or the damping maximum values on damping-strain spectrum of the experimental alloys. The intermediate strength pins maybe dislocation, the uneven distribution of the very small amount of point defects, or compounds particle with low melting point.
     Correlation of mechanical properties and damping properties of Mg-Zn-Nd-Cd-Zr alloy was analysed. The connection models among comprehensive performance index a, the ultimate tensile strength (or tensile yield strength) and damping capacities of alloys as-cast and as-extrusion were builded, respectively.
     A mathematics model between comprehensive performance index a of Mg-Zn-Nd-Cd-Zr alloy as-cast and the size of grain was builded, the equation can be expressed as α=4639.63-95.42d+0.58d2.
引文
[1]陈振华.镁合金[M].北京:化学工业出版社,2004,7.
    [2]Polmear I J. Recent development in light alloys[J]. Mater. Tram., JIM,1996,37(1): 12-31.
    [3]Kojima Y, Aiztwa T. Kaillado S. Progressive steps in the platform science and technology for advanced magnesium alloys[J]. Mater. Sec. Forum,2003,419-422:3-20.
    [4]张小农.金属基复合材料的阻尼行为研究[D].上海交通大学,1997,4.
    [5]Kainer C. Introduction to Solid State Physics[M]. New York:Wileg.1976.
    [6]Chang S Y, Fukatsu A, Tuzake H, et al. Tensile Behavior of Mg-Zn-Ca-Zr Alloy Forged in Semi-solid state[J].Mater.Trans., JIM,1999,40(6):546-551.
    [7]Luo A, Pekguleryue M O. Cast Mg Alloys for Elevated Temperature Apllication [J]. J.Mater.Sci.,1994,29(20):5259-5271.
    [8]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.1.
    [9]Asm International. Magnesium and Magnesium Alloy[M].OH:Metal Park,1999.
    [10]Luo A. Magnesium:Current and potential automotive applications[J] Journal of the Minerals,Metals and Materials Society,2002,54(2):42-48.
    [11]Mordike B L, Ebert T. Magnesium:Properties-applications-potential [J]. Materials Science and Engineering A,2001,302(1):37-45.
    [12]Stalmann A, Sebastian W, Friedrich H, et al. Properties and processing of magnesium wrought products for automotive applications[J]. Advanced Engineer-ing Materials,2001,3(12):969-974.
    [13]VanFleteren R. Magnesium for automotive applications[J]. Advanced Materials and Processes,1996,149(5):33-34.
    [14]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [15]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社.2006,12.
    [16]王斌,易丹青,罗文海,等.微量元素对AZ91镁合金组织性能的影响[J].铸造,2005,54(5):459-461.
    [17]余琨,黎文献,王日初.热处理工艺对挤压变形ZK60镁合金组织与力学性能的影响[J].中国有色金属学报,2007,17(2):188-192.
    [18]He Y B, Pan Q L, Qin Y J. Microstructure and mechanical properties of ZK60 alloy processed by two-step equal channel angular pressing[J] Journal of Alloys and Compounds,2010,492(1-2):605-610.
    [19]Pan F, Wang W, Ma Y, et al. Investigation on the alloy phase in as-aged ZK60 magnesium alloy[J]. Materials Science Forum,2005,488-489(4):181-184.
    [20]Gao X, Nie J F. Characterization of strengthening precipitate phases in a Mg-Zn alloy[J].Scripta Materialia,2007,56(8):645-648.
    [21]张少卿.MB15镁合金的相组成及其微观形态[J].金属学报,1989,25(5):346-351.
    [22]Maeng D Y, Kim T S, Lee J H. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys[J].Scripta Materialia,2000,43(5):385-389.
    [23]Pelcova J, Smola B, Stulikova I. Influence of processing technology on phase transformations in a rare-earth-containing Mg-Zn-Zr alloy [J]. Materials Science and Engineering A,2007,462(1-2):334-338.
    [24]Chen X H, Pan F S, Mao J J, et al. Effect of heat treatment on strain hardening of ZK60 Mg alloy[J].Materials and Design,2011,32(3):1526-1530.
    [25]麻彦龙,左汝林,汤爱涛,等.时效ZK60镁合金中的合金相探索[J].重庆大学学报(自然科学版),2004,27(12):91-94.
    [26]Smith W F. Structure and Properties of Engineering Alloys[M]. New York: McGraw-Hill.1993.
    [27]Zhou H T, Zhang Z D, Liu C M, et al. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy [J]. Materials Science and Engineering A,2007,445-446(1):1-6.
