检测Cre重组酶活性的转基因报告猪的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cre/LoxP系统主要应用于制备人类疾病模型鼠,因此检测Cre重组酶活性的报告动物品系也全部是小鼠。由于猪与人类在解剖结构、生理学等更为接近,因此利用Cre/LoxP系统构建转基因疾病动物模型及其相应的转基因报告猪具有重要意义。为了实现Cre/LoxP转基因猪在人类疾病动物模型的应用,本实验构建了用于检测Cre重组酶活性的转基因报告猪。
     首先构建条件性表达绿色荧光蛋白的真核表达载体,由CMV启动子调控条件性表达绿色荧光蛋白,两个同向的LoxP位点锚定一个筛选基因与终止子,当Cre重组酶不存在时,绿色荧光蛋白由于和启动子之间有终止子的存在,绿色荧光蛋白不表达;当Cre重组酶存在时,将LoxP间的序列删除,CMV启动子启动绿色荧光蛋白的表达。
     将所构建的条件性表达绿色荧光蛋白的载体线性化后,用脂质体法转染到猪胚胎成纤维细胞,通过G418筛选,获得可以检测Cre重组酶活性的猪胚胎成纤维细胞,作为体细胞核移植的供体细胞。对所筛选的转基因猪胚胎成纤维细胞在基因水平、转录水平、表达水平进行了检测。并通过体细胞核移植技术,获得了11头健康的克隆猪。对所获得克隆猪进行PCR鉴定,并分离新生克隆猪尾部成纤维细胞,进行Cre重组酶的验证实验,鉴定结果表明,所获得的克隆猪均为转基因克隆猪。
The Cre-LoxP system has been developed as a powerful tool for manipulating DNA both in vitro and in vivo. Though standard gene knockouts have been highly informative, early embryonic lethality or complex phenotypes often obscure the roles of genes studied during later stages of development or in specific tissues. Conditional gene targeting provides a means to circumvent certain limitations of conventional gene targeting. the pig is thought to be the most suiTab non-human source of organs for xenotransplantation, and it is becoming more widely used as a model of human disease. Effective use of conditional Cre recombinase-LoxP gene modification requires Cre-expressing porcine strains with defined patterns of expression, for example by the use of a tissue-specific promoter. Such pigs would be a powerful tool for studying human gene expression. In order to monitor recombinant Cre expression, it is important to create reporter strains.
     At first, we constructed a vector, in this vector, the EGFP gene is regulated by a CMV promoter, but its expression is inhibited by a LoxP-flanked intervening cassette containing the neo gene, followed by transcriptional termination sequences. The final vector was named pICE-STOP. To generate transgenic cells, porcine fetal fibroblasts were seeded in a 60mm dish at a density of 2×105 cells per dish on the day before transfection. Cells were cultured in DMEM supplemented with 15% fetal bovine serum and incubated at 39 oC. For the production of stably trasfected cell lines, the pICE-STOP plasmids were digested with NheI. On the following day, the pICE-STOP fragment was incorporated into Lipofectamine 2000 ? reagent, after cells were cultured in selection medium containing 300μg /ml of G418 antibiotic for an additional 7 days. The surviving cell colonies were picked and propagated and the cells were then frozen to be used as the donor cells.In order to examine if the gene have intergrated into genome, the genomic DNA of clones was used for PCR amplification and intergratd sites analyzed by high-efficiency thermal asymmetric interlaced PCR.
     To examine excision-activated EGFP expression in these cells, the clones were individually assayed for expression of EGFP following infection with Ad-Cre at an MOI of 800 for 72 h. Images were collected on a laser scanning confocal microscope .At 72 h after Ad-Cre transfection, levels of EGFP mRNA were measured by RT–PCR using theprimers selected for detection of the EGFP sequence. FACS analysis was also used to characterize the expression of EGFP.
     A positive cell clone was used to construct a transgenic pig by nuclear transfer (NT). To determine whether Cre can regulate the expression of EGFP, transgenic pig cells were isolated from tails that were infected with recombinant Cre adenovirus.Two days after rAd infection, EGFP gene expression was assessed with a laser scanning confocal microscope. Total RNA was purified and RT-PCR was performed.
