桃病原性流胶病发病过程中的生理生化变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃流胶病(Peach gummosis)是桃树生产上的主要病害之一,分布广泛,尤其在我国长江流域以及以南地区发病更为严重。桃流胶病危害严重,导致树势衰弱、产量降低、品质下降、甚至树体死亡,已经成为制约桃产业健康、可持续发展的重要因素之一。研究报道,葡萄座腔菌属(Botryosphaeria spp.)真菌是引起桃流胶病的病原菌,主要包括三个种,分别为Lasiodiplodia theobromae, Diplodia seriata和Botryosphaeria dothidea。本文从组织病理、生理生化、糖代谢以及基因表达的角度对桃流胶病发病过程进行研究,也对病原菌真菌毒素、生长类物质对桃流胶病的影响和硫酸锌的防治作用进行了探讨。主要结果如下:
     1.通过致病条件研究表明空气相对湿度和伤口是桃流胶病发病的主要影响因子。在桃与病原真菌L. theobromae的互作中,桃枝条在遭受病原菌侵染后的应激反应包括生理生化的改变以及防御相关基因的表达,具体表现为花青素和过氧化氢含量增加,PAL活性、以及防御相关基因的表达增强。另一方面,病原菌诱导了细胞降解和胶体形成,具体表现为MDA含量增加,叶绿素含量显著降低,细胞壁降解,涉及到细胞壁降解的相关基因表达显著增加。
     2.在桃病原性流胶病发病过程中,糖代谢发生了明显的变化。接种病原菌后桃枝条内的可溶性糖,甘露糖,阿拉伯糖和木糖含量具有不同程度的增加;蔗糖、山梨醇和果糖含量总体呈下降趋势;通过qRT-PCR分析表明,L-galactose和GDP-L-galactose的合成受到抑制,UDP-D-glucuronate、UDP-D-galactose、UDP-D-xylose和UDP-D-arabinose的合成增强,而这些物质是多糖合成的直接前体;通过切面观察和PAS染色表明接种病原菌后桃一年生枝条中多糖有明显积累;糖转运相关蛋白表达增强。
     3.接种病原菌前用乙烯利处理可促进桃流胶病的发生,而接种病原菌后用乙烯利处理可抑制病害发生,乙烯利在调控桃流胶形成过程中扮演着双重作用。接种后处理抑制胶体形成,表现为较低的流胶率、流胶量和较小的病斑直径;1-MCP(乙烯信号抑制剂)处理可以缓减乙烯利的作用而促进胶体的形成;乙烯利抑制中性转化酶的表达,而1-MCP诱导其表达;另外,乙烯利具有抑制病原真菌生长的效果。接种前处理促进胶体形成,比对照提前1d形成胶体,而且导致较高的流胶率、流胶量和较大的病斑直径。两种处理均诱导了糖含量的增加,促进了衰老相关基因的表达。但是,与接种后处理相比,乙烯利接种前处理导致更低的蔗糖(24hpi)、葡萄糖(48和72hpi)和果糖(12、48和72hpi)含量。
     4.建立了葡萄座腔菌JMB-122真菌粗毒素的制备体系,通过GC-MS鉴定了9种真菌次生代谢物。9种真菌次生代谢物分别为油酸酰胺、芥酸酰胺、2,4-叔丁基苯酚、3-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯、硬脂酸、棕榈酸、单硬脂酸甘油酯和甘油脂肪酸酯;通过分析7种无机化合物对真菌毒素致病性的影响,发现高锰酸钾和硫酸锌可以有效抑制由JMB-122毒素引起的桃流胶病;外源高锰酸钾处理可减少胶体的形成。
     5.硫酸锌不仅能缓解流胶病的发生,还可以抑制真菌的生长发育和致病性。桃流胶病发病过程中,锌含量减少;在接种病原菌后的桃一年生枝条上喷施硫酸锌能缓解流胶病的发生,硫酸锌可显著减小病斑形成和降低流胶量;硫酸锌抑制了JMB-122真菌毒素引起的流胶病,通过qRT-PCR分析,硫酸锌诱导了5个防御相关基因的表达。硫酸锌可以有效抑制病原真菌菌丝的生长。随硫酸锌浓度的增加,菌落颜色变深;形态观察表明25mM硫酸锌下,菌丝表面变皱,畸形;50mM硫酸锌下,菌丝顶端膨大,伸长受到抑制。硫酸锌处理JMB-122真菌20min后接种桃一年生枝条,25mM有效降低了流胶量,减小了病斑直径;50mM的硫酸锌完全抑制了流胶病的发生。
Peach gummosis is one of the most important and damaging diseases of peach in the south peach production area of the Yangtze River of China. Peach gummosis causes significant growth stunting, yield losses, and tree death. It has been become a restriction factor for healthy and sustainable development of peach production. The three species of Botryosphaeria, L. theobromae, B. dothidea, and Diplodia seriata were the predominant causes of the disease. The objective of this study was to investigate the histopathology, biochemical changes, carbohydrate metabolism, and expression patterns during peach gummosis progression caused by L. theobromae. In addition, we also investigate the mycotoxin of L. theobromae, effect of ethephon on gum formation, and the disease control of zinc sulfate. The main results are as follows:
     1. The biochemical changes associated with the interaction between peach shoots and L. theobromae suggest that peach plants respond to the fungus by increasing anthocyanin levels, PAL activity, H2O2concentrations, and the expression of defence-related genes. However, the fungal infection triggered cell death and gum formation, as indicated by the increased MDA content, the expression of cell wall degrading-related genes, and reduced chlorophyll a and b content.
