用户名: 密码: 验证码:
对逆合成孔径雷达干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR)是一种高分辨率微波成像系统,在目标识别、反隐身、天文学研究以及空中交通管制等领域具有很大的应用前景,ISAR成像技术的迅速发展,对ISAR对抗领域提出了很大的挑战。研究对ISAR成像的干扰技术十分紧迫且具有重要意义。
     ISAR成像是一个二维信号处理过程,能够获得很大的信号处理增益,使干扰难度增大。本文结合工程项目,针对ISAR的信号特点及信号处理的特点,研究了工程可实现的、新的干扰方法。所作的工作主要包括:
     1.以转台模型为切入点研究了ISAR成像原理,深入分析了ISAR信号处理方式,指明ISAR成像的本质是距离向和方位向的二维信号处理。分别对距离向成像原理和方位向成像原理进行研究,比较了匹配滤波方法和解线调方法的异同点,分析了不同前提下信号处理的采样率和处理方式选择原则,分析了方位向取得高分辨率的原理及方位向信号处理增益。
     2.提出一种卷积干扰方法,具体包括脉冲卷积和噪声卷积两种形式,分别可以产生假目标欺骗干扰效果和噪声压制干扰效果,脉冲卷积干扰可以获得ISAR—维信号处理的全部增益,而噪声卷积干扰可以获得ISAR一维信号处理的部分增益。卷积干扰可和移频干扰结合形成组合式干扰,能够改善干扰效果,使干扰位于目标回波之前。
     3.提出对ISAR的相干干扰方法,主要表现为几种加权调频干扰方法,包括噪声加权调频、脉冲加权调频干扰、锯齿波加权调频干扰和正弦波加权调频干扰。研究了各种加权调频干扰方法的关键参数、决定干扰类型的条件以及干扰功率增益等等。锯齿波、正弦波和脉冲加权调频干扰均能产生假目标欺骗和噪声压制两种效果,并且可以用参数的设置来灵活控制干扰效果;而噪声加权调频干扰只能产生噪声压制干扰效果。这些方法均能利用ISAR的一维信号处理增益,从而在保证干扰效果的前提下节省干扰功率。
     4.从干扰机收发隔离的实际需要出发,提出一种对ISAR的脉冲调幅干扰方法,指出用占空比为50%的脉冲对接收到的雷达照射信号进行调幅之后作为干扰信号转发,既可以产生较好的干扰效果,又可以作为干扰机收发隔离的手段。这种方法可以单独使用,也可以和其他干扰方法一起形成组合式干扰,更大限度发挥干扰威力。分析了脉冲调幅干扰方法的产生机理、时频特性和关键参数,并研究了脉冲调幅干扰及其相关的组合式干扰对ISAR一维成像的干扰效果。
     5.基于解线调的ISAR交替发射宽窄谱脉冲的特点,提出对ISAR的距离欺骗干扰方法,即对雷达发射的窄谱脉冲进行距离波门拖引,使雷达获得虚假的距离信息,从而产生错误的参考信号,使得解线调的结果即频域距离像在某种程度上展宽甚至相互交迭,从而破坏ISAR一维距离成像乃至二维成像结果。
     6.利用ISAR回波信号多普勒频率与目标方位之间的线性关系,将对距离向成像的干扰方法推广至方位向,提出对ISAR成像的方位向移频干扰和方位向相干干扰方法。分析了各种干扰方法的关键参数,将这些方位向干扰和距离向干扰结合起来产生二维的假目标欺骗或者遮盖干扰效果,且假目标数目、位置或者遮盖区的位置、范围可通过参数进行控制。
     7.从图像质量评估的角度出发,研究了基于相关系数的干扰效果评估准则及其改进型干扰效果评估准则;从模糊综合的角度出发研究了对ISAR干扰的效果评估方法,给出了针对ISAR和相干干扰样式的模糊函数参数,初步建立起对ISAR干扰效果评估的模糊综合系统。
Inverse Synthetic Aperture Radar (ISAR) is a high resolution microwave imaging system. It has great prospects in target recognition, anti-stealth, astronomy and air traffic control etc. It is an important research direction in radar imaging area. ISAR imaging technique has been rapidly developed to accommodate to the increasingly complicated electromagnetic environment, consequently to challenge the ISAR countermeasure field. The research on jamming methods against ISAR is urgent and important.