     We generate transgenic reporter pigs, which can be used to monitor Cre-mediated excision. The EGFP gene is expressed only after Cre-mediated excision of LoxP-flanked stop sequences. We expect that this reporter strain could facilitate the in vivo monitoring of Cre-mediated excision events in a variety of experimental contexts.
引文
[1] MOAR VA GJ, LANE CD, MARBAIX G. Translational capacity of living frog eggs and oocytes, as judged by messenger RNA injection.[J]. J Mol Biol 1971, 61 (1): 93-103.
    [2] GURDON JB LC, WOODLAND HR, MARBAIX G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells.[J]. Nature, 1971 233 (5316): 177-182.
    [3] JAENISCH R MB. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J]. Proc Natl Acad Sci U S A 1974, 71 (4): 1250-1254.
    [4] GORDON JW SG, PLOTKIN DJ, BARBOSA JA, RUDDLE FH. Genetic transformation of mouse embryos by microinjection of purified DNA.[J]. Proc Natl Acad Sci U S A, 1980, 77 (12): 7380-7384.
    [5] SM. W. Nuclear transplantation in sheep embryos.[J]. Nature, 1986, 320 (6057): 63-65.
    [6] WILMUT I, SCHNIEKE, A. E., MCWHIR, J., KIND, A. J., AND CAMPBELL, K. H. Viable offspring derived from fetal and adult mammalian cells.[J]. Nature 1997, 385: 810-813.
    [7] HAMMER RE PV, REXROAD CE JR, WALL RJ, BOLT DJ, EBERT KM, PALMITER RD, BRINSTER RL. Production of transgenic rabbits, sheep and pigs by microinjection.[J]. Nature, 1985, 315 (6021): 680-683.
    [8] PURSEL VG RCJ, BOLT DJ, MILLER KF, WALL RJ, HAMMER RE, PINKERT CA, PALMITER RD, BRINSTER RL. Progress on gene transfer in farm animals.[J]. Vet Immunol Immunopathol 1987, 17 (1-4).
    [9] PRATHER RS SM, FIRST NL. Nuclear transplantation in early pig embryos.[J]. Biol Reprod, 1989, 41 (3): 414-418.
    [10] POLEJAEVA IA CS, VAUGHT TD, PAGE RL, MULLINS J, BALL S, DAI Y, BOONE J, WALKER S, AYARES DL, COLMAN A, CAMPBELL KH. Cloned pigs produced by nuclear transfer from adult somatic cells.[J]. Nature, 2000, 407 (6800): 86-90.
    [11] LAI L K-SD, PARK KW, CHEONG HT, GREENSTEIN JL, IM GS, SAMUEL M, BONK A, RIEKE A, DAY BN, MURPHY CN, CARTER DB, HAWLEY RJ, PRATHER RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.[J]. Science, 2002, 295 (5557): 1089-1092.
    [12] HYUN S LG, KIM D, KIM H, LEE S, NAM D, JEONG Y, KIM S, YEOM S, KANG S, HAN J, LEE B, HWANG W. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein.[J]. Biol Reprod, 2003, 69 (3): 1060-1068.
    [13] KUROIWA Y, KASINATHAN, P., CHOI, Y. J., NAEEM, R., TOMIZUKA, K.,. Cloned transchromosomic calves producing human immunoglobulin[J]. Nat Biotechnol, 2002, 20: 889-894.
    [14] KUROIWA Y, KASINATHAN, P., MATSUSHITA, H., SATHIYASELAN, J., SULLIVAN, E. J., KAKITANI, M.,TOMIZUKA, K., ISHIDA, I., AND ROBL, J. M. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle.[J]. Nat Genet, 2004, 36: 775-780.
    [15] LAI L KJ, LI R, WANG J, WITT WT, YONG HY, HAO Y, WAX DM, MURPHY CN, RIEKE A, SAMUEL M, LINVILLE ML, KORTE SW, EVANS RW, STARZL TE, PRATHER RS, DAI Y. Generation of cloned transgenic pigs rich in omega-3 fatty acids.[J]. Nat Biotechnol 2006, 24 (4): 435-436.
    [16] GOLOVAN SP MR, AJAKAIYE A, COTTRILL M, WIEDERKEHR MZ, BARNEY DJ, PLANTE C, POLLARD JW, FAN MZ, HAYES MA, LAURSEN J, HJORTH JP, HACKER RR, PHILLIPS JP, FORSBERG CW. Pigs expressing salivary phytase produce low-phosphorus manure.[J]. Nat Biotechnol, 2001, 19 (8): 741-745.