     2. These changes in carbohydrate metabolism were directly associated with the symptom of peach gummosis. Soluble sugars, glucose, mannose, arabinose, and xylose significantly increased in inoculated tissues of peach shoots compared with control tissues at different times after inoculation. Analysis using qRT-PCR revealed that the abundance of key transcripts on the synthesis pathway of UDP-D-glucuronate, UDP-D-galactose, and UDP-D-arabinose increased, but the synthesis of L-galactose and GDP-L-galactose were inhibited. Accumulation of polysaccharides was also observed by section observation and periodic acid Schiff's reagent staining during infection. After inoculation, the transcript levels of sugar transport-related genes, namely, SUT, SOT, GMT, and UGT, were induced.
     3. In this study, we investigated the effect of chemical treatments on peach gummosis after inoculation with Lasiodiplodia theobromae. The results showed that ethephon significantly decreased the gum formation rate. Gum formation was promoted by ethephon treatment prior to pathogen inoculation, but inhibited by ethephon applied after the pathogen. Our results show that ethephon has a dual function in regulating gum formation by affecting the peach shoots and the pathogen. For the ehtephon post-treatment, the gum formation was inhibited by ethephon with lower gum weight, gum formation percent, and lesion diameter. The relative expression of neutral invertase was induced by1-MCP, but inhibited by ethephon. The inhibitory effect was counteracted by1-methylcyclopropane, which is an ethylene signal inhibitor.1-Methylcyclopropane also promoted gum formation. Exposure of the three stains of Botryosphaeria to ethephon inhibited mycelial growth. For the ethephon pre-treatment, the gum formation was promoted by ethephon with more gum weight, gum formation percent, and lesion diameter. Both treatment methods increased the sugar content at12and24hpi. However, Lower levels of sucrose, glucose, and fructose were detected in the ethephon-pretreated shoots than those in the post-treated shoots, with significant differences at24hpi for sucrose,48and72hpi for glucose, and24,48, and72hpi for fructose.
     4. An experiment system was established to obtain the mycotoxins of L. theobromae strain of JMB-122.9kinds of metabolite compounds of L. theobromae strain of JMB-122, namely,9-octadecenamide,13-docosenamide,2,4-bis(1,1-dimethylethyl)-Phenol, butylated hydroxytoluene,3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropanoic acid methyl ester, octadecanoic acid, hexadecanoic acid, octadecanoic acid,2,3-dihydroxypropyl ester and hexadecanoic acid2,3-dihydroxypropyl ester, were identified by GC-MS analysis. The bioassay of those compounds will be determined in the next step. By investigating the effect of inorganic compounds on phytotoxin of L. theobromae, zinc sulfate and KMnO4inhibited the pathogenicity casuing by L. theobromae phytotoxin. The gum wight was significantly decreased after application with KMnO4on inoculated peach shoots.
     5. Zinc sulfate not only alleviated the development of peach gummosis, but also affected the growth, development, and pathogenicity of L. theobromae. Zinc content was reduced during the development of peach gummosis. For the application of zinc sulfate on inoculated peach current shoots, the lesion diameter, gum weight and both was siginificantly decreased by zinc sulfate. Zinc sulfate treatments significantly reduced disease severity and gum formation and effectively controlled peach gummosis under phytotoxin stress of L. theobromae. Zinc sulfate also induced the expression of defense-related genes of CHI, PR4, GNS3, PGIP, and PAL by qRT-PCR analysis. Those results might be responsible for the resistance increase. Results showed that mycelial growth was significantly inhibited by zinc sulfate. With the increase of concentration of zinc sulfate, the black colony exhibits an increase trend at PDA. Zinc sulfate caused abnormal hyphae at25mM and swelling hyphal tips at50mM by morphologic observation. In contrast to the control the black septate hypha increased with an increase in zinc sulfate concentration.
引文
1.蔡新忠,郑重.水杨酸诱导水稻幼苗抗瘟性的生化机制.植物病理学报,1997,27:231-236
    2.李淑菊,马德华.水杨酸对黄瓜几种,酶活性及抗病性的诱导作用.华北农学报,2000,15:118-122
    3.刘普.柑橘采后生防菌柠檬形克勒克酵母(34-9)产生的活性物质及其他抑菌机制的研究.[博士学位论文].武汉:华中农业大学,2011
    4.马瑞娟,俞明亮,杜平,宋宏峰.桃流胶病研究进展.果树学报,2002,19:262-264.
    5.马振国,董金皋,樊慕贞.芸薹链格孢毒素致病机理及钝化初步研究.河北农业大学学报,2000,23:63-66
    6.毛爱军,王永健,冯兰香,耿三省,许勇.水杨酸诱导辣椒抗疫病生化机制的研究.中国农学通报,2005,21:219-222
    7.王江柱,董金皋.非寄生专化性植物病原真菌毒素致病机制研究现状.河北农业大学学报,1995,18:99-104
    8.工立新,王森,郜爱玲.扁桃胶组分和多糖结构的研究.中国农业科学,2010,43:4081-4087
    9.王玉华,杨清,陈敏.植物糖感知和糖信号传导.植物学通报,2004,21:273-279
    10.叶晓云.桃树侵染性流胶病发生规律及防治研究.中国果树,2005,5:15-16
    11.俞明亮,马瑞娟,赵密珍,杜平.桃树体内生化代谢与其对流胶病抗性的关系.江苏农业学报,2001,17:241-243
    12.张宝棣,周伯扬.广州地区桃树流胶病病原菌的研究.华南农业大学学报,1994,15:37-42
    13.赵光耀,董金皋.玉米大斑病菌毒素的钝化反应及其机理研究.沈阳农业大学学报,2000,31:451-455
    14.赵密珍,郭洪,周建涛.不同桃树品种抗流胶病的调查.中国果树,1996,3:45-46.