     The ISAR imaging is a course of two-dimensional signals processing. So ISAR has advantage of high processing gain received signal and bring difficulties to the jamming technique. The dissertation proposes several jamming methods against ISAR range image and two-dimensional image. Primary work of the dissertation is summarized as follows:
     1. ISAR imaging principle and echo signal processing method are studied based on the rotational platform. The processing methods concerned with range imaging are presented, which include matched filtering and dechirp processing in range dimension. The similarities and differences between them are discussed and the problem of choosing range sampling rate is studied in order to reduce the range sampling rate. The processing methods concerned with azimuth imaging are presented in detail, which is FFT processing method. The principle of how the azimuth dimension obtains high resolving power is studied. The paper also discussed the azimuth signal processing gain.
     2. The dissertation proposes a jamming method named convolution jamming, which includes pulse convolution jamming and noise convolution jamming. The convolution jamming method can produce false targets deceptive jamming or noise cover jamming according to the different forms of convolution signals. And this kind of jamming method can obtain all or part of radar signal processing gain, so it can save the jamming power. The convolution jamming and the shift-frequency jamming are combined in order to improve the jamming effect; in other words, the combined jamming can produce jamming which is ahead of the target echoes.
     3. Several coherent jamming methods are proposed, which include noise weighted frequency modulation jamming, pulse weighted frequency modulation jamming, sawtooth weighted frequency modulation jamming and sinusoidal weighted frequency modulation jamming. The noise weighted frequency modulation jamming can produce cover jamming; others can produce both cover jamming and false target deceptive jamming. Some important parameters, jamming type determinants and jamming gain are discussed. Those jamming methods can utilize the radar signal processing gain, so they can save the jamming power.
     4. The dissertation proposes a pulse amplitude modulation jamming which uses pulse signal whose duty ration is50%. This kind of jamming can produce false target deceptive jamming effect. At the same time, it can solve the separation problem of the jamming receiver and transmitter. The pulse amplitude modulation jamming can also be combined with other kinds of jamming methods; thereby they can improve their jamming effect. The jamming principle, important parameters and the time-frequency characteristic are discussed. The jamming effect of the pulse amplitude modulation method and correlative combined jamming are discussed.
     5. For the reduction of sampling bandwidth, ISAR echoes are usually dechirped first in the receiver. A new method named range deceptive jamming is proposed in this chapter, which is based on the feature of dechirping. The narrow band pulse is jammed by range pull-off, and then radar obtains a false range value and produces a false reference signal. So the point-spread function (PSF) in the frequency domain will be widen or folded and imaging will be worsen or destroyed. Theoretical analysis and computer simulation justify the validity and efficiency of the new jamming technique.
     6. There are linear relation between the ISAR echoes and the azimuth position of target. So we can utilize the shift-frequency jamming and the coherent jamming methods to the azimuth imaging. Those methods are combined with the jamming methods countering range imaging to form two-dimensional jamming methods. The jamming principle, important parameters, the time-frequency characteristic and the jamming gain are all discussed. The two-dimensional jamming methods can produce both cover jamming and false target deceptive jamming.
     7. The dissertation discusses ISAR radar equation and jamming equation and studies evaluation of jamming effectiveness against ISAR. Since ISAR is a kind of two-dimensional imaging radar, target of which is extended and result of which is an image, it is necessary to evaluate jamming effectiveness against ISAR based on the image. The correlation coefficient can be used as a criterion to evaluate the jamming effect. Furthermore, the fuzzy mathematics is discussed.
引文
[1]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [2]J. C. Curlander, R. N. McDonough. Synthetic aperture radar:system and signal processing [M]. Jone Wiley & Sons, INC,1991.
    [3]M. Soumekh. Fourier Array Imaging [M]. Prentice Hall, INC,1994.
    [4]W. G. Carrara, R. S. Goodman, and R.M.Majewski. Spotlight Synthetic Aperture Radar:Signal Processing Algorithms [M]. Boston:Artech House,1995.
    [5]C. V. Jakowatz Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson. Splotlight-Mode synthetic Aperture Radar:A Signal Processing Approach [M], Boston:Kluwer Academic Publishers,1996.
    [6]G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing [M], CRC Press Boca Raton London New York Washington, D.C.
    [7]J. Patrick Fitch. Synthetic Aperture Radar [M]. Springer-Verlag New York Inc.,1988.
    [8]S. A. Hovanessian. Introduction to Synthetic Array and Imaging Radar [M]. Artech House, 1980.
    [9]W. M. Brown. Synthetic aperture radar [J]. IEEE Trans. AES.1967, Vol.3(2).217-229.