    [28]Ma C, Liu M, Wu G, et al. Tensile properties of extruded ZK60-RE alloys[J]. Materials Science and Engineering A,2003,349(1-2):207-212.
    [29]Zhao Z, Chen Q, Chao H, et al. Microstructural evolution and tensile mechanical properties of thixoforged ZK60-Y magnesium alloys produced by two different routes[J]. Materials & Design,2010,31(4):1906-1916.
    [30]Wang Z J,Yang Q X, Qiao J. Phase structure of ZK60-1Er magnesium alloy compressed at 450℃[J]. Transactions of Nonferrous Metals Society of China,2010,20(s2):567-570.
    [31]Zhao Z, Chen Q, Wang Y, et al. Microstructural evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state[J]. Materials Science and Engineering A,2009,506(1-2):8-15.
    [32]Padezhnova E M, Mel'nik E V, Miliyevskiy R A, et al. Investigation of the Mg-Zn-Y system. Russian Metallurgy,1982.(4):185-188.
    [33]Yang J, Wang J L, Wang L D,et.al. Microstructure and mechanical properties of Mg-4.5Zn-xNd (x=0,1 and 2,wt%) alloys[J].Materials Science and Engineering A,2008,479(1-2):339-344.
    [34]Li Q, Wang Q D, Wang Y X, et al. Effect of Nd and Y addition on microstructure and Mechanical properties of as-cast Mg-Zn-Zr alloy [J]. Journal of Alloys and Compounds,2007,427(1-2):115-123.
    [35]Wei L Y, Dunlop G L, Westengen H. The Intergranular Microstructure of Cast Rare Earth Alloys Mg-Zn and Mg-Zn-Rare Earth Alloys[J]. Metall.Mater. Trans.A,1995, A26(8):1947-1955.
    [36]Wei L Y, Dunlop G L, Westengen H. Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys[J].Metall. Mater. Trans. A,1995, A26(8):1705-1716.
    [37]ZHao Y Z, Pan F S, Peng J, et al. Effect of neodymium on the as-extruded ZK20 magnesium alloy [J] Journal of rare earths,2010,28(4):631-635.
    [38]Kiryuu M, Okumura H, Kamado S, et al. Corrosion resistance of heat resistant magnesium alloys containing heavy rare earth elements[J] Japan Institute of Light Metal,1996,46(1):39-44.
    [39]Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y[J]. Journal of-Alloys and Compounds,2007,430(1-2):252-256.
    [40]Anyanwui A, Kamado S, Kojima Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys[J].Mater.Trans.,2001,42(7):1206-1211.
    [41]Anyanwui A, Kamado S,Kojima Y. Creep properties of Mg-Gd-Y-Zr alloys[J]. Mater. Trans.,2001,42(7):1212-1218.
    [42]张新明,陈健美,邓运来,等.Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006,16(2):219-227.
    [43]肖阳,张新明,陈健美,等.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织与力学性能[J].中国有色金属学报,2006,16(4):709-714.
    [44]肖阳,张新明.Mg-9Gd-4Y-0.6Zr合金在-196-400℃的断裂机制分析[J].材料工程,2007,(1):19-24.
    [45]Xiao Y, Zhang X M, Chen B X,et al. Mechanical properties of Mg-9Gd-4Y-0.6Zr alloy[J].Trans.Nonferrous.Met.Soc.China,2006,16(z3):1669-1672.
    [46]Chen B, Lu C, Lin D L, et al. Effect of zirconium addition on microstructure and mechanical properties of Mg97Y2Zni alloy [J]. Trans. Nonferrous. Met. Soc. China,2012,22(4):773-778.
    [47]王振东,房灿峰,孟令刚,等.高强Mg-Gd-Y-Zn-Zr合金的微观组织和力学性能[J].中国有色金属学报,2012,22(1):1-6.
    [48]Eliezer D, Aghion E, Froes E H. Magnesium science, technology and applications[J]. Advanced Performance Mater.,1998,5(3):201-212.
    [49]丁文江,王渠东,刘满平.轻合金技术新进展[M].北京:科学出版社,2002,6.
    [50]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002,9.
    [51]Kim J J, Kim D H, Shin K S, et al. Modification of Mg2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloys by Ca of P Addition[J]. Scripta Materiallia, 1999,41(3):333-340.
    [52]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工艺与材料,2005,(9):88-90.
    [53]Lee Y C, Dahle A K, StJohn D H. Grain refinement of magnesium[C].TMS Annual Meeting,2000:211-218.