    15.赵忠仁,郭洪,赵密珍.桃树不同品种对流胶病抗性研究.江苏农业科学,1994,5:52-53
    16.庄敬华,杨长城,高增贵,毛竹,唐树戈,魏汉莲,董会.瓜类枯萎病菌粗毒素的致萎作用其钝化研究.沈阳农业大学学报,2006,37:177-181
    17. Aarrouf J, Garcin A, Lizzi Y, Maataoui ME. Immunolocalization and histocytopathological effects of Xanthomonas arboricola pv. Pruni on naturally infected leaf and fruit tissues of peach (Prunus persica L. Batsch). J Phytopathol, 2008, 156: 338-345
    18. Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C. Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry,2010,71:110-116
    19. Abeles FB, Morgan PW, Saltveit Jr ME. Ethylene in plant biology. Academic press, 1992
    20. Achuo EA, Audenaert K, Meziane H, Hofte M. The salicylic acid dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol, 2004,53:65-72
    21. Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. Trends plant Sci,2012,17:73-90
    22. Alves da Cunha MA, Barbosa AM, Giese EC, Dekker RE The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp. J Basic Microb, 2003,43:385-392
    23. Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol,2008,146:703-715
    24. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell,2004,16:3460-3479
    25. Antoni EA, Rybak K, Tucker MP, Hane JK, Solomon PS, Drenth A, Shankar M, Oliver RP. Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis. Australas Plant Pathol,2010,39:63-68
    26. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949,24,1
    27. Avis TJ, Rioux D, Simard M, Michaud M, Tweddell RJ. Ultrastructural alterations in Fusarium sambucinum and Heterobasidion annosum treated with aluminum chloride and sodium metabisulfite. Phytopathology,2009,99:167-175
    28. Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe In, 2003,16:1118-1128
    29. Baillieul F, Genetet I, Kopp M, Saindrenan P, Fritig B, Kauffmann S. A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J, 1995,8:551-560
    30. Barbosa AM, Dekker RFH, St Hardy GE. Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye Poly R-478. Lett Appl Microbiol,1996,23:93-96
    31. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009,69:473-488
    32. Bartels S, Anderson JC, Besteiro MAG, Carreri A, Hirt H, Buchala A, Metraux JP, Peck SC, Ulm R. MAP kinase phosphatasel and protein tyrosine phosphatasel are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell,2009, 21:2884-2897
    33. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr A,1997,758:99-107
    34. Beaudoin-Eagan LD, Thorpe TA. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol,1985,78:438-441
    35. Beckman TG, Pusey PL, Bertrand PF. Impact of fungal gummosis on peach trees. Hort Sci,2003,38:1141-1143
    36. Beckman TG, Reilly CC. Relative susceptibility of peach cultivars to fungal gummosis (Botryosphaeria dothidea). J Am Pomol Soc,2005,59:111-116
    37. Beffa RS, Hofer R-M, Thomas M, Meins F Jr. Decreased susceptibility to virus disease of b-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell, 1996,8:1001-1011
    38. Bergey DR, Orozco-Cardenas M, De Moura DS, Ryan CA. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA, 1999, 96:1756-1760
    39. Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J,2002,29:23-32
    40. Biggs AR, Britton KO. Presymptom histopathology of peach trees inoculated with Botryosphaeria obtuse and B. dothidea. Phytopathology,1988,78:1109-1118
    41. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of Botany,2003,91:179-194
    42. Bolker M, Basse CW, Schirawski J. Ustilago maydis secondary metabolism-From genomics to biochemistry. Fungal Genet Biol,2008,45, S88-S93
    43. Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J, 2010, 277: 2022-2037
    44. Brase S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev,2009,109:3903-3990
    45. Buchanan DW, Biggs RH. Peach fruit abscission and pollen germination as influenced by ethylene and 2-chloroethane phosphonic acid. J Am Soc Hortic Sci, 1969,94:327-329
    46. Campos DA, Ribeiro AC, Costa EM, Fernandes JC, Tavaria FK, Araruna FB, Eiras C, Eaton P, Leite RSA, Manuela Pintado M. Study of antimicrobial activity and atomic force microscopy imaging of the action mechanism of cashew tree gum. Carbohyd Polym, 2012,90:270-274
    47. Chague V, Danit LV, Siewers V, Gronover CS, Tudzynski P, Tudzynski B, Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?. Mol Plant Microbe In,2006,19:33-42
    48. Chen YF, Etheridge N, Schaller GE. Ethylene signal transduction. Annals of Botany, 2005,95:901-915
    49. Cherrad S, Girard V, Dieryckx C, Goncalves IR, Dupuy JW, Bonneu M, Rascle C, Job C, Job D, Vacher S, Poussereau, N. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics,2012,4:835-846
    50. Chervin C, Terrier N, Ageorges A, Ribes F, Kuapunyakoon T. Influence of ethylene on sucrose accumulation in grape berry. Am J Enol Viticult,2006,57:511-513
    51. Ciuffetti LM, Tuori RP. Advances in the characterization of the Pyrenophora triticirepentis-wheat interaction. Phytopathology,1999,89:444-449
    52. Coquoz JL, Buchala A, Metraux JP. The biosynthesis of salicylic acid in potato plants. Plant Physiol,1998,117:1095-1101
    53. Couvillon GA, Bass S, Joslin BW, Odom RE, Roberson JE, Sheppard D, Tanner R. NAA-induced sprout control and gummosis in peach. Hortscience,1977,12:123-124