    [10]W. M. Brown and Porrcello. An introduction to synthetic aperture radar [J]. IEEE Spectectrum.1969, Sept, Vol.4.52-62.
    [11J C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu. Spaceborne synthetic aperture imaging radars: application, techniques, and technology [J]. Proc. Of IEEE.1982, Vol.70(10).1174-1209.
    [12]C. A. Wiley. Synthetic Aperture radar [J]. IEEE Trans. AES.1985, Vol.21(3).440-443.
    [13]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [14]魏钟铨.合成孔径雷达成像卫星[M].北京:科学出版社,2001.
    [15]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [16]S.A.霍凡尼斯恩.合成阵与成像雷达导论[M].北京:宇航出版社,1986.
    [17]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [18]张直中.微波成像技术[M].北京:科学出版社,1990.
    [19]杨士中.合成孔径雷达[M].北京:国防工业出版社,1981.
    [20]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社,2002.
    [21]M. I. Skolnik王军等译.雷达手册.北京:电子工业出版社,2003.
    [22]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [23]R. J. Sullivan. Microwave Radar Imaging and Advanced Concepts. Boston:Artech House, 2000.
    [24]M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. John Wiley & Sons, Inc.1999.
    [25]D. R. Wehner. High-Resolution Radar.2nd Edition, Artech House, Inc.1995.
    [26]D. L. Mensa. High Resolution Radar Imaging. Artech House, Inc.1981.
    [27]D. L. Mensa. High Resolution Radar Cross-Section Imaging. Artech House, Inc.1991.
    [28]B. Borden. Radar imaging of airborne targets:a primer for applied mathematicians and physicists. Institute of Physics Publishing Bristol and Philadelphia.1999.
    [29]W. M. Brown, R. J. Fredericks. Synthetic aperture radar imaging of rotating objects. Proc. Of the 13th annual radar symposium,1969, June.
    [30]D. A. Ausherman, A. Kozma, J. L. Walker, H. M. et al... Developments in radar imaging. IEEE Trans. AES. July.1984. Vol.20(4).363-399.
    [31]W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion through Resolution Cells. IEEE Trans. AES. Jan.1969, Vol.5(1).98-102.
    [32]J. L. Walker, W. G. Carrara, et al. Optical processing of rotating-object radar data using polar recording format. AD-526738,1973.
    [33]J. L. Walker. Range-Doppler imaging of rotating objects. IEEE Trans. On AES,1980,16(1): 23-52.
    [34]C. C. Chen. Multi-frequency imaging of radar turntable data. IEEE Trans. On AES,1980, 16(1):15-22.
    [35]C. C. Chen and H. C. Andrews. Target-motion-induced Radar Imaging. IEEE Trans. Aerospace and Electronic systems. Jan.1980, Vol (16).2-14.
    [36]C. C. Chen and H. C. Andrews. Multifrequency imaging of radar turntable data. IEEE Trans on AES.1980, Vol.16(1).15-22.
    [37]K. K. Eerland. Application of ISAR on aircraft. IEEE Int. Radar Conf.,1984,618-823.
    [38]R. Goodman, W, Nagy, Wilelm. A High fidelity ground to air imaging radar system. IEEE National Radar Conference Record.1994.29-34.
    [39]D. J. Klass. Inverse synthetic aperture technology aids radar identification of ships. AE&ST, Sept.1987.
    [40]B. D. Steinberg. A theory of effect of hard limiting and other distortions upon the quality of microwave images. IEEE Trans. On ASSP,1987,35(10):1462-1472.
    [41]B. D. Steinberg. Microwave imaging of aircraft. Proc. of IEEE,1988,76(12):1578-1592.
    [42]Voles R. Resolving revolutions:imaging and mapping by modern radar. Proc IEE-F,1993, 140(1).1-11.
    [43]W. G. Carrara, R. S. Goodman, and R. M.Majewski, SPOTLIGHT SYNTHETIC APERTURE RADAR:SIGNAL PROCESSING ALGORITHMS, Artech House, Boston,1995.
    [44]V. C. Chen, S. Qian. Joint Time-Frequency Transform for Radar Range-Doppler Imaging. IEEE Trans. AES.1998, Vol.34(2).486-499
    [45]Berizzi, F., Dalle Mese, E.,Martorella. M, ISAR imaging of oscillating targets by range-instantaneous-Doppler technique, Radar Conference,2000. The Record of the IEEE 2000 International,2000,475-480.