    [54]阂学刚.几种合金元素对改善AZ91合金显微组织和力学性能的研究[D].南京:东南大学,2002,8.
    [55]刘满平.Mg-Al-Ca合金微观组织、力学性能和蠕变行为研究[D].上海:上海交通大学,2003,12.
    [56]Takenaka T, Narazaki Y, Naka Y, et al. Improvement of corrosion resistance of magnesium metal by rare earth elements[J].Eleetrochimica Acta,2007,53(1): 117-121.
    [57]Fan Y, Wu G, Zhai C. Influence of cerium on the Microstructure, mechanical properties and corrosion resistance of magnesium alloy [J]. Materials Seience and Engineering A,2006,433(1-2):208-215.
    [58]杨洁,易丹青,邓妹皓.微量稀土Nd对AZ91微观组织及腐蚀性能的影响[J].材料科学与工程学报,2008,26(2):251-255.
    [59]刘楚明,葛位维,李慧中,等.Er对铸造AZ91镁合金显微组织和耐腐蚀性能的影响[J].中国有色金属学报,2009,19(5):847-853.
    [60]Zhao H, Huang Z, Cui J. A new method for electroless Ni-P Plating on AZ31 Magnesium alloy[J]. Surface & Coatings Technology,2007,202(1):133-139.
    [61]Sun S, Liu J, Yan C, et al. A novel Process for electroless nickel Plating on Anodized magnesium alloy[J]. Applied Surface Science,2008,254(16): 5016-5022.
    [62]Zhang W X, Jiang Z H, Li G Y, et al. Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D Magnesium alloy[J]. Applied Surface Science,2008,254(16):4949-4955.
    [63]Mahallawy E N, Bkkar A, Shoeib M, et al. Electroless Ni-P coating of different magnesium alloys[J].Surface &Coatings Technology,2008,202(21):5151-5157.
    [64]Yi J L, Zhang X M, Chen M A, et al. Effect of Na2CO3 on corrosion resistance of cerium Conversion film on Mg-Gd-Y-Zr magnesium alloy surface[J]. ScriPta Materialia,2008,59(9):955-958.
    [65]Yi J L, Zhang X M, Chen M A, et al. Corrosion resistance of cerium conversion film electrodeposited on Mg-Gd-Y-Zr magnesium alloy [J]. Journal of Central South University of Technology,2009,16(1):38-42.
    [66]易建龙,张新民,马光,等.Mg-Gd-Y-Zr合金表面铈转化膜的制备及耐蚀性能研究[J].稀有金属材料与工程,2009,38(10):1852-1855.
    [67]易建龙,张新民,邓运来,等.时效对Mg-9Gd-4Y-1Nd-0.6Zr镁合金强度和耐蚀性的影响[J].材料科学工程学报,2010,28(4):1-4.
    [68]葛庭燧.固体内耗理论基础[M].北京:科学出版社,2000,7.
    [69]谭启.内耗与固体缺陷[M].北京:中国科学技术大学教材,1991,7.
    [70]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社.1991,5.
    [71]李思远,杨伟,杨鸣波.降噪高分子材料及其应用[J].工程塑料应用,2004,32(5):70-73.
    [72]杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展[J].功能材料.2002,33(3):234-236.
    [73]Ritchie I G, Pan Z L. High Damping Metals and Alloys[J]. Metall. Trans.A. 1991,A22(3):607-616.
    [74]Ritchie I G, Pan Z L, Goodwin F E. Characterization of the Damping Properties of Die Cast Zinc-Aluminum Alloys. Metall. Trans.A.1991, A22(3):617-622.
    [75]机械工程手册电机工程手册编辑委员会.机械工程手册工程材料[M].北京:机械工业出版社,1996,7.
    [76]Kojima Y, Aizawa T, Kamado S. Progressive steps in the platform science and technology for advanced magnesium alloys[J].Mater Sci Forum,2003, 419-422(3):3-20.
    [77]Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社,1999.10
    [78]王渠东,丁文江.镁合金研究\开发现状与展望[J].世界有色金属.2004,7:8-11.
    [79]史文方,周昆.我国镁合金的开发应用现状及展望[J].汽车工艺与材料.2004,(5):1-5.
    [80]Kittel C. Introduction to solid state physics[M]. New York:Wiley,1976.
    [81]黄良余,叶青,翟春泉,等.高阻尼高强度镁合金ZMJD-1S的应用研究[J].特种铸造及有色合金,1992,(5):15-20.