    [17] RT W. biotechnology for the production of modified and innovative animal products:transgenic livestock bioreactors[J]. Livestock Production Science, 1999, 59: 243-255.
    [18] RL. N. Lessons from transgenic mouse lines expressing sickle hemoglobin[J]. Proc Soc Exp Biol Med, 1994, 205 (4): 274-281.
    [19] PALMITER RD BR, HAMMER RE, TRUMBAUER ME, ROSENFELD MG, BIRNBERG NC, EVANS RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.[J]. Nature, 1982, 300 (5893): 611-615.
    [20] CHAN A W HEJ, BALLOU L U ,. Transgenic cattle produced by reverse2transcribed gene transfer in oocytes[J]. Proc Natl Acad Sci U S A 1998 95 (24): 14028 - 140331.
    [21] LAVITRANO M CA, FAZIO VM, DOLCI S, FARACE MG, SPADAFORA C. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice.[J]. Cell, 1989, 57 (5): 717-723.
    [22] PERRY AC WT, KISHIKAWA H, KASAI T, OKABE M, TOYODA Y, YANAGIMACHI R. Mammalian transgenesis by intracytoplasmic sperm injection[J]. Science, 1999, 284 (5417):1180-1183.
    [23] CHAN AW CK, MARTINOVICH C, SIMERLY C, SCHATTEN G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes[J]. Science, 2001, 291 (5502): 226.
    [24] K. H. Update on equine ICSI and cloning.[J]. Theriogenology, 2005, 64 (3): 535-541.
    [25] KUROME M UH, TOMII R, NARUSE K, NAGASHIMA H. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer[J]. Transgenic Res, 2006, 15 (2): 229-240.
    [26] CIBELLI JB SS, GOLUEKE PJ, KANE JJ, JERRY J, BLACKWELL C, PONCE DE LEóN FA, ROBL JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts.[J]. Science, 1998, 280 (5367): 1256-1258.
    [27] .BAGUISI A BE, MELICAN DT, POLLOCK JS, DESTREMPES MM, CAMMUSO C, WILLIAMS JL, NIMS SD, PORTER CA, MIDURA P, PALACIOS MJ, AYRES SL, DENNISTON RS, HAYES ML, ZIOMEK CA, MEADE HM, GODKE RA, GAVIN WG, OVERSTR?M EW, ECHELARD Y. Production of goats by somatic cell nuclear transfer[J]. Nat Biotechnol, 1999, 17 (5): 456-461.
    [28] POLEJAEVA IA, CHEN, S. H., VAUGHT, T. D., PAGE, R. L., MULLINS, J., . Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature, 2000, 407: 86-90.
    [29] LAI L, KOLBER-SIMONDS, D., PARK, K. W., CHEONG, H. T., GREENSTEIN, J. L.,. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. [J]. Science 2002, 295: 1089-1092.
    [30] SCHNIEKE AE KA, RITCHIE WA, MYCOCK K, SCOTT AR, RITCHIE M, WILMUT I, COLMAN A, CAMPBELL KH. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.[J]. Science, 1997, 278 (5346): 2130-2133.
    [31] POLEJAEVA IA CS, VAUGHT TD, PAGE RL, MULLINS J, BALL S, DAI Y, BOONE J, WALKER S, AYARES DL, COLMAN A, CAMPBELL KH. Cloned pigs produced by nuclear transfer from adult somatic cells.[J]. Nature, 2000, 407 (6800): 86-90.
    [32] ONISHI A IM, AKITA T, MIKAWA S, TAKEDA K, AWATA T, HANADA H, PERRY AC. Pig cloning by microinjection of fetal fibroblast nuclei.[J]. Science, 2000, 289 (5482): 1188-1190.
    [33] LEE JW TX, YANG X. Optimization of parthenogenetic activation protocol in porcine.[J]. Mol Reprod Dev 2004, 68 (1): 51-57.
    [34]张德福王,陈凯.猪体细胞核移植重构胚的体外发育及其影响因素[J].实验生物学报, 2003,1: 59-63.