    54. Crocoll C, Kettner J, Dorffling K:Abscisic acid in saprophytic and parasitic species of fungi. Phytochemistry, 1991,30:1059-1060
    55. Daniell JW, Chandler WA. Field resistance of peach cultivars to Gummosis disease. Hort Sci,1982,3:375-376
    56. Daub ME, Herrero S, Chung KR. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett, 2005,252:197-206
    57. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J,2007,26:1434-1443
    58. Delaney T, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella, M, Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance. Science,1994,266:1247-1250
    59. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. Activation of defence response pathways by OGs and flg22 elicitors in Arabidopsis seedlings. Mol Plant, 2008,1:423-445
    60. Diaz J, ten Have A, van Kan JA. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol,2002,129:1341-1351
    61. Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S. Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ,2010,33:1697-1707
    62. Djoukeng JD, Polli S, Larignon P, Abou-Mansour E. Identification of phytotoxins from Botryosphaeria obtusa, a pathogen of black dead arm disease of grapevine. Eur J Plant Pathol,2009,124:303-308
    63. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel BU, Poree FP, Stitt M, Pons-kuhnemann J, Sonnewald U, Kahmann R, Kamper J. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J,2008,56:181-195
    64. Dorey S, Baillieul F, Pierrel MA, Saindrenan P, Fritig B, Kauffmann S. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol Plant Microbe In,1997,10:646-655
    65. Duffy BK, Defago G. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology, 1997, 87: 1250-1257
    66. Duke SO, Dayan FE. Modes of action of microbially-produced phytotoxins. Toxins,2011, 3:1038-1064
    67. Durrant WE, Dong X. Systemic acquired resistance. Ann Rev Phytopathol,2004,42: 185-209
    68. Fan J, Chen C, Brlansky RH, Gmitter Jr FG, Li ZG. Changes in carbohydrate metabolism in Citrus sinensis infected with'Candidatus Liberibacter asiaticus'. Plant Pathol, 2010, 59:1037-1043
    69. Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant physiol, 2009,150:1750-1761
    70. FAO/IAEA Training, Reference Centre for Food, & Pesticide Control. Manual on the application of the HACCP system in mycotoxin prevention and control (Vol.73). Food & Agriculture Org,2001
    71. Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis. Planta, 1998, 206:167-174
    72. Fernandez-San Millan A, Obregon P, Veramendi J. Over-expression of peptide deformylase in chloroplasts confers actinonin resistance, but is not a suitable selective marker system for plastid transformation. Transgenic Res,2011,20:613-624
    73. Fobert PR, Despres C. Redox control of systemic acquired resistance. Curr Opin Plant Biol,2005,8:378-382
    74. Francini A, Sebastiani L, Vitagliano C. Physiological Effects Induced by Copper Excess in Peach Rootstock MrS 2/5 and GF 677 Growth In Vitro. In I International Symposium on Rootstocks for Deciduous Fruit Tree Species,2002,658:51-56
    75. Friesen TL, Faris JD. Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to PtrToxB in wheat. Theor Appl Genet, 2004, 109:464-471
    76. Friesen TL, Meinhardt SW, Faris JD. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J,2007,51:681-692
    77. Fukuda H, Ogawa T, Tanase S. Ethylene production by micro-organisms. Adv Microb Physiol,1993,35:275-306
    78. Gamba FM, Lamari L, Brule-Babel AL. Inheritance of race-specific necrotic and chlorotic reactions induced by Pyrenophora tritici-repentis in hexaploid wheats. Can J Plant Pathol,1998,20:401-407
    79. Garbaccio RM, Stachel SJ, Baeschlin DK, Danishefsky SJ. Concise asymmetric syntheses of radicicol and monocillin I. J Am Chem Soc, 2001,123:10903-10908
    80. Ghali R, Hmaissia-Khlifa K, Ghorbel H, Maaroufi K, Hedili A. Incidence of aflatoxins, ochratoxin A and zearalenone in tunisian foods. Food Control,2008,19:921-924
    81. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol,2005,43:205-227
    82. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol,2001,4:301-308
    83. Gomez-Ariza J, Campo S, Rufat M, Estopa M, Messeguer J, San Segundo B, Coca M. Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol Plant Microbe In,2007,20:832-842
    84. Groβkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novak O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol, 2011,157:815-830
    85. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, and Eide D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA,1998,95:7220-7224
    86. Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol,2009,183:62-75
    87. Gupta SK, Rai AK, Kanwar SS, Sharma TR. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One,2012,7:e42578
    88. Hamamouch N, Li CY, Seo PJ, Park CM, Davis EL. Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol, 2011,12: 355-364
    89. Handford MG, Sicilia F, Brandizzi F, Chung JH, Dupree P. Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol Genet Genomics,2004,272:397-410
    90. Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot,2012, 63:3429-3444
    91. Hayes MA, Feechan A, Dry IB. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol,2010,153:211-221