    [82]涂铭旌.镁合金的应用共性基础问题[C].国际材料科学与工程学术研讨会论文集,中国:太原,2005:48-50.
    [83]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [84]张小农.金属基复合材料的阻尼行为研究[D].上海:上海交通大学,1997.
    [85]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,2000,7.
    [86]方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估[J].物理.2000,29(9):541-545.
    [87]冯端,王业宁,邱弟荣,等.金属物理学第三卷金属力学性质[M].北京:科学出版社,1999.
    [88]李沛勇,戴圣龙,刘大博,等.材料阻尼及阻尼合金的研究现状[J].材料工程,1999,(8):44-48.
    [89]葛庭燧.晶界驰豫研究50年[J].物理学报,1999,28(9):529-540.
    [90]Fantozzi G, Esnouf C,Seyed S M. Anelastic behaviour of plastically deformed high purity magnesium between10-500K[J]. Acta Metallurgica 1984,32(12): 2175-2183
    [91]Amelinckx S, Gevers R, Nihoul J. Internal Friction of Structural Defects in Crystalline Solids[M].North-Holland Pub.Co,1972,5.
    [92]哈宽富.金属力学性能的微观理论[M].北京:科学出版社,1983,7.
    [93]Granato A, Liicke K. Theory of Mechanical Damping Due to Dislocations [J]. Journal of Applied Physics,1956,27(6):583-593.
    [94]Sugimoto K, Niiya K, Okamoto T, et al. A study of damping capacity in magnesium alloys[J].Transactions of Japan Institute Metals.1977, (18):277-288.
    [95]Granato A, Liicke K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies [J]. Journal of Applied Physics,1956,27(7): 789-805.
    [96]Teutonico L J, Granato A V, Lucke K. Theory of thermal breakway of a pinned dislocation line with application to damping phenomena[J]. Journal of Applied Physics,1964,35(1):220-232
    [97]Rogers D H. An Extension of a Theory of Mechanical Damping Due to Dislocation[J]. J. Appl. Phys.1962,33(3):781-792.
    [98]Hirsch P B, Lally J S. Electron Microscopy in Thin Crystals [J]. Philosophical Magazine,1965, (12):595-598.
    [99]Tsui R T C. Internal friction and transmission electron microscopy studies of magnesium-Ⅱ Electron microscopy [J]. Acta Metallurgica, 1967,(15):1723-1730.
    [100]李明.镁及镁锆合金阻尼特性的研究[D].上海:上海交通大学,1988.
    [101]Zener C. Elasticity and Anelasticity in Metals[M].孔庆平,周本濂.译.北京:科学出版社,1965.
    [102]Ke T S. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Phys. Rev.1947,71 (8):533-546.
    [103]Schoeck G, Mondino,J. Phys. Soc. Japan,1963,18(Suppl.1):149.
    [104]Venkates P, Chatterjee D K. Structural studies on the alloying behavior of gamma Mn and the development of a high damping capacity Mn-Cu alloys[J]. Journal of materials science,1980,15(1):139-148
    [105]Hiroshi E. Development of vibration damping materials[J]. Journal of Japanese society of mechanical engineering,1993,96(893):63-66
    [106]Weissmann G F, Babincton N. Metal Progress[J].Proc.ASTM.1958,(58):869.
    [107]Nishiyama K, Damping properties of Mg-Cu-Mn alloy [J]. Jpn.Res.Inst.Mater. Technol.1994,12(2):37
    [108]Huang Z H, Guo X F, Zhang Z M. Effects of Ce on damping capacity of AZ91D magnesium alloy [J].Transactions of Noferrous Metals Society of China, 2004,14(2):311-315
    [109]张佳.微量Zn/Cd、热轧及退火对Mg-0.6Zr合金力学性能及阻尼性能影响的试验研究[D].长沙:中南大学,2006.
    [110]Riehemann W, Abed F E. Influence of ageing on the internal friction of magnesium[J] Journal of Alloys and Compounds,2000,310(1-2):127-130.
    [111]Fantozzi G, Esnouf C and Seyed S M. Anelastic behaviour of plastically deformed high purity magnesium between 10 an 500K[J]. Acta Metallurgica, 1984,32(12):2175-2183
    [112]Nishiyama N, Asano S. Evaluation of amplitude dependence of internal friction in high-damping metals [J]. Journal of the Japan Institute of Metals, 2001,65(2):109-114.