    [35] WILMUT I SA, MCWHIR J, KIND AJ, CAMPBELL KHS. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997, 385: 810-813.
    [36] WILMUT I CK. Quiescence in nuclear transfer.[J]. Science, 1998, 281 (5383): 1611.
    [37] CIBELLI JB SS, GOLUEKE PL, KANE JJ, JERRY J, BLACKWELL C, PONCE DE LEON FA, ROBL JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. [J]. Science 1998, 282: 2095-2098.
    [38] TAO T BA, MACHáTY Z, PETERSEN AL, DAY BN, PRATHER RS. Development of pig embryos by nuclear transfer of cultured fibroblast cells[J]. Cloning, 1999, 1 (1): 55-62.
    [39] HILL J WQ, JONES K, KELLER D, KING WA, WESTHUSIN M. The effect of donor cell serum starvation and oocyte activation compounds on the development of somatic cell cloned embryos.[J]. Cloning, 2000, 1: 201–208
    [40] WAKAYAMA T YR. Fertilisability and developmental ability of mouse oocytes with reduced amounts of cytoplasm.[J]. Zygote, 1998, 6 (4): 341-346.
    [41] B. KüHHOLZERA RJH, L. LAIA, D. KOLBER-SIMONDSB, AND R.S. PRATHER2,A Clonal Lines of Transgenic Fibroblast Cells Derived from the Same Fetus Result in Different Development When Used for Nuclear Transfer in Pigs[J]. Biology of Reproduction, 2001, 64: 1695-1698.
    [42] LAI L TT, MACHáTY Z, KüHHOLZER B, SUN QY, PARK KW, DAY BN, PRATHER RS. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors.[J]. Biol Reprod, 2001, 65 (5): 1558-1564.
    [43] LANZA RP CJ, DIAZ F, MORAES CT, FARIN PW, FARIN CE, HAMMER CJ, WEST MD, DAMIANI P. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.[J]. Cloning, 2000, 2 (2): 79-90.
    [44] LANZA RP CJ, BLACKWELL C, CRISTOFALO VJ, FRANCIS MK, BAERLOCHER GM, MAK J, SCHERTZER M, CHAVEZ EA, SAWYER N, LANSDORP PM, WEST MD. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells[J]. Science, 2000 288 (5466): 665-669.
    [45] TOMII R KM, WAKO N, OCHIAI T, MATSUNARI H, KANO K, NAGASHIMA H. Production of Cloned Pigs by Nuclear Transfer of Preadipocytes Following Cell Cycle Synchronization by Differentiation Induction[J]. J Reprod Dev, 2008.
    [46] BOQUEST AC DB, PRATHER RS. Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells used for nuclear transfer[J]. Biol Reprod, 1999, 60: 1013-1019.
    [47] LEE GS HS, KIM HS, KIM DY, LEE SH, LIM JM, LEE ES, KANG SK, LEE BC, HWANG WS. Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations.[J]. Theriogenology 2003, 59 (9): 1949-1957.
    [48] HYUN SH LG, KIM DY, KIM HS, LEE SH, KIM S, LEE ES, LIM JM, KANG SK, LEE BC, HWANG WS. Effect of maturation media and oocytes derived from sows or gilts on the development of cloned pig embryos.[J]. Theriogenology 2003, 59 (7): 1641-1649.
    [49] KONG QR LY, TIAN JT, WANG ZK, ZHANG L, LIU ZH. Production of porcine reconstructed embryos by whole-cell intracytoplasmic microinjection[J]. Fen Zi Xi Bao Sheng Wu Xue Bao, 2008, 41 (1): 70-74.
    [50] TSUNODA Y KY. Nuclear transplantation of embryonic stem cells in mice.[J]. J Reprod Fertil, 1993, 98 (2): 537-540.
    [51] LAI L PR. Production of cloned pigs by using somatic cells as donors.[J]. Cloning Stem Cells, 2003, 5 (4): 233-241.
    [52] BRüSSOW KP TH, KANITZ W, RáTKY J. In vitro technologies related to pig embryo transfer.[J]. Reprod Nutr Dev, 2000, 40 (5): 469-480.
    [53] HILL JR EJ, SAWYER N, BLACKWELL C, CIBELLI JB. Placental anomalies in a viable cloned calf.[J]. Cloning, 2004, 3 (2): 83-88.