    [46]Xialjian Xu, Narayanan, R. M, Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling, Image Processing, IEEE Trans.10(7), Jul 2001.1094-1102.
    [47]Genyuan wang, Xiang-Gen Xia, Chen V. C, Three-dimensional ISAR imaging of maneuvering targets using three receivers·Image Processing, IEEE Trans.10(3), Mar 2001.436-447.
    [48]V. C. Chen. Analyses of radar micro-Doppler with time-frequency transform. Proc.10th IEEE Workshop on Statistical signal and array processing. Pocono Manor, PA, USA, Aug.2000. 463-466.
    [49]王琦,空间目标ISAR成像的研究.西安电子科技大学博士论文,2007.
    [50]王根原,保铮,逆合成孔径雷达运动补偿中包络对齐的新方法,电子学报,26(6),5-8.
    [51]邢孟道,保铮,ISAR机动目标的平动补偿和瞬时成像研究,电子学报,29(6),2001,733-737.
    [52]Genyuan Wang, Zheng Bao and Xiaobing Sun, Inverse synthetic aperture radar imaging of non-uniformly rotating targets, Optical Engineering,35(10), Oct.1996.3007-3011.
    [53]Bao Zheng, Wang Genyuan, Luo Lin, Inverse Synthetic Aperture, Radar Imaging of Maneuvering Targets, Optical Engineering,37(5), May.1998.1582-1588.
    [54]Zhang Shouhong, Ma Changzheng, Chen Baixiao, Monopulse Radar Three-dimensional Imaging for Maneuvering Target, SPIE, ISMIP'98,多谱段图像处理国际会议,武汉.
    [55]保铮,孙长印,邢孟道,机动目标的逆合成孔径雷达成像原理计算法,电子学报,28(6),2000,24-28.
    [56]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999.
    [57]D. Curtus Schleher, Electronic Warfare in the Information Age [M]. Boston:Artech House Radar Library,1999.
    [58]Sherman Frankel. Defeating Theater Missile Defense Radars with Active Decoys. April.1999.
    [59]Andrew M. Seller, John M. Cornwall et al... Countermeasures. A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System. April 2000.
    [60]Stig R. T. Ekestorm and Christopher Karow, AN ALL-DIGITAL IMAGE SYNTHESIZER FOR COUNTERING HIGH-RESOLUTION IMAGING RADARS, Naval Postgraduate School Monterey, California. Sept.2000.
    [61]Douglas J.Fouts, Phillip E. Pace, Christopher Karow, Stig R. T. Ekestorm, A Single-Chip False Target Radar Image Generator for Countering Wideband Imaging Radars.37(6), June, 2002.751-759
    [62]P. E. Pace, D. J. Fouts, S. Ekestorm and C. Karow, Digital false-target image synthesizer for countering ISAR. IEE Proc.-Radar Sonar Navig.149(5), Oct.2002.248-257.
    [63]Fernando A. Le Dantec. PERFORMANCE ANALYSIS OF A DIGITAL IMAGE SYNTHESIZER AS A COUNTER-MEASURE AGAINST INVERSE SYTHETIC APERTURE RADAR. NAVAL POSTGRADUATE SCHOOL Monterey, California. Sept. 2002.
    [64]Hakan Bergon. VHDL MODELING AND SIMULATION FOR A DIGITAL TARGET IMAGING ARCHITECTURE FOR MULTIPLE LARGE TARGETS GENERATION. NAVAL POSTGRADUATE SCHOOL Monterey, California. Sept.2002.
    [65]Ozkan Kantemir. VHDL MODELING AND SIMULATION OF A DIGITAL IMAGE SYNTHESIZER FOR COUNTERING ISAR. NAVAL POSTGRADUATE SCHOOL Monterey, California. June.2003.
    [66]冯德军,王雪松,肖顺平,王国玉.空间目标ISAR成像与识别对抗研究.系统工程与电子技术.27(1),2005,43-45.
    [67]Fan Luhong, Pi Yiming, Huang Shunji, HouYinming. A Comparison of Some Electronic Countermesures on Inverse Synthetic Aperture Radar (ISAR). Journal of electronics (China). Jan.2006.132-135.
    [68]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [69]张明友,汪学刚.雷达系统(第二版)[M].北京:电子工业出版社,2006.
    [70]杨绍全,张正明.对线性调频脉压雷达的干扰[J].西安电子科技大学学报,1991年9月,18(3):24-30.