    92. He G, Matsuura H, Yoshihara T. Isolation of an α-methylene-γ-butyrolactone derivative, a toxin from the plant pathogen Lasiodiplodia theobromae. Phytochemistry, 2004, 65: 2803-2807
    93. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125:189-198
    94. Hervieux V, Yaganza ES, Arul J, Tweddell RJ. Effect of organic and inorganic salts on the development of Helminthosporium solani, the causal agent of potato silver scurf. Plant Dis,2002,86:1014-1018
    95. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell:infection strategies of plant pathogenic fungi. J Plant Physiol, 2011,168:51-62
    96. Horsfall JG, Dimond AE. Interactions of tissue sugar, growth substances and disease susceptibility. Z Pflanzenkr Pflanzenschutz,1957,64:415-421
    97. Howlett BJ. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol,2006,9:371-375
    98. Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FK, Wang N, Jones JB. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA,2014,111:E521-E529
    99. Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumoto T. The structure of coronatine. J Am Chem Soc,1977,99:636-637
    100. Jaulneau V, Lafitte C, Corio-Costet MF, Stadnik MJ, Salamagne S, Briand X, Esquerre-Tugaye MT, Dumas B. An Ulva armoricana extract protects plants against three powdery mildew pathogens. Eur J Plant Pathol,2011,131:393-401
    101. Jaulneau V, Lafitte C, Jacquet C, Fournier S, Salamagne S, Briand X, Esquerre-Tugaye MT, Dumas, B. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. BioMed Research International, 2010,525291
    102. Jongebloed U, Szederkenyi J, Hartig K, Schobert C, Komor E. Sequence of morphological and physiological events during natural ageing and senescence of a castor bean leaf: sieve tube occlusion and carbohydrate back-up precede chlorophyll degradation. Physiol Plantarum,2004,120:338-346
    103. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature,2006,444: 97-101
    104. Kano A, Hosotani K, Gomi K, Yamasaki-Kokudo Y, Shirakawa C, Fukumoto T, Ohtani K, Tajima S, Lzumori K, Tanaka K, Ishida Y, Nishizawa Y, Ichimura K, Tada Y, Akimitsu, K. d-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight. J Plant Physiol,2011,168:1852-1857
    105. Kawaide H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotech Bioch,2006,70:583
    106.Kehr H, Buhtz A. Long distance transport and movement of RNA through the phloem. J Exp Bot,2008,59:85-92
    107. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell,2009,21:2237-2252
    108. Kieu NP, Aznar A, Segond D, Rigault M, Simond-Cote E, Kunz C, Soulie M-C, Expert D, and Dellagi A. Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol,2012,13:816-827
    109.Kikot GE, Hours RA, Alconada TM. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum:a review. J Basic Microb,2009,49:231-241
    110. Kiraly Z, El-Zahaby HM, Klement Z. Role of extracellular polysaccharide (EPS) slime of plant pathogenic bacteria in protecting cells to reactive oxygen species. J Phytopathol, 1997,145:59-68
    111. Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev,2003,16:144-172
    112. Kumar D, Klessig DF. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA,2003,100:16101-16106
    113. Lam E. Controlled cell death, plant survival and development. Na Rev Mol Cell Bio, 2004,5:305-315
    114. Lanfranco L, Balsamo R, Martino E, Perotto S, Bonfante P. Zinc ions alter morphology and chitin deposition in an ericoid fungus. Eur J Histochem,2002,46:341-50
    115. Layne DR, Bassi D. The peach Botany, production and uses. CAB International press, 2008
    116. Leon P, Sheen J.2003. Sugar and hormone connections. Trends Plant Sci,8:110-111
    117. Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol,2011,9:509-518
    118. Li HY, Cao RB, Mu YT. In vitro inhibition of Botryosphaeria dothidea and Lasiodiplodia theobromae, and chemical control of gummosis disease of Japanese apricot and peach trees in Zhejiang Province, China. Crop Prot, 1995,14:187-191
    119. Li Z, Wang YT, Gao L, Wang F, Ye JL, Li GH. Biochemical changes and defense responses during the development of peach gummosis caused by Lasiodiplodia theobromae. Eur J Plant Pathol,2014,138:195-207
    12O. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods,2001,25:402-408
    121. Luza JG, Van Gorsel R, Polito VS, Kader AA. Chilling injury in peaches:a cytochemical and ultrastructural cell wall study. J Am Soc Hortic Sci,1992,117:114-118
    122. Malachova K, Praus P, Rybkova Z, Kozak O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. App Clay Sci,2011,53:642-645
    123.Malerba M, Contran N, Tonelli M, Crosti P, Cerana R. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells. Physiol Plantarum,2008,133:449-457
    124. Martos S, Andolfi A, Luque J, Mugnai L, Surico G, Evidente A. Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. parvum. E J Plant Pathol, 2008,121:451-461
    125. McDowell JM, Dangl JL. Signal transduction in the plant immune response. Trends Biochem Sci,2000,25:79-82
    126. Mecteau MR, Arul J, Tweddell RJ. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycol Res, 2002,106:688-696
    127. Melotto M, Underwood W, He SY. Role of stomata in plant innate immunity and foliar bacterial diseases. Ann Rev Phytopathol,2008,46:101