    [54] CIBELLI JB CK, SEIDEL GE, WEST MD, LANZA RP. The health profile of cloned animals.[J]. Nat Biotechnol, 2002, 20 (1): 13-14.
    [55] SANTOS F ZV, STOJKOVIC M, PETERS A, JENUWEIN T, WOLF E, REIK W, DEAN W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos[J]. Curr Biol, 2003, 13 (13): 1116-1121.
    [56] GHANEM ME NT, NISHIBORI M. Deficiency of uridine monophosphate synthase (DUMPS) and X-chromosome deletion in fetal mummification in cattle[J]. Anim Reprod Sci, 2006, 91 (1-2): 45-54.
    [57] ABREMSKI K HR, STERNBERG N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination.[J]. Cell, 1983, 32 (4): 1301-1311.
    [58]郑敬民,李坚,傅继梁.重组酶介导的盒式交换及其应用. [J].生命的化学, 2000, 20 (6):268-271.
    [59] GOPAUL DN GF, VAN DUYNE GD. Structure of the Holliday junction intermediate in Cre-LoxP site-specific recombination [J]. EMBO J 1998, 17 (14): 4175-4187.
    [60] GUO F GD, VAN DUYNE GD. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse.[J]. Nature, 1997, 389 (6646): 40-46.
    [61] STERNBERG N SB, HOESS R, ABREMSKI K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation.[J]. J Mol Biol, 1986, 187 (2): 197-212.
    [62] LEE G SI. Role of nucleotide sequences of LoxP spacer region in Cre-mediated recombination.[J]. Genesis, 1998 216 (1): 55-65.
    [63] SHIMSHEK DR KJ, HüBNER MR, SPERGEL DJ, BUCHHOLZ F, CASANOVA E, STEWART AF, SEEBURG PH, SPRENGEL R. Codon-improved Cre recombinase (iCre) expression in the mouse.[J]. Genesis, 2002 32 (1): 19-26.
    [64] KILBY NJ SM, MURRAY JA. Site-specific recombinases: tools for genome engineering.[J]. Trends Genet, 1993, 9 (12): 413-421.
    [65] GU H MJ, ORBAN PC, MOSSMANN H, RAJEWSKY K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting.[J]. Science, 1994, 265 (5168): 103-106.
    [66] IMAYOSHI I OT, METZGER D, CHAMBON P, KAGEYAMA R. Temporal regulation of Cre recombinase activity in neural stem cells.[J]. Genesis, 2006, 44 (5): 233-238.
    [67] BRADLEY CK TE, G?THERT JR, G?TTGENS B, GREEN AR, BEGLEY CG, VAN EEKELEN JA. Temporal regulation of Cre-recombinase activity in Scl-positive neurons of the central nervous system. [J]. Genesis, 2007, 45 (3): 145-151.
    [68] NORDIN N NS, LI M, MASON JO. Inducible transgene expression in undifferentiated mouse embryonic stem cells and embryoid bodies[J]. Med J Malaysia 2008, 63: 59-60.
    [69] CHEUNG AF DM, DONG HK, CHEN J, JACKS T. Regulated expression of a tumor-associated antigen reveals multiple levels of T-cell tolerance in a mouse model of lung cancer[J]. Cancer Res 2008, 68 (22): 9459-9468.
    [70] ZAMBROWICZ BP IA, FIERING S, HERZENBERG LA, KERR WG, SORIANO P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells.[J]. Proc Natl AcadSci U S A 1997, 94 (8): 3789-3794.
    [71] SRINIVAS S WT, LIN CS, WILLIAM CM, TANABE Y, JESSELL TM, COSTANTINI F. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus.[J]. BMC Dev Biol, 2001, 1: 4.
    [72] MAO X FY, CHAPDELAINE A, YANG H, ORKIN SH. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain.[J]. Blood, 2001, 97 (1): 324-326.
    [73] .LYONS SK MR, KRIMPENFORT P, BERNS A. The generation of a conditional reporter that enables bioluminescence imaging of Cre/LoxP-dependent tumorigenesis in mice[J]. Cancer Res, 2003, 63 (21): 7042-7046.