    [113]马春江,张荻,覃继宁,等.Mg-Li-Al合金的力学性能和阻尼性能[J].中国有色 金属学报,2000,10(1):10-14.
    [114]Zhang J M, Robert J B, Catherine R W, et al. Effect of secondary phases on the damping behavior of metals, alloys and matrix composites[J].Materials Science Engineering,1994,13(8):325-389.
    [115]Hu X S, Zhang Y K, Zheng M Y, et al. A study of damping capacities in pure Mg and Mg-Ni alloys[J].Scripta Materialia,2005,52(11):1141-1145.
    [116]陶艳玲,张津,潘复生.镁合金及镁基复合材料阻尼性能研究进展[J].材料导报,2004,18(4):91-93.
    [117]Goken J, Riehemann W. Damping behaviour of AZ91 magnesium alloy with cracks[J].Materials Science Engineering,2004, A370(1-2):417-421
    [118]Goken J, Letzig D, Kainer K U. Measurement of crack induced damping of cast magnesium alloy AZ91[J]. Journal of Alloys and Compounds,2004, 378(1-2):220-225
    [119]Kamado S, Kojima Y. Damping Capacity of Cast and Rolled Mg-Al Alloys[C]. Proceeding of the First Israeli Internatiional Conference on Magnesium Science and Technology,1997:157-163.
    [120]Watanabe H, Mukai T, Sugioka M, et al. Elastic and Damping Properties from Room Temperature to 673K in An AZ31 Magnesium Alloy[J].Scripta Mater. 2004,51(4):291-295.
    [121]Chuvildeev V N, Nieh T G, Gryaznov M Y, et al. Low-temperature Superplasticity and Internal Friction in Microcrystalline Mg Alloys Processed by ECAP[J].Scripta Mater.2004,50(6):861-865.
    [122]Zheng M Y, Hu X S, Xu S W, et al. Mechanical Properties and Damping Behavior of Magnesium Alloys Processed by Equal Channel Angular Pressing[J].Mater. Sci. Forum.2007,539-543:1685-1690.
    [123]王敬丰,高珊,潘复生,等.加工工艺对ZK60镁合金力学性能和阻尼性能的影响[J].中国有色金属学报,2009,19(5):821-825.
    [124]Avedesian. M M. Magnesium and Magnesium Alloys [M]. ASM International, 1999.
    [125]孔志刚,刘泓波,张虎.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报,2004,30(10):972-975.
    [126]刘定胜.高阻尼合金在兵器上的潜在应用[J].兵器材料科学与工程,1994,17(3):63-70.
    [127]Wan D Q, Wang J C, Yang G C. A study of the effect of Y on the mechanical properties, damping properties of high damping Mg-0.6%Zr based alloys[J].Materials Science and Engineering A,2009, A517(1-2):114-117.
    [128]纪仁峰.微量Ca/Y及挤压变形对Mg-0.6Zr合金力学性能与阻尼行为影响的试验研究[D].长沙:中南大学,2006.
    [129]陈振华.变形镁合金[M].北京:化学工业出版社,2005.5
    [130]G6ken J, Bohlen J, Letzig D, et al. Damping Measurements of the Magnesium Wrought Alloys AZ31, AZ61 and AZ80 after Indirect and Hydrostatic Extrusion[J].Materials science forum,2005,482:387-390.
    [131]黄正华,郭学锋,张忠明.Ce对AZ91D镁合金力学性能与阻尼性能的影响[J].稀有金属材料与工程,2005,34(3):375-378.
    [132]王建强,赵田臣,王迎新.RE及A15TiB对ZA84镁合金阻尼性能的影响[J].宇航材料工艺,2006,(4):42-45.
    [133]王建强,樊云昌,关绍康,等.人工时效对A15TiB变质ZA84镁合金力学性能及阻尼性能的影响[J].材料热处理学报,2006,27(3):64-67.
    [134]Lambri O A, Riehemann W. Damping due to incoherent precipitates in commercial QE22 magnesium alloy [J] Scripta Materialia,2005,52:93-97.
    [135]Lambri O A, Riehemann W, Salvatierra L M, et al. Effects of precipitation processes on damping and elastic modulus of WE43 magnesium alloy [J]. Materials Science and Engineering A,2004,373(1-2):146-157.
    [136]蔡叶,苏华钦,耿鑫明.镁合金熔炼中若干问题的研究[J].能源研究与利用,1994,(4):12-15.
    [137]Bariani P F, Dal Negro T, Material response to continuously varying rate of straining during hot forging operation[C]. Annals of the CIRP, 1991,48:183-187.