    128. Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell,2006,126:969-980
    129. Michailides TJ. Pathogenicity, distribution, sources of inoculum, and infection courts of Botryosphaeria dothidea on pistachio. Phytopathology,1991,81:566-573
    130. Milling A, Babujee L, Allen C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. Plos one, 2011,6: e15853
    131. Miyamoto K, Kotake T, Sasamoto M, Saniewski M, Ueda J. Gummosis in grape hyacinth (Muscari armeniacum) bulbs:hormonal regulation and chemical composition of gums. J Plant Res,2010,123:363-370
    132. Mobius N, Hertweck C. Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol,2009,12:390-398
    133. Moghaddam MRB, Ende WV. Sugars and plant innate immunity. J Exp Bot,2012,63: 3989-3998
    134. Moore PH, Osgood RV. Prevention of flowering and increasing sugar yield of sugarcane by application of ethephon (2-chloroethylphosphonic acid). J Plant Growth Regul, 1989, 8:205-210
    135. Mortuza MG, Ilag LL. Potential for Biocontrol of Lasiodiplodia theobromae (Pat.) Griff. & Maubl. in Banana Fruits by Trichoderma Species. Biol Control,1999,15:235-240
    136. Mukhopadhyay A, Vij S, Tyagi AK. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA,2004,101:6309-6314
    137. Nawaz S, Coker RD, Haswell SJ. Development and evaluation of analytical methodology for the determination of aflatoxins in palm kernels. Analyst, 1992, 117: 67-74
    138. Ndoumou DO, Ndzomo GT, Djocgoue PF. Changes in carbohydrate, amino acid and phenol contents in cocoa pods from three clones after infection with Phytophthora megakarya Bra and Grif. Annals of Botany,1996,77:153-158
    139. Nicholass FJ, Smith CJ, Schuch W, Bird CR, Grierson D. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol,1995,28:423-435
    140. Nielsen KF, Thrane U. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry. J Chromatogr A, 2001,929: 75-87
    141. Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A. AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. Planta,2005,222:521-529
    142. Nunez-Pastrana R, Arcos-Ortega GF, Souza-Perera RA, Sanchez-Borges CA, Nakazawa-Ueji YE, Garcia-Villalobos FJ, Guzman-Antonio AA, Zuniga-Aguilar JJ. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur J Plant Pathol,2011,131:669-683
    143. Odhav B, Naicker V. Mycotoxins in South African traditionally brewed beers. Food Addit Contam,2002,19:55-61
    144. Ohtsubo N, Mitsuhara I, Koga M, Seo S, Ohashi Y. Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. Plant Cell Physiol, 1999,40:808-817
    145. Okie WR, Reilly CC. Reaction of peach and nectarine cultivars and selections to infection by Botryosphaeria dothidea. J Am Soc Hortic Sci,1983,108:176-179
    146. Otani H, Kohnobe A, Kodama M, Kohmoto K. Production of a host-specific toxin by germinating spores of Alternaria brassicicola. Physiol Mol Plant P,1998,52:285-295
    147. Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Prihonen M, Anderluh G, Seitz HU, Numberger T, Oecking, C. A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci USA,2009, 106: 10359-10364
    148.Pasold S, Siegel I, Seidel C, Ludwig-Muller JUTTA. Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Mol Plant Pathol,2010,11:545-562
    149.Paulert R, Ebbinghaus D, Urlass C, Moerschbacher BM. Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol, 2010,59:634-642
    15O.Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell,1998,10:1571-1580
    151.Pogany M, Koehl J, Heiser I, Elstner E, Barna B. Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant P,2004,65:39-47
    152.Pusey PL, Reilly CC, Okie WR. Symotomatic responses of peach trees to various isolates of Botryosphaeria dothidea. Plant Dis,1986,70:568-572
    153.Pusey PL. Role of Botryosphaeria species in peach tree gummosis on basis of differential isolation from outer and inner bark. Plant Dis,1993,77:170-174
    154.Quayyum HA, Gijzen M, Traquair JA. Purification of a necrosis-inducing, host-specific protein toxin from spore germination fluid of Alternaria panax. Phytopathology,2003, 93:323-328
    155.Rairdan GJ, Delaney TP. Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics,2002,161:803-811
    156.Ramirez V, Van der Ent S, Garcia-Andrade J, Coego A, Pieterse CM, Vera P. OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biol,2010,10:199
    157. Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S. Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol,2002,3:301-311
    158. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol, 2008,9:339-355
    159. Reiter WD, Vanzin GF. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol,2001,47:95-113
    160. Reyes F, Orellana A. Golgi transporters:opening the gate to cell wall polysaccharide biosynthesis. Curr Opin Plant Biol,2008,11:244-251
    161. Ribnicky DM, Shulaev VV, Raskin II. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol,1998,118:565-572
    162. Rita Marques M, Xavier-Filho J. Enzymatic and inhibitory activities of cashew tree gum exudate. Phytochemistry,1991,30:1431-1433
    163. Rodriguez-Fonseca C, Amils R, Garrett RA. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol,1995,247:224-235
    164. Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants:conserved and novel mechanisms. Ann Rev Plant Biol,2006,57:675-709