    [74]朱焕章陈,成国祥,薛京伦.检测Cre位点特异重组酶活性的双报告转基因小鼠建立[J].第三军医大学学报, 2004, 26 (1): 32-35.
    [75] ZAMBROWICZ BP IA, FIERING S, HERZENBERG LA, KERR WG, SORIANO P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells.[J]. Proc Natl Acad Sci U S A, 1997, 94 (8): 3789-3794.
    [76] MAO X FY, ORKIN SH. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice[J]. Proc Natl Acad Sci U S A, 1999, 96 (9): 5037-5042.
    [77] ISMAIL PM LJ, DEMAYO FJ, O'MALLEY BW, LYDON JP. A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development[J]. Mol Endocrinol 2002, 16 (11): 2475-2489.
    [78] FRANK AC MK, WELSH IC, O'BRIEN TP. Development of an enhanced GFP-based dual-color reporter to facilitate genetic screens for the recovery of mutations in mice[J]. Proc Natl Acad Sci U S A, 2003, 100 (24): 14103-14108.
    [79] LYONS SK MR, KRIMPENFORT P, BERNS A. The generation of a conditional reporter that enables bioluminescence imaging of Cre/LoxP-dependent tumorigenesis in mice.[J]. Cancer Res, 2003, 63 (21): 7042-7046.
    [80] STOLLER JZ DK, HUANG L, ZHOU DD, LU MM, EPSTEIN JA. Cre reporter mouse expressing a nuclear localized fusion of GFP and beta-galactosidase reveals new derivatives of Pax3-expressing precursors.[J]. Genesis, 2008, 46 (4): 200-204.
    [81] SCHMIDT EV CG, ZELLER R, LEDER P. The cytomegalovirus enhancer: a pan-active control element in transgenic mice[J]. Mol Cell Biol, 1990, 10 (8): 4406-4411.
    [82] GROSS MK, KAINZ, M.S. AND MERRILL, G.F. Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells[J]. Mol Cell Biol, 1987, 7: 4576-4581.
    [83] BUCHMAN ARAB, P. Comparison of intron-dependent and intron-independent gene expression.[J]. Mol Cell Biol, 1988, 8: 4395-4405.
    [84] EVANS MJAS, R.C. Introns in the 3′-untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression[J]. Gene 1989, 84,: 135-142.
    [85] HUANG MTFAG, C.M. Intervening sequences increase efficiency of RNA 3′processing and accumulation of cytoplasmic RNA[J]. Nucl Acids Res, 1990, 18: 937-947.
    [86] BRONDYK B. pCI and pSI Mammalian Expression Vectors[J]. Promega Notes, 1994, 49: 7-11.
    [87] KELLUM R SP. A position-effect assay for boundaries of higher order chromosomal domains.[J]. Cell, 1991, 64 (5): 941-950.
    [88] KELLUM R SP. A group of scs elements function as domain boundaries in an enhancer-blocking assay[J]. Mol Cell Biol, 1992 12 (5): 2424-2431.
    [89] ROSEMAN RR PV, GEYER PK. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects[J]. EMBO J, 1993, 12 (2): 435-442.
    [90] EISSENBERG JC ES. Boundary functions in the control of gene expression.[J]. Trends Genet, 1991, 7 (10): 335-340.
    [91] ZHANG G GV, KAIN SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells[J]. Biochem Biophys Res Commun, 1996, 227 (3): 707-711.
    [92] CHEN Y-GLAY. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences,[J]. BioTechniques, 2007, 43: 649-656.
    [93] DODSON LA KJ. Two-temperature PCR and heteroduplex detection: application to rapid cystic fibrosis screening.[J]. Mol Cell Probes, 1991, 5 (1): 21-25.
    [94] .NAKANISHI T KA, YAMADA S, ISOTANI A, YAMASHITA A, TAIRAKA A, HAYASHI T, TAKAGI T, IKAWA M, MATSUDA Y, OKABE M. FISH analysis of 142 EGFP transgene integration sites into the mouse genome[J]. Genomics, 2002, 80 (6): 564-574.
    [95] SCHMIDT-SUPPRIAN M RK. Vagaries of conditional gene targeting.[J]. Nat Immunol, 2007, 8 (7): 665-668.