    [138]Wang L Y, Fan Y G, Huang. G J, et al. Flow stress and softening behavior of wrought magnesium alloy AZ31B at elevated temperature[J]. Trans. Nonferrous MetSoc. China,2003,13(2):335-338.
    [139]Flynn P W, Mote J, Dorn J E. On the thermally activated mechanism of prismatic slip in magnesium single crystals [J].Trans TMS-AIME,1961,221: 1148-1154.
    [140]Yoshinaga H, Horiuchi R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexgonal axis[J].Trans JIM, 1963,4:1-8.
    [141]Reed-Hill R E, Robertson W D. Deformation of magnesium single crystals by non-basal slip[J]. Trans TMS-AIME,1957,220:496-502.
    [142]Obara T, Yoshinga H, Morozumi S.{11-22}<-1-123> slip system in magnesium[J].Acta Metallurgica 1973,21(7):845-853.
    [143]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta materialia,2001, 49(7):1199-1207.
    [144]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Mater Trans,2003,44(4):426-435
    [145]Sitdikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning in coarsed-grained Mg[J]. Materials Science Forum,2003,419-422: 521-526.
    [146]Vogel M, Kraft O, Dehm G, et al. Quasi-crystalline grain-boundry phase in the magenesium die-cast alloy ZA85[J]. Scripta Materialia,2001,45(5):517-524.
    [147]Galiyev A, Kaibyshev R, Sakai T. Continuous dynamic recrystalli-zation in magnesium alloy[J]. Materials Science Forum,2003,419-422:509-514.
    [148]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J].Acta Materiallia,1982,30(10):1909-1919.
    [149]Zhang Y, Zeng X Q, Lu C, et al. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy [J]. Materials Science and Engineering, 2006, A428(1-2):91-97.
    [150]刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12.
    [151]Wang C Y, Wang X J, Chang H, et al. Processing maps for hot working of ZK60 magnesium alloy[J]. Mater. Sci. Eng.,2007, A464(1-2):52-58.
    [152]Park J J, Wyman L L. Phase Relationships in Magnesium Alloys[C].WACD Technical Report 57-504,1957:33.
    [153]Gartnerova V, Trojanova Z, Jager A, et al. Deformation behaviour of Mg-0.7wt.% Nd alloy[J]. Journal of Alloys and Compounds 2004,378(1-2): 180-183.
    [154]周志敏.位错组态演化[M].沈阳:东北大学出版社,2003.
    [155]Gao W L, Bai G Y, Zhou. Z M. An evolution model of dislocation patterns in plastic deformation and its applications [J]. Science in China (Series A), 1995,38(7):875-883.
    [156]黎文献,杨军军,肖于德.Al-Fe-V-Si合金高温变形热模拟[J].中南工业大学学报,2000,31(1):56-59.
    [157]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22-32.
    [158]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Engineering,1997,13(3):210-216.
    [159]Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy[J]. Mater. Sci. Eng.2000,A289: 172-181.
    [160]Sivakesavam O, Rao I S, Prasad Y V R K. Processing map for hot working of as cast magnesium[J].Mater Sci Technol,1993,9(9):805-810.
    [161]Poirier J P.关德林译.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [162]Yu K, Li W X, Zhao J, et al. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy[J]. Scripta Materialia,2003,48(9):1319-1323.
    [163]Yang W G, Koo C H. Capacity for deformation and the evaluation of flow stress of hot extruded Mg-8A1-xRE alloys at elevated temperatures [J]. Materials Transactions,2003,44(6):1198-1203.
    [164]Mcqueen H J, Myshlaev M, Sauerborn M, et al. Flow stress microstructures and modeling in hot extrusion of magnesium alloys[C]. in:HI Kaplan, J. Hryn, B. Clow (Eds.), Proceedings of the Conference on Magnesium Technology, 2000:355-362.
    [165]Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J].Suery:Mat. and Eng.,2003,A359(1-2):150-157.
    [166]McQueen H J. Elevated-temperature deformation at forming rates of 10-2 to 102 s-1[J]. Metall. Trans A,2002,33:345-361.
    [167]Spigarelli S, Mehtedi M E, Cabibbo M, et al. Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy[J]. Mater. Sci. Eng.,2007,A462(1-2):197-201.
    [168]McQueen H J, Konopleva E V. in:J. Hryn (Ed.), Magnesium Technology 2001,TMS, Warrendale, PA,2001:227.