    [71]A. W. Rihaczek. Principles of high-resolution radar [M]. McGraw-Hill,1969.
    [72][美]L科恩.白居宪译.时频分析:理论与研究[M].西安:西安交通大学出版社,1998,57-111.
    [73]吴一戎,胡东辉.一种新的合成孔径雷达压制干扰方法[J]. 电子与信息学报,2002,24(11):1664-1667.
    [74]DC施莱赫著,顾耀平,何自强等译.信息时代的电子战[M].成都:信息产业部第二十九所电子对抗国防科技重点实验室,2000:151-156.
    [75]樊昌信,曹丽娜.通信原理(第六版)[M].北京:国防工业出版社,2006.
    [76]Dave Adamy. Jamming Technique-Cover Jamming [J]. Journal of ELECTRONIC DEFENSE.1996, Vol.19 (8):66-67
    [77]吴大正,杨林耀,张永瑞.信号与线性系统分析(第三版)[M].北京:高等教育出版社,1997.
    [78][美]Wayne Thomas,王曼珠,许萍,曾萍等译, 电子通信系统(第四版)[M],北京:电子工业出版社,2002(8):215-236.
    [79]杨绍全.信号分析[M].西安:军事电信工程学院,1964.
    [80]魏青,合成孔径雷达成像方法与对合成孔径雷达干扰方法的研究.西安电子科技大学博士论文,2006.11.
    [81]柴宏亮,方永平.箔条干扰效果评估方法的研究[J].舰船电子对抗,2005,28(4):32-34.
    [82]刘佳琪,宋扬东.电子干扰效果仿真评估研究[J].航天电子对抗,2005,21(3):58-62.
    [83]高卫.电子干扰效果一般评估准则探讨[J].电子信息对抗技术,2006,21(6):39-42.
    [84]潘志丽,张宏科,张思东.电子干扰效果与效能评估的研究[J].北方交通大学学报,2002,26(6):83-85.
    [85]刘东红,张永顺.对脉冲压缩雷达的干扰评估与实现[J].航天电子对抗,2004(5):12-16.
    [86]朱燕,赵国庆.距离目标像欺骗干扰的效果分析[J].电波科学学报,2006,21(1):13卜134.
    [87]李建勋,刘卫东,廖桂生,吴顺君.干扰条件下常规雷达效能评估[J].西安电子科技大学学报(自然科学版),2000,27(4):520-523.
    [88]刘松涛,周晓东,陈永刚.光电成像制导系统干扰与抗干扰的性能评估[J].激光与红外,2007,37(1):10-13.
    [89]石晓娟,李明,吴顺君.基于DRFM的脉冲多普勒雷达组合干扰及其效能评估[J].电子信息对抗技术,2006,11(6):34-37.
    [90]李聪,黄高明,李敬辉.基于模糊神经网络的欺骗性干扰效果评估[J].电子信息、对抗技术,2007,22(1):6-9.
    [91]周颖,王雪松,王国玉,汪连栋,刘义和.基于战区弹道导弹突防的雷达干扰效果模糊评估[J].系统工程与电子技术,2003,25(7):807-809.
    [92]周颖,王雪松,徐振海,赵锋,王国玉.雷达电子战效果及效能评估的一般性思考[J].系统工程与电子技术,2004,26(5):617-610.
    [93]高彬,吕善伟,赵集慧.电子对抗效能评估仿真系统的实现[J].系统工程与电子技术,2005,27(10):1738-1740.
    [94]魏保华,吕晓雯,王雪松,肖顺平.雷达干扰效果模糊综合评估方法研究[J].系统工程与电子技术,2000,22(8):68-71.
    [95]黄高明,刘勤,苏国庆,袁湘辉.雷达遮盖性干扰效果评估度量方法研究[J].现代雷达,2005,27(8):10-13.
    [96]魏保华,杨锁昌,王雪松,高勤,周颖.神经网络应用于干扰效果评估的研究[J].现代雷达,2001,第3期:24-27.
    [97]潘志丽,张宏科,张思东.现代电子干扰理论与效能评估的研究[J].通信学报,2003,24(11):40-45.
    [98]贺静波.线性调频脉冲压缩雷达干扰仿真研究[J].舰船电子工程,2005,25(3):110-112.
    [99]魏保华,吕晓雯,王雪松.一种新的雷达有源干扰效果评估准则的研究[J].现代雷达,1999,第6期:26-30.