    165. Roze LV, Calvo AM, Gunterus A, Beaudry R, Kall M, Linz JE. Ethylene modulates development and toxin biosynthesis in Aspergillus possibly via an ethylene sensor-mediated signaling pathway. J Food Protect,2004,67:438-447
    166. Saniewski M, Miyamoto K, Ueda J. Gum formation by methyl jasmonate in tulip shoots is stimulated by ethylene. J Plant Growth Regul,1998b,17:179-183
    167. Saniewski M, Miyamoto K, Ueda J. Methyl jasmonate induces gums and stimulates anthocyanin accumulation in peach shoots. J Plant Growth Regul,1998a,17:121-124
    168. Saniewski M, Ueda J, Miyamoto K, Horbowicz M, Puchalski J. Hormonal control of gummosis in Rosaceae. Journal of fruit and ornamental plant research,2006,14,137
    169. Saniewski M, Ueda J, Miyamoto K, Okubo H, Puchalski J. Interaction of methyl jasmonate and ethephon in gum formation in tulip bulbs. J Faculty Agr Kyushu U,2004, 49:207-215
    170. Saniewski M, Ueda J, Miyamoto K, Urbanek H. Interactions between ethylene and other plant hormones in regulation of plant growth and development in natural conditions and under abiotic and biotic stresses. NATO SCIENCE SERIES SUB SERIES I LIFE AND BEHAVIOURAL SCIENCES,2003,349:263-270
    171. Scaloni A, Bachmann RC, Takemoto JY, Barra D, Simmaco M, Ballio A. Stereochemical structure of syringomycin, a phytotoxic metabolite of Pseudomonas syringae pv. syringae. Nat Prod Lett,1994,4:159-164
    172. Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AWV, Schiavinato MA, Cascardo JCM, Pereira GAG. Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot, 2005,56:865-877
    173. Shahidi F, Arachchi JKV, Jeon YJ. Food applications of chitin and chitosans. Trends Food Sci Tech,1999,10:37-51
    174. Sharma JN, Gautam DR. Gummosis Complex in Stone and Nut Fruits. Diseases of horticultural crops:fruits, Indus Publishing Co, New Delhi,1999,275-290
    175. Sherif S, Paliyath G, Jayasankar S. Molecular characterization of peach PR genes and their induction kinetics in response to bacterial infection and signaling molecules. Plant Cell Rep,2012,31:697-711
    176. Shetty R, Jensen B, Shetty NP, Hansen M, Hansen CW, Starkey KR, Jorgensen HJL. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathol,2012,61:120-131
    177. Shi XQ, Li BQ, Qin GZ, Tian SP. Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango. Plant Dis,2011,95:63-69
    178. Simas FF, Barrzaz RR, Petkowicz CLO, Silveira JLM, Sassaki GL, Santos EMR, Gorin PAJ, Iacomini M. Rheological and structural characteristics of peach tree gum exudate. Food Hydrocolloid,2010,24:486-493
    179. Simas FF, Gorin PAJ, Wagner R, Sassaki GL, Bonkerner A, Iacomini M. Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree (Prunus persica). Carbohyd Polym,2008,71:218-228
    180. Simas FF, Wagner R, Santos EMR, Sassaki GL, Gorin PAJ, Iacomini M. Polysaccharide of nectarine gum exudate:Comparison with that of peach gum. Carbohyd Polym,2009, 76:485-487
    181. Singh J, Quereshi S, Banerjee N, Pandey AK. Production and extraction of phytotoxins from Colletotrichum dematium FGCC# 20 effective against Parthenium hysterophorus L. Braz Arch Biol Techn,2010,53:669-678
    182. Singh MP, Lee FN, Counce PA, Gibbons JH. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology,2004,94:819-825
    183. Singh V, Louis J, Ayre BG, Reese JC, Shah J. TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defence against the phloem feeding insect Myzus persicae. Plant J,2011,67:94-104
    184. Sitrit Y, Bennett AB. Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene:a re-examination. Plant Physiol,1998,116:1145-1150
    185. Skrzypek E, Miyamoto K, Saniewski M, Higuchi N, Ueda J. Gum formation in tulips affected by methyl jasmonate requires changes in sugar metabolism. In IX International Symposium on Flower Bulbs 673,2004,215-222
    186. Skrzypek E, Miyamoto K, Saniewski M, Ueda J. Jasmonates are essential factors inducing gummosis in tulips: mode of action of jasmonates focusing on sugar metabolism. J Plant Physiol,2005,162:495-505
    187. Smith JE, Moss MO. Mycotoxins. Formation, analysis and significance. John Wiley & Sons Ltd, 1985
    188. Spadaro D, Ciavorella A, Frati S, Garibaldi A, Gullino ML. Incidence and level of patulin contamination in pure and mixed apple juices marketed in Italy. Food Control, 2007,18:1098-1102
    189. Spiro RG. Analysis of sugars found in glycoproteins. In: Neufeld ES, Ginsburg V eds, Methods in Enzymology, vol. VIII, Complex carbohydrates. Academic Press, New York, 1966,3-26
    190. Srivastava P, Andersen PC, Marois JJ, Wright DL, Srivastava M, Harmon PF. Effect of phenolic compounds on growth and ligninolytic enzyme production in Botryosphaeria isolates. Crop Prot,2013,43:146-156
    191. Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N. Direct visualization of protein interactions in plant cells. Nat Biotechnol,2001,19:769-772
    192. Sun Q, Greve LC, Labavitch JM. Polysaccharide compositions of intervessel pit membranes contribute to pierce's disease resistance of grapevines. Plant Physiol, 2011, 155:1976-1987
    193. Tadege M, Bucher M, Stahli W, Suter M, Dupuis I, Kuhlemeier C. Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant J,1998,16:661-671