    [169]Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Mater. Sci. Eng.2002, A337(1-2):121-133.
    [170]Wu Y Z, Yan H G, Chen J H, et al. Hot deformation behavior and micro structure evolution of ZK21 magnesium alloy[J]. materials Science and Engineering,2010,A527(16-17):3670-3675.
    [171]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [172]Cahn R W.雷霆权译.金属与合金工艺[M].北京:科学出版社,1999.
    [173]Chino Y, Mabuchi M, Shimojima K, el at, Forging characteristics of AZ31 Mg alloy [J].Materials Transactions,2001,42(3):414-417.
    [174]Oleg S, Rustam K. dynamic recrystallization in pure magnesium[J]. Mater. Trans,2001,42(9):1928-1937.
    [175]Prasad Y V R K, Sasidhara S. Hot Working Guide:A Compendium of Processing Maps [M]. Materials Park, OH:ASM International,1997.23-29.
    [176]Bozzini B, Cerri E. Numerical reliability of hot working processing maps [J]. Materials Science and Engineering,2002, A328(1-2):344-347.
    [177]徐光宪.稀土[M].北京:冶金工业出版社,1997.
    [178]刘英,李元元,张卫文,等.镁合金的研究进展和应用前景[J].轻金属,2002,(8):56-61.
    [179]Bata V, Pereloma E V. An alternative physical explanation of the hall-petch relation [J]. Acta Materialia,2004,52(3):657-665.
    [180]彭建,张丁非,杨椿楣,等.ZK60镁合金铸坯均匀化退火研究[J].材料工程,2004,(8):32-35.
    [181]赵亚忠,潘复生,彭建.钕添加及铸锭均匀化退火对ZK20镁合金组织与性能的影响[J].中国有色金属学报,2010,20(6):1069-1074.
    [182]马鸣龙,张奎,李兴刚,等.GWN751K镁合金均匀化热处理[J].中国有色金属学报,2010,20(1):1-9.
    [183]Mukai T, Watanabe H, Higashi K. Grain refinement of commercial magnesium alloys for high-strain-rate-superplastic forming[J]. Material Seience Forum,2000,350-351:159-170.
    [184]Watnabae H, Mukai T, Higashi K. SuPeprlastieiytina ZK60 mganesium alloy at low temPeratures[J].SeriPta Materialia,1999,40(4):477-484.
    [185]RvaiKumar N V, Blnadin J J, Desryaaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical Processing[J].Materials Science and Engineering,2003,A359:150-157.
    [186]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [187]Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials, third ed., Wiley PUB.,1989.
    [188]Emely E F.Principle of Magnesium technology,Oxford:Pergamon,1966.
    [189]Wilson D V, Chapman J A, Effects of preferred orientation on the grain size dependence of yield strength in metals[J]. Philos. Mag.1963,8(93):1543-1551.
    [190]Hauser F E, Landon P R, Dom J E. Deformation and fracture of alpha solid solutions of lithium in magnesium[J]. Trans. ASM,1956,48:986-1002.
    [191]Tarshis L A,Walker J L and Rutter J W. Experiments on the solidification structure of alloy castings[J].Met.Trans.,1971,2(9):2589-2597
    [192]Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J].Mater.Sci.Eng.,1984,65(l):75-83.
    [193]Lee Y C, Dahle A K, StJohn D H.The role of solute in grain refinement of magnesium[J].Metal.Mater.Trans.,2000, A31 (11):2895-2906.
    [194]Dahle A K, Lee Y, C and Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys[J]. Journal of Light Metals, 2001,1(1):61-72.
    [195]Okamoto H. Phase diagrams of dilute binary alloys [M]. OH:Materials Park, 2002.
    [196]胡赓祥,蔡拘.材料科学基础[M].上海:上海交通大学出版社,2000.
    [197]李锋.挤压变形Mg-Al和Mg-Zn系镁合金的力学行为[D].大连:大连理工大学,2006.
    [198]张娅.Mg-Zn-Y-Zr变形镁合金组织、性能及变形行为研究[D].上海:上海交通大学.2005.
    [199]石德珂.位错与材料强度[M].西安,西安交通大学出版社,1990
    [200]卢光熙,赵子伟译.物理冶金学基础[M].上海:上海科学技术出版社,1980.
    [201]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.
    [202]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991.
    [203]Nie J F. Effects ofprecipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Script.Mater.,2003,48(8):1009-1015.
    [204]Kojima Y, Aizawa T, Higashi K, et al. Progressive steps in the platform science and technology for advanced magnesium alloys[J]. Mater. Sci. Forum,2003, 419-422:3-20.