    [100]朱莹,田宇,杨黎.噪声干扰对机载雷达系统效果评估和建模[J].系统仿真学报,2006,18(增2):169-171.
    [101]马俊霞,蔡英武,陈惠连.SAR压制式干扰仿真及效果评估[J].信息与电子工程,2004,2(2):109-113.
    [102]谢虹,汪连栋,袁翔宇.对SAR的噪声干扰效果评估研究[J].航天电子对抗,2003(3):15-17.
    [103]李锋,朱伟强.对SAR有源干扰效果评估方法研究[J].航天电子对抗,2006,22(2):28-30.
    [104]马俊霞,蔡英武,张海.合成孔径雷达全景干扰与局部干扰效果评估[J].探测与控制学报,2005,27(3):38-40.
    [105]孙云辉,李芳倩,冯建伟.基于SAR图像的欺骗式干扰效果评估研究[J].航天电子对抗,2006,22(2):31-34.
    [106]伯仲干,王伟,王国玉,汪连栋.基于区域纹理匹配的SAR欺骗性干扰评估方法研究[J].系统工程与电子技术,2006,28(10):1506-1508.
    [107]周广涛,石长安,杨英科,李宏.基于熵的SAR.干扰效果评估方法[J].航天电子对抗,2006,22(4):33-35.
    [108]魏青,杨绍全,陈俊丽,董春曦.对合成孔径雷达的干扰效果度量方法研究[J].西安电子科技大学学报(自然科学版),2004,31(3):383-387.
    [109]李源,陈惠连.基于相关系数的ISAR干扰效果评估方法[J].电子科技大学学报,2006,35(4):468-470.
    [110]王瑜.雷达干扰未确知效果的测度评价研究[J].系统工程与电子技术,2002,24(12):59-61.
    [111]Gemma Piella and Henk Heihmans. A NEW QUALITY METRIC FOR IMAGE FUSION. Image Processing,2003. ICIP, vol.2,173-176.
    [112]Gemma Piella. New quality measure for image fusion. Proceedings ofthe 7th International Conference on Information Fusion,2004.
    [113]Chengzhi Deng, Hanqiang Cao, Chao Cao,Shengqian Wang, Multisensor image fusion using fast discrete curvelet transform. Proceedings of the SPIE-The International Society for Optical Engineering,15 Nov.2007, p 679004-1-9.
    [114]C.S.Xydeas and V. Petrovic. Obhective image fusion performance measure. ELECTRONICS LETTERS.17th February 2000 Vol.36 No.4:308-309
    [115]Zhou Wang and Alam C. Bovik. WHY IS IMAGE QUALITY ASSESSMENT SO DIFFICULT. IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, v 4, pⅣ/3313-Ⅳ/3316,2002
    [116]Zhou Wang and Alan C. Bovik, A Universal Image Quality Index. IEEE SIGNAL PROCESSING LETTERS, MARCH 2002,81-84.
    [117]Netiani, Kelly E, Pinkus. Alan R, Dommett David W. An investigation of image fusion algorithms using a visual performance-based image evaluation methodology. Proceedings of SPIE-The International Society for Optical Engineering,2008,Signal Processing, Sensor fusion, and Target recognition XVII.
    [118]Tsai Victor J.D, Evaluation of multiresolution image fusion algorithms. IEEE International Geoscience and Remote Sensing Symposium Proceedings,2004,621-624.
    [119]Zhou Wang, Alan Conrad Bovik Hamid Rahim Sheikh, Eero P. Simoncelli. Image Quality Assessment:From Error Vissibility to Structural Similarity. IEEE TRANSACTIONS ON IMAGE PROCESSING. Vol.13, No.4, APRIL 2004.600-612.
    [120]Simard. P, Link. N. K, Kruk. R. V, Evaluation of algorithms for fusing infrared and synthetic imagery. Proceedings of the SPIE-the international society for Optical Engineering.2000. 127-138.
    [121]Sheikh H R, Sabir M F, Bovik A C, A statistical evaluation of recent reference image quality assessment algorithms. IEEE Transactions on Image Processing, V15, Nov 2006,3440-3451.
    [122]Ismail Avcibas, Bulent Sankur, Khalid Sayood. Statistical evaluation of image quality measures. Journal of Electronic Imaging. April 2002. Vol.11 (2).206-223.
    [123]Yalazan H T. Comparison of three objective image quality measure'performances. IEEE signal Processing and Communications,2007 15th,265-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700