    194. Tamaoki M, Matsuyama T, Kanna M, Nakajima N, Kubo A, Aono M, Saji H. Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta,2003,216:552-560
    195. Tanaka T, Hatano K, Watanabe M, Abbas HK. Isolation, purification and identification of 2,5-anhydro-D-glucitol as a phytotoxin from Fusarium solani. J Nat Toxins,1996,5: 317-329
    196. Thakkar VR, Subramanian RB, Kothari IL. Culture filtrate of Lasiodiplodia theobromae restricts the development of natural resistance in Brassica nigra plants. Indian J Exp Biol, 2004,42:111-114
    197. Thaler JS, Owen B, Higgins VJ. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol,2004,135: 530-538
    198. Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci,2009,14:310-317
    199. Tong Z, Gao Z, Wang F, Zhou J, Zhang Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol,2009,10,71
    200. Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol,2006,140:210-220
    201. Tsukada K, Takahashi K, Nabeta K. Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry,2010,71:2019-2023
    202. Tugeon B, Baker SE. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox 1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet,2007,57:219-261
    203. Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins:a review. Anal Chim Acta,2009,632:168-180
    2O4. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe In,2007,20:955-965
    205. Van den Ende W, Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?. J Exp Bot,2009,60:9-18
    2O6. van Loon LC, Geraats BP, Linthorst HJ. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci,2006,11:184-191
    2O7. Van Wees SC, De Swart EA, Van Pelt JA, Van Loon LC, Pieterse CM. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA,2000,97:8711-8716
    208. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol,2002,3:research0034
    209. Vasconcelos AFD, Monteiro NK, Dekker RF, Barbosa AM, Carbonero ER, Silveira JLM, Sassaki GL, da Silva R, de Lourdes Corradi da Silva, M. Three exopolysaccharides of the β-(1→6)-D-glucan type and a β-(1→3;1→6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohyd Res,2008,343: 2481-2485
    210. von Poser GL. Polissacarideos. In:Simoes MOS, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR eds, Farmacognosia: da planta ao medicamento. Porto Alegre/Florianopolis:Universidade UFRGS/UFSC,2000,417-432
    211. Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci,2004,9:203-209
    212. Walton JD. Deconstructing the cell wall. Plant Physiol,1994,104:1113-1118
    213. Walton JD. HC-toxin. Phytochemistry,2006,67:1406-1413
    214. Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science,2005,308:1036-1040
    215. Wang F, Zhao L, Li G, Huang J, Hsiang T. Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei province, central China. Plant Dis,2011,95:1378-1384
    216.Weaver DJ. A gummosis disease of peach trees caused by Botryosphaeria dothidea. Phytopathology,1974,64:1429-1432
    217. Weaver DJ. Role of conidia of Botryosphaeria dothidea in the natural spread of peach tree Prunus persica gummosis in Georgia. Phytopathology,1979,69:330-334
    218. Weingart H, Ullrich H, Geider K, Volksch, B. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology, 2001,1992,91:511-518
    219. Wevelsiep L, Kogel KH, Knogge W. Purification and characterization of peptides from Rhynchosporium secalis inducing necrosis in barley. Physiol Mol Plant P, 1991,39: 471-482
    22O. Whenham RJ, Fraser RSS, Brown LP, Payne JA. Tobacco mosaic virus-induced increase in abscisic acid concentration in tobacco leaves: intracellular location in light and dark green areas, and relationship to symptom development. Planta,1986,168:592-598
    221. Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature,2001,414:562-565
    222. Williams LD, Glenn AE, Zimeri AM, Bacon CW, Smith MA, Riley RT. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. J Agri Food Chem,2007,55: 2937-2946
    223. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002,5:218-223
    224. Wrolstad RE, Culbertson JD, Cornwell CJ, Mattick LR. Detection of adulteration in blackberry juice concentrates and wines. J Assoc Off Anal Chem,1982,65:1417-1423.
    225. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol,1984,35:155-189
    226. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell,2008,20:1678-1692
    227. Yu J, Gao J, Wang XY, Wei Q, Yang LF, Qiu K, Kuai BK. The pathway and regulation of salicylic acid biosynthesis in probenazole-treated Arabidopsis. J Plant Biol,2010,53: 417-424
    228. Yuan JS, Reed, A., Chen F, and Stewart CNJr. Statistical analysis of real-time PCR data. BMC Bioinformatics,2006,7:85
    229. Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, Yokomi RK, Folimonova S, Vidalakis G, Rouse R, Bowman KD, and Jin H. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Mol Plant,2013,6:301-310
    230. Zheng L, Lv R, Huang J, Jiang D, Hsiang T. Isolation, purification, and biological activity of a phytotoxin produced by Stemphylium solani. Plant Dis,2010,94:1231-1237
    231. Zimmermann MH, Ziegler H. List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH, Milburn JA eds, Encyclopedia of Plant Physiology Vol 1. New York, Springer-Verlag,1975,480-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700