    [205]Kittel C. Introduction to Solid State Physics[M].5th ed. New York:Wiley. 1976.
    [206]Hu X S, Wu K, Zheng M Y. Effect of heat treatment on the stability of damping capacity in hypoeutectic Mg-Si alloy[J]. Scripta Materialia, 2006,54(9):1639-1643.
    [207]Hu X S, Wu K, Zheng M Y, et al. Low frequency damping capacities and mechanical properties of Mg-Si alloys[J]. Materials Science and Engineering, 2007, A 452-453:374-379.
    [208]Wan D Q, Wang J C,Wang G F, et al. Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg-3wt.%Ni based alloy[J].Materials Science and Engineering,2008, A494(1-2):139-142.
    [209]Anton Puskar. Internal Friction of Materials[M]. Cambridge International Science Publishing,2001.
    [210]刘楚明,纪仁峰,周海涛,等.镁及镁合金阻尼特性的研究进展[J].中国有色金属学报,2005,15(9):1319-1325.
    [211]刘先兰,刘楚明,张文玉,等.高阻尼高强度镁合金的研究现状及展望[J].铸造,2008,57(11):1123-1127.
    [212]张佳,李岚,吴炜,等.Cd对Mg-0.6Zr-0.4Zn合金力学性能和阻尼性能的影响[J].金属热处理,2008,33(5):27-30.
    [213]张佳.微量Zn/Cd、热轧及退火对Mg-0.6Zr合金力学性能及阻尼性能影响的实验研究[D].长沙:中南大学,2006.
    [214]胡小石.热处理和变形对镁合金低频阻尼性能的影响及机理研究[D].哈尔滨:哈尔滨工业大学,2007.
    [215]Hu X S, Zhang Y K, Zheng M Y, et al. A study of damping capacities in pure Mg and Mg-Ni alloys[J].Scripta Materialia,2005,52(11):1141-1145.
    [216]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2000.
    [217]Ke T S. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals[J]. Phys. Rev.1947,71(8):533-546.
    [218]Ke T S. Internal Friction of Metals at Very High Temperature [J]. J. Appl. Phys.1950,21(5):414-419.
    [219]Lambri O A, Riehemann W, Trojanova Z. Mechanical Spectroscopy of Commercial AZ91 Magnesium Alloy[J]. Scripta Mater.2001,45(12):1365-1371.
    [220]Fukuhara M, Yin F X, Ohsawa Y, et al. High-Damping Properties of Mn-Cu Sintered Alloys[J].Mater. Sci. Eng. A.2006,442(1-2):439-443.
    [221]Igata N, Urahashi N, Sasaki M, et al. High Damping Capacity due to Two-step Phase Transformation in Ni-Ti, Ni-Ti-Cu, and Fe-Cr-Mn alloys[J]. J.Alloys Compd.2003,355(1-2):85-89.
    [222]Yoshida I, Monma D, Iino K, et al. Damping Properties of Ti50Ni50-xCux Alloys Utilizing Martensitic Transformation[J].J. Alloys Compd.,2003,355 (1-2):79-84.
    [223]Ke T S, Tan Q, Fang Q F. Further Experiments on the Anomalously Amplitude Dependent Internal Friction Peaks in Polycrystalline and Single-Crystal Al-Mg[J].Phys. Stat. Sol. (a).1987,103(2):421-429.
    [224]Tan Q, Ke T S. Double Amplitude Internal Friction Peaks in Al-0.02 wt% Mg Single Crystals[J]. Phys. Stat. Sol. (a).1987,104 (2):723-729.
    [225]James D W. High Damping Metals for Engineering Application[J].Mater Sci Eng.1969,4:1-8.
    [226]Zhang J, Perez R J, Lavernia E J. Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials[J].J. Mater. Sci.1993, 28(9):2395-2404.
    [227]杉木孝一.防振合金の最近の进步[J].钢と铁,1974,60(14):2203-2220.
    [228]郑明毅,乔晓光,吴昆.高强韧高阻尼变形镁合金及其制备方法.中国:200610010326.8[P],2009,02,25.
    [229]Xu D K, Tang W N, Liu L, et al. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys Journal of Alloys and Compounds[J]. 2008,461(1-2):248-252.
    [230]Wang J F, Song P F, Gao S, et al. Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg-Zn-Y-Zr alloys [J]. Materials Science and Engineering,2011,A528(18):5914-5920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700