    [96] GEOFFROY CG RO. A Cre-lox approach for transient transgene expression in neural precursor cells and long-term tracking of their progeny in vitro and in vivo.[J]. BMC Dev Biol, 2007, 7: 45.
    [97] ASTRID ROHLMANN MG, THOMAS E. ,WILLNOW ROBERT E. ,HAMMER JOACHIM HERZ.,. Sustained somatic gene inactivation by viral transfer of Cre recombinase [J]. Nature Biotechnology 1996, 14: 1562 - 1565.
    [98] MICHAEL PEITZ KP, KLAUS RAJEWSKY, AND FRANK EDENHOFER. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: A tool for efficient genetic engineering of mammalian genomes[J]. Proc Natl Acad Sci U S A, 2002, 99 (7): 4489-4494.
    [99] DE ALBORAN IM OHR, G?RTNER F, MALYNN B, DAVIDSON L, RICKERT R, RAJEWSKY K, DEPINHO RA, ALT FW. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation.[J]. Immunity, 2001 14 (1): 45-55.
    [100] PFEIFER A BE, KOOTSTRA N, GAGE FH, VERMA IM. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo.[J]. Proc Natl Acad Sci U S A, 2001, 98 (20): 11450-11455.
    [101] DAVE VAN DEN PLAS PP, VIGGO VAN TENDELOO,DIRK R. VAN BOCKSTAELE,ZWI N. BERNEMAN, AND JOSEPH MERREGAERTA,. Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA[J]. Biochemical and Biophysical Research Communications, 2003, 305: 10-15.
    [102] LAI L TT, MACHáTY Z, KüHHOLZER B, SUN QY, PARK KW, DAY BN, PRATHER RS. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors.[J]. Biol Reprod, 2001 65 (5): 1558-1564.
    [103] THU KL VE, KENNETT JY, HERYET C, BROWN CJ, LAM WL, WILSON IM. Methylated DNA immunoprecipitation[J]. J Vis Exp, 2009.
    [104] REIK W DW. DNA methylation and mammalian epigenetics.[J]. Electrophoresis, 2001, 22 (14): 2838-2843.
    [105] SANTENARD A T-PM. Epigenetic reprogramming in mammalian reproduction: Contribution from histone variants.[J]. Epigenetics, 2009, 4 (2).
    [106] .KANG YK KD, PARK JS, CHOI YH, CHUNG AS, LEE KK, HAN YM. Aberrant methylation of donor genome in cloned bovine embryos[J]. Nat Genet 2001, 28 (2): 173-177.
    [107] DEAN W SF, STOJKOVIC M, ZAKHARTCHENKO V, WALTER J, WOLF E, REIK W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.[J]. Proc Natl Acad Sci U S A, 2001 98 (24): 13734-13738.
    [108] BOURC'HIS D LBD, PATIN D, NIVELEAU A, COMIZZOLI P, RENARD JP, VIEGAS-PéQUIGNOT E. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol, 2001, 11 (19): 1542-1546.
    [109] BEAUJEAN N TJ, GARDNER J, WILMUT I, MEEHAN R, YOUNG L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.[J]. Biol Reprod, 2004, 71 (1): 185-193.
    [110] CHEN T ZY, JIANG Y, LIU SZ, SCHATTEN H, CHEN DY, SUN QY. The DNA methylation events in normal and cloned rabbit embryos.[J]. FEBS Lett, 2004 578 (1-2): 69-72.
    [111] GABBINE WEE D-BK, BONG-SEOK SONG, JI-SU KIM, MAN-JONG KANG, SEUNG-JU MOON,YONG-KOOK KANG, KYUNG-KWANG LEE, AND YONG-MAHN HAN. Inheritable Histone H4 Acetylation of Somatic Chromatins in Cloned Embryos[J]. The journal of biological chemistry, 2006, 281: 6048–6057.
    [112] GHANEM ME NT, NISHIBORI M. Deficiency of uridine monophosphate synthase (DUMPS) and X-chromosome deletion in fetal mummification in cattle.[J]. Anim Reprod Sci, 2006, 91 (1-2): 45-54.
    [113] HYUN S LG, KIM D, KIM H, LEE S, NAM D, JEONG Y, KIM S, YEOM S, KANG S, HAN J, LEE B, HWANG W. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein.[J]. Biol Reprod, 2003, 69 (3): 1060